JP2773881B2 - Manufacturing method of organic compound thin film - Google Patents

Manufacturing method of organic compound thin film

Info

Publication number
JP2773881B2
JP2773881B2 JP1006412A JP641289A JP2773881B2 JP 2773881 B2 JP2773881 B2 JP 2773881B2 JP 1006412 A JP1006412 A JP 1006412A JP 641289 A JP641289 A JP 641289A JP 2773881 B2 JP2773881 B2 JP 2773881B2
Authority
JP
Japan
Prior art keywords
organic compound
thin film
substrate
compound thin
orientation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1006412A
Other languages
Japanese (ja)
Other versions
JPH02197822A (en
Inventor
敦史 井上
真理子 石野
浩 谷口
与志郎 赤木
義晴 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP1006412A priority Critical patent/JP2773881B2/en
Publication of JPH02197822A publication Critical patent/JPH02197822A/en
Application granted granted Critical
Publication of JP2773881B2 publication Critical patent/JP2773881B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 この発明は、有機化合物薄膜の製法に関し、ことに非
線形光学素子、光学素子、光集積回路素子等に用いられ
る。
The present invention relates to a method for producing an organic compound thin film, and is particularly used for a nonlinear optical element, an optical element, an optical integrated circuit element and the like.

(ロ) 従来の技術 分子配向性の優れた有機化合物薄膜の製法としてはラ
ングミュア・ブロジェット法(LB法)が良く知られてい
る。この方法は分子の両端に親水基と疎水基をもった長
鎖状分子を水面に展開して形成した単分子膜を基板上に
移し取り、累積して行う方法である。この方法により分
子が基板に対し垂直に立ち、膜面に対し垂直な方向に周
期構造を持った薄膜を作製することができる。
(B) Conventional technology The Langmuir-Blodgett method (LB method) is well known as a method for producing an organic compound thin film having excellent molecular orientation. In this method, a monomolecular film formed by spreading a long-chain molecule having a hydrophilic group and a hydrophobic group at both ends of a molecule on a water surface is transferred to a substrate and accumulated. According to this method, a thin film having a periodic structure in which molecules stand perpendicular to the substrate and perpendicular to the film surface can be manufactured.

ラングミュア・ブロジェット法以外の結晶性又は分子
配向性有機化合物薄膜の形成方法としては、無機化合物
に使用されている薄膜形成方法のほとんどが試みられて
いる。即ち、ドライブプロセスでは真空蒸着法及びこれ
に関連した方法(分子線エピタキシー法、クラスターイ
オンビーム法、イオンビーム照射真空蒸着法、イオンプ
レーティング法等)やCVD法などがあり、ウェットプロ
セスでは液相エピタキシー法(LPE)、溶液又は融液か
らの析出法などがある。これらの方法により、アルカリ
ハライド単結晶、雲母、ガラスや金属蒸着膜などの基板
上にある特定の方向に配向した結晶性有機化合物薄膜が
成長することが知られている。
As a method of forming a crystalline or molecularly oriented organic compound thin film other than the Langmuir-Blodgett method, most of thin film forming methods used for inorganic compounds have been attempted. In other words, the drive process includes a vacuum deposition method and related methods (molecular beam epitaxy method, cluster ion beam method, ion beam irradiation vacuum deposition method, ion plating method, etc.) and the CVD method. Epitaxy (LPE), precipitation from a solution or melt, and the like. It is known that by these methods, a crystalline organic compound thin film oriented in a specific direction on a substrate such as an alkali halide single crystal, mica, glass, or a metal vapor-deposited film is grown.

(ハ) 発明が解決しようとする課題 上記従来法のうち、LB法を用いれば、積層方向に分子
長程度の周期を持った積層膜を作製し得る。しかしなが
ら、層内で秩序を持った膜を作製し得るのは、一部の材
料のみであり、ピンホール等の欠陥のない膜を作製する
ことも容易ではない。また、材料を水面上に展開し、気
水界面に単分子層を形成させることが原理的に必要であ
るため、適用できる材料が限定される。さらに気水界面
に形成した単分子膜を基板上に移し取る際、基板を水に
浸漬させる必要があることも欠点の1つである。また、
単分子膜を一層ずつ積み重ねる必要があるため作業性も
悪い。
(C) Problems to be Solved by the Invention Among the above conventional methods, if the LB method is used, a laminated film having a period of about the molecular length in the laminating direction can be produced. However, it is only a part of the materials that can form an ordered film in a layer, and it is not easy to produce a film without defects such as pinholes. Further, since it is necessary in principle to develop the material on the water surface and form a monomolecular layer at the air-water interface, applicable materials are limited. Further, one of the drawbacks is that it is necessary to immerse the substrate in water when transferring the monomolecular film formed at the air-water interface onto the substrate. Also,
Since monolayers must be stacked one by one, workability is poor.

これに対し真空蒸着法及びこれに関連した方法(分子
線エピタキシー法、クラスターイオンビーム法、イオン
ビーム照射真空蒸着法、イオンプレーティング法等)や
CVD法などの方法は乾式法であり、適用可能な材料も比
較的多く作業効率もLB法より優れている。しかし、一部
の材料では特定の配向を持った結晶薄膜が得られてはい
るものの、分子配向あるいは結晶方位が制御できるまで
には至っていない。また、液相からの成長方法は、材料
によっては有機化合物の単結晶を作製し得る方法ではあ
るが、乾式法同様、分子配向あるいは結晶方位の制御は
一般に困難である。
On the other hand, the vacuum deposition method and related methods (molecular beam epitaxy method, cluster ion beam method, ion beam irradiation vacuum deposition method, ion plating method, etc.) and
Methods such as the CVD method are dry methods, and the applicable materials are relatively large, and the working efficiency is superior to the LB method. However, although a crystal thin film having a specific orientation has been obtained with some materials, the molecular orientation or the crystal orientation cannot be controlled. Although the growth method from the liquid phase is a method that can produce a single crystal of an organic compound depending on the material, it is generally difficult to control the molecular orientation or crystal orientation as in the dry method.

この発明は、前記問題を解決するためになされたもの
であり、所望の結晶方位又は高い分子配向を有する有機
化合物薄膜の製法を提供しようとするものである。
The present invention has been made to solve the above-mentioned problem, and an object thereof is to provide a method for producing an organic compound thin film having a desired crystal orientation or a high molecular orientation.

(ニ) 課題を解決するための手段 この発明者らは、前記課題を解決するため、材料を構
成する有機化合物の基本単位は、一つ一つの原子という
よりはむしろ原子の閉じた集合体として立体構造を有す
る分子であり、有機化合物薄膜の結晶構造や分子配向
は、分子の立体的な構造的異方性、分子内の電気分極の
異方性、分子間相互作用の異方性により規制され、有機
化合物薄膜を基板上に形成させる場合、薄膜の結晶方位
や分子配向は、基板上第1層目の付着分子の配向に大き
くし依存し、付着分子の配向は付着分子自体の構造、電
気分極の方向及び基板の結晶構造、基板分子の構造や分
極の方向、さらには付着分子と基板分子の相互作用の異
方性によって規制される、という観点から鋭意研究を行
ったところ形成させる有機化合物薄膜に対して基板の種
類、結晶方位及び分子配向を選択することにより、基板
上第1層目の付着分子の配向、配列を制御することが可
能であり、ひいては基板に対し特定の結晶方位、分子配
向を持った有機化合物薄膜を作製することが可能である
ことを見出し、この発明に至った。
(D) Means for Solving the Problems In order to solve the above problems, the present inventors have proposed that a basic unit of an organic compound constituting a material is not an individual atom but a closed aggregate of atoms. A molecule having a three-dimensional structure, and the crystal structure and molecular orientation of the organic compound thin film are regulated by the three-dimensional structural anisotropy of the molecule, the anisotropy of the electric polarization in the molecule, and the anisotropy of the intermolecular interaction. When an organic compound thin film is formed on a substrate, the crystal orientation and molecular orientation of the thin film largely depend on the orientation of the adhesion molecules of the first layer on the substrate, and the orientation of the adhesion molecules depends on the structure of the adhesion molecules themselves, The organic matter formed after extensive research has been conducted from the viewpoint that it is regulated by the direction of electric polarization, the crystal structure of the substrate, the structure and polarization direction of the substrate molecules, and the anisotropy of the interaction between the attached molecules and the substrate molecules. For compound thin films By selecting the type, crystal orientation and molecular orientation of the substrate, it is possible to control the orientation and arrangement of the adhering molecules of the first layer on the substrate. The inventors have found that it is possible to produce an organic compound thin film having the same, and have reached the present invention.

この発明によれば、基板上に有機化合物薄膜を形成さ
せるに際し、前記基板として、少なくとも表面に、形成
する有機化合物薄膜に対し所定方向への配向性を付加し
うる親和性を示すかもしくは結晶格子サイズでの類似性
を有し、かつ立体的構造的異方性、分子内の電気分極の
異方性又は分子間相互作用の異方性を有する結晶性有機
化合物の層が気相成長にて形成された基板を用い、該基
板上に、所定の配向性もしくは結晶性を有する前記結晶
性有機化合物の層とは異なる有機化合物薄膜を作製する
ことを特徴とする有機化合物薄膜の製法が提供される。
According to the present invention, when forming an organic compound thin film on a substrate, the substrate has, at least on its surface, an affinity capable of adding orientation in a predetermined direction to an organic compound thin film to be formed, or a crystal lattice. A layer of a crystalline organic compound having similarity in size and having steric structural anisotropy, intramolecular electric polarization anisotropy or intermolecular anisotropy is formed by vapor phase growth. A method for producing an organic compound thin film is provided, wherein an organic compound thin film different from the crystalline organic compound layer having a predetermined orientation or crystallinity is formed on the substrate using the formed substrate. You.

この発明においては、結晶性有機化合物の層を少なく
とも表面に形成した基板上に結晶性又は配向性の有機化
合物薄膜を形成することができる。
In the present invention, a crystalline or oriented organic compound thin film can be formed on a substrate having a layer of a crystalline organic compound formed on at least the surface.

前記有機化合物薄膜は、例えば2−メチル−4−ニト
ロアニリン、7−ジエチルアミノ−4−メチルクマリ
ン、m−ニトリアニリン、5−ニトロウラシル、α−レ
ゾルシノール、m−アミノフェノール、m−ジニトロベ
ンゼン、2−ブロモ−4−ニトロアニリン、2−クロロ
−4−ニトロアニリン、メチル−(2,4−ジニトロフェ
ニル)−アミノ−2−プロパノエート、N,N′−ジメチ
ル尿素、3−メチル−4−ニトロピリジン−1−オキサ
イド、N−(4−ニトロフェニル)−(L)−プロリノ
ール等から形成することができる。
Examples of the organic compound thin film include 2-methyl-4-nitroaniline, 7-diethylamino-4-methylcoumarin, m-nitrianiline, 5-nitrouracil, α-resorcinol, m-aminophenol, m-dinitrobenzene, -Bromo-4-nitroaniline, 2-chloro-4-nitroaniline, methyl- (2,4-dinitrophenyl) -amino-2-propanoate, N, N'-dimethylurea, 3-methyl-4-nitropyridine -1-oxide, N- (4-nitrophenyl)-(L) -prolinol and the like.

前記基板は、結晶性有機化合物のみで形成することも
可能であるが、通常例えばシリコン、ガラス等の無機化
合物からなる板状体又は曲面体等の表面に結晶性有機化
合物の層を付与して形成することができる。前記基板は
この上に形成させる有機化合物薄膜に対し所定方向への
配向性を付与しうる親和性を示すかもしくは結晶格子サ
イズでの類似性を有する有機化合物を用いることができ
る。この基板を構成する有機化合物は例えば立体的構造
的異方性、分子内の電気分極の異方性、分子間相互作用
の異方性を有する結晶性有機化合物等を挙げることがで
き、例えば結晶性有機低分子量化合物、結晶性有機高分
子化合物、液晶性化合物等を用いることができ、この中
でも結晶性有機高分子化合物が特に好ましい。前記基板
は、この上に形成させる有機化合物薄膜と適合する種々
の結晶性有機化合物が選定され、例えば2−メチル−4
−ニトロアニリン(MNA)結晶性薄膜を製造する際に
は、例えば銅フタロシアニン、結晶性ポリエチレンオキ
サイド等を用いることができる。
The substrate may be formed of only a crystalline organic compound, but usually, for example, silicon, a plate-like body or a curved body made of an inorganic compound such as glass is provided with a layer of the crystalline organic compound on the surface thereof. Can be formed. The substrate may be formed of an organic compound having an affinity for giving an orientation in a predetermined direction to an organic compound thin film formed thereon or having a similarity in crystal lattice size. Examples of the organic compound constituting the substrate include a crystalline organic compound having three-dimensional structural anisotropy, anisotropy of intramolecular electric polarization, and anisotropy of intermolecular interaction. Organic low molecular weight compounds, crystalline organic high molecular compounds, liquid crystalline compounds and the like can be used, and among them, crystalline organic high molecular compounds are particularly preferable. For the substrate, various crystalline organic compounds compatible with the organic compound thin film formed thereon are selected, for example, 2-methyl-4.
When producing a nitroaniline (MNA) crystalline thin film, for example, copper phthalocyanine, crystalline polyethylene oxide, or the like can be used.

前記有機化合物薄膜は真空中での気相成長法又は液相
(融液、溶液)からの析出法を用いて前記基板上に形成
することができる。前記気相成長法としては真空蒸着法
及びこれに関連した方法(分子線エピタキシー法、クラ
スターイオンビーム法、イオンビーム照射真空蒸着法、
イオンプレーティング法等)やCVD法などがあり、液相
からの析出法では液相エピタキシー法(LPE)、溶液又
は融液からの析出法等を用いることができる。
The organic compound thin film can be formed on the substrate by a vapor phase growth method in a vacuum or a deposition method from a liquid phase (melt, solution). The vapor deposition method includes a vacuum deposition method and related methods (molecular beam epitaxy method, cluster ion beam method, ion beam irradiation vacuum deposition method,
(Eg, an ion plating method) and a CVD method, and a liquid phase deposition method may be a liquid phase epitaxy method (LPE), a deposition method from a solution or a melt, or the like.

前記有機化合物薄膜は1層でもよいが、多層に成長さ
せることもできる。
The organic compound thin film may be a single layer, or may be grown in multiple layers.

(ホ) 作用 基板が、この上に作製する有機化合物薄膜における結
晶と結晶格子サイズが類似しているためこの基板上に形
成された有機化合物薄膜の結晶方位が規定される。
(E) Function The crystal orientation of the organic compound thin film formed on the substrate is defined because the substrate has a similar crystal lattice size to the crystal of the organic compound thin film formed thereon.

基板が、この上に付着する有機化合物薄膜に対し所定
方向への配向性を付与するためこの基板上に形成された
有機化合物薄膜の配向性が高まる。
Since the substrate imparts orientation in a predetermined direction to the organic compound thin film adhered thereon, the orientation of the organic compound thin film formed on the substrate is enhanced.

(ヘ) 実施例 次に大きな非線形光学効果を呈する有機化合物材料と
して注目を集めている2−メチル−4−ニトロアニリン
(以下MNAと略記)結晶性薄膜の作製を図を用いて具体
的に説明する。
(F) Example Next, the production of a crystalline thin film of 2-methyl-4-nitroaniline (hereinafter abbreviated as MNA), which has attracted attention as an organic compound material exhibiting a large nonlinear optical effect, will be specifically described with reference to the drawings. I do.

実施例1 薄膜の作製は、第1図に示す基板ホルダ2、基板加熱
用ヒータ3、シャッタ4、ルツボ5、ルツボ加熱用ヒー
タ6、熱電対8、温度コントローラ9、ガラスベルジャ
10、Oリング11、排気口12から構成される真空蒸着装置
を用いて行った。
Example 1 A thin film was formed by the substrate holder 2, the substrate heating heater 3, the shutter 4, the crucible 5, the crucible heating heater 6, the thermocouple 8, the temperature controller 9, the glass bell jar shown in FIG.
This was performed using a vacuum vapor deposition device composed of 10, an O-ring 11, and an exhaust port 12.

まず、Si板状体に真空蒸着法により銅フタロシアニン
結晶薄膜(膜厚約1000Å)を成長させて基板を作製し、
この基板を基板ホルダ2に取付け、市販のMNA試薬をル
ツボ5内に収納した。次にガラスベルジャ10内を排気口
12より排気して真空とし、10-6torr台の真空中で基板1
に熱処理を施した。次にMNAが収納されたルツボ5を加
熱し10-6torr台の真空中で加熱してMNAを昇華させ上記
基板1上に、蒸着させ、2000ÅのMNA薄膜を形成した。
First, a substrate is prepared by growing a copper phthalocyanine crystal thin film (thickness: about 1000 mm) on a Si plate by vacuum evaporation.
This substrate was attached to the substrate holder 2, and a commercially available MNA reagent was stored in the crucible 5. Next, exhaust the glass bell jar 10
Evacuate from 12 to create a vacuum, and place substrate 1 in a vacuum of the order of 10 -6 torr
Was subjected to a heat treatment. Next, the crucible 5 containing the MNA was heated and heated in a vacuum of the order of 10 −6 torr to sublimate the MNA and deposit it on the substrate 1 to form an MNA thin film of 2000 °.

実施例2 実施例1において、Si板状体の上に真空蒸着法により
銅フタロシアニン結晶薄膜を形成した基板の代わりにSi
板状体の上にスピンコート法によりポリエチレンオキサ
イド結晶性薄膜を形成した基板を用い、この他は実施例
1と同様にしてMNA薄膜を形成した。
Example 2 In Example 1, instead of the substrate in which a copper phthalocyanine crystal thin film was formed on a Si plate by a vacuum evaporation method, Si was used.
An MNA thin film was formed in the same manner as in Example 1 except that a substrate having a polyethylene oxide crystalline thin film formed on a plate-like body by a spin coating method was used.

次に、実施例1及び実施例2において各基板上に作製
したMNA薄膜の結晶性、分子配向をX線回折法及び赤外
吸収分光法により評価した。その結果、各基板上に成長
したMNA薄膜は共に結晶性薄膜ではあるが結晶方位及び
分子配向は、両者で互いに異なることを確認した。この
結果、基板の表面を構成する有機化合物の種類を選択す
ることにより、その上に成長させる有機化合物薄膜の結
晶方位の選定や分子配向の向上が可能であることが確認
された。
Next, the crystallinity and molecular orientation of the MNA thin films formed on each substrate in Examples 1 and 2 were evaluated by X-ray diffraction and infrared absorption spectroscopy. As a result, it was confirmed that the MNA thin films grown on each substrate were both crystalline thin films, but the crystal orientation and molecular orientation were different from each other. As a result, it was confirmed that by selecting the type of the organic compound constituting the surface of the substrate, it is possible to select the crystal orientation of the organic compound thin film grown thereon and to improve the molecular orientation.

実施例3 実施例1において、基板温度を23℃としこの他は実施
例1と同様にして前記基板上にMNA薄膜を形成した。
Example 3 In Example 1, an MNA thin film was formed on the substrate in the same manner as in Example 1 except that the substrate temperature was 23 ° C.

実施例4 実施例1において、基板温度を29℃としこの他は実施
例1と同様にして前記基板上にMNA薄膜を形成した。
Example 4 In Example 1, an MNA thin film was formed on the substrate in the same manner as in Example 1 except that the substrate temperature was 29 ° C.

実施例5 実施例1において、基板温度を35℃としこの他は実施
例1と同様にして前記基板上にMNA薄膜を形成した。
Example 5 In Example 1, an MNA thin film was formed on the substrate in the same manner as in Example 1 except that the substrate temperature was 35 ° C.

次に実施例3、4及び実施例5でそれぞれの温度の基
板上に形成したMNA薄膜のX線回折分析を行ったとこ
ろ、それぞれ第2図(A)(B)(C)に示すようなX
線回折パターンが得られた。このX線回折パターンによ
ると、前記基板温度の上昇と共にこの基板上に形成され
るMNA薄膜の(020)結晶面の反射が特に強くなり、MNA
薄膜の(11)結晶面と(020)結晶面の回折強度比
(1(11)/I(020)は第1表に示すように基板温度
の上昇と共に減少する傾向がみられた。この結果、基板
温度を越えることにより得られるMNA薄膜の結晶配向を
制御し得ることが明らかとなった。
Next, the X-ray diffraction analysis of the MNA thin film formed on the substrate at each temperature in Examples 3 and 4 and Example 5 was performed, and as shown in FIGS. 2 (A), (B) and (C), respectively. X
A line diffraction pattern was obtained. According to this X-ray diffraction pattern, the reflection of the (020) crystal plane of the MNA thin film formed on the substrate becomes particularly strong with the rise of the substrate temperature,
As shown in Table 1, the diffraction intensity ratio (1 (11) / I (020)) between the (11) crystal plane and the (020) crystal plane of the thin film tended to decrease with increasing substrate temperature. It has been found that the crystal orientation of the MNA thin film obtained by exceeding the substrate temperature can be controlled.

(ト) 発明の効果 この発明によれば、所望の結晶方位又は配向性を有
し、光学素子等を利用できる有機化合物薄膜の製法を提
供することができる。
(G) Effects of the Invention According to the present invention, it is possible to provide a method for producing an organic compound thin film having a desired crystal orientation or orientation and capable of utilizing an optical element or the like.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、この発明の実施例で用いた蒸着装置の説明
図、第2図は、この発明の実施例で形成したMNA薄膜の
X線回折パターンの図である。 1……基板、2……基板ホルダ、3……基板加熱用ヒー
タ、4……シャッタ、5……ルツボ、6……ルツボ加熱
用ヒータ、7……原料有機化合物、8……熱電対、9…
…温度コントローラ、10……ガラスベルジャ、11……O
リング、12……排気口。
FIG. 1 is an explanatory diagram of a vapor deposition apparatus used in an embodiment of the present invention, and FIG. 2 is a diagram of an X-ray diffraction pattern of an MNA thin film formed in the embodiment of the present invention. DESCRIPTION OF SYMBOLS 1 ... board | substrate 2, ... board holder, 3 ... heater for board | substrate heating, 4 ... shutter, 5 ... crucible, 6 ... heater for crucible heating, 7 ... raw material organic compound, 8 ... thermocouple, 9 ...
… Temperature controller, 10… Glass bell jar, 11… O
Ring, 12 ... exhaust port.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 赤木 与志郎 大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内 (72)発明者 中嶋 義晴 大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内 (56)参考文献 特開 昭64−56424(JP,A) 特開 平2−6384(JP,A) 特開 昭62−160427(JP,A) 特開 昭58−164602(JP,A) 特開 平5−320324(JP,A) ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yoshiro Akagi 22-22, Nagaikecho, Abeno-ku, Osaka-shi, Osaka Inside Sharp Corporation (72) Inventor Yoshiharu Nakajima 22-22, Nagaikecho, Abeno-ku, Osaka-shi, Osaka Sharp shares In-company (56) References JP-A-64-56424 (JP, A) JP-A-2-6384 (JP, A) JP-A-62-160427 (JP, A) JP-A-58-164602 (JP, A) ) JP-A-5-320324 (JP, A)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基板上に有機化合物薄膜を形成させるに際
し、 前記基板として、少なくとも表面に、形成する有機化合
物薄膜に対し所定方向への配向性を付加しうる親和性を
示すかもしくは結晶格子サイズでの類似性を有し、かつ
立体的構造的異方性、分子内の電気分極の異方性又は分
子間相互作用の異方性を有する結晶性有機化合物の層が
気相成長にて形成された基板を用い、該基板上に、所定
の配向性もしくは結晶性を有する前記結晶性有機化合物
の層とは異なる有機化合物薄膜を作製することを特徴と
する有機化合物薄膜の製法。
When forming an organic compound thin film on a substrate, at least the surface of the substrate has an affinity capable of adding an orientation in a predetermined direction to the organic compound thin film to be formed, or has a crystal lattice size. A layer of a crystalline organic compound having similarity in the above and having steric and structural anisotropy, intramolecular electric polarization anisotropy or intermolecular interaction anisotropy is formed by vapor phase growth A method for producing an organic compound thin film, characterized in that an organic compound thin film having a predetermined orientation or crystallinity and different from the crystalline organic compound layer is formed on the substrate using the prepared substrate.
【請求項2】結晶性有機化合物の層が、銅フタロシアニ
ン又は結晶性ポリエチレンオキサイドであり、有機化合
物薄膜が、銅フタロシアニン又は結晶性ポリエチレンオ
キサイドに対して所定方向への配向性を付与し得る親和
性を示すかもしくは結晶格子サイズでの類似性を有する
薄膜である請求項1記載の有機化合物薄膜の製法。
2. The crystalline organic compound layer is copper phthalocyanine or crystalline polyethylene oxide, and the organic compound thin film has an affinity capable of imparting orientation to copper phthalocyanine or crystalline polyethylene oxide in a predetermined direction. 2. The method for producing an organic compound thin film according to claim 1, wherein the thin film has a similarity in crystal lattice size.
【請求項3】前記有機化合物薄膜を、基板温度を変化さ
せることにより結晶配向を制御しながら作製する請求項
1記載の有機化合物薄膜の製法。
3. The method for producing an organic compound thin film according to claim 1, wherein said organic compound thin film is produced while controlling a crystal orientation by changing a substrate temperature.
JP1006412A 1988-10-13 1989-01-13 Manufacturing method of organic compound thin film Expired - Fee Related JP2773881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1006412A JP2773881B2 (en) 1988-10-13 1989-01-13 Manufacturing method of organic compound thin film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP25780888 1988-10-13
JP63-257808 1988-10-13
JP1006412A JP2773881B2 (en) 1988-10-13 1989-01-13 Manufacturing method of organic compound thin film

Publications (2)

Publication Number Publication Date
JPH02197822A JPH02197822A (en) 1990-08-06
JP2773881B2 true JP2773881B2 (en) 1998-07-09

Family

ID=26340544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1006412A Expired - Fee Related JP2773881B2 (en) 1988-10-13 1989-01-13 Manufacturing method of organic compound thin film

Country Status (1)

Country Link
JP (1) JP2773881B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200023037A (en) 2018-08-24 2020-03-04 한국전력공사 Polystyrene immobilized metal containing ionic liquid catalysts, a preparation method and use thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100518147B1 (en) * 1998-06-01 2005-11-25 가부시키가이샤 아루박 Evaporation apparatus, organic material evaporation source, and method of manufacturing thin organic film

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62160427A (en) * 1986-01-09 1987-07-16 Toray Ind Inc Organic nonlinear optical material and its preparation
JP2679708B2 (en) * 1987-08-27 1997-11-19 富士通株式会社 Organic film fabrication method
JPH026384A (en) * 1988-06-03 1990-01-10 Nippon Telegr & Teleph Corp <Ntt> Method for preparing crystalline organic thin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200023037A (en) 2018-08-24 2020-03-04 한국전력공사 Polystyrene immobilized metal containing ionic liquid catalysts, a preparation method and use thereof

Also Published As

Publication number Publication date
JPH02197822A (en) 1990-08-06

Similar Documents

Publication Publication Date Title
JP2678055B2 (en) Manufacturing method of organic compound thin film
CN110040725A (en) A kind of method of the uniform number of plies graphene film of quick preparation high quality
Peterson et al. The deposition and structure of Langmuir-Blodgett films of long-chain acids
JP2773881B2 (en) Manufacturing method of organic compound thin film
Vanamoorthy et al. Study on optimizing c-axis oriented AlN thin film for piezoelectric sensing applications controlling the sputtering process parameters
Chen et al. Hydrothermal preparation of highly oriented polycrystalline ZnO thin films
Yase et al. Formation Mechanism of Thin Solid Films of Alq3 on Several Substrates
JPS62160427A (en) Organic nonlinear optical material and its preparation
GB2266309A (en) Silazane monomolecular film
Gerbaux et al. Applicability of the epitaxial nucleation in submicroscopic holes (ENSH) method to vapour growth: Preparation of oriented thin films of naphthalene, durene, benzoic acid and tellurium
Darling et al. Molecular orientation by surface forces: I. On the replication of surface forces by plastic materials
JPH02160697A (en) Production of organic single crystal regulated in growth direction
JP2728091B2 (en) Fabrication method of organic nonlinear optical film
JPS6345361A (en) Production of thin phthalocyanine film
JPH0710698A (en) Organic compound thin film and its production
JP3783807B2 (en) Manufacturing method of organic thin film material
Clem et al. Epitaxy and monolayer patterning of solution-derived LiNbO 3 thin layers
Chopra et al. Electron microscopy evidence of adatom mobility in amorphous germanium films
JPH09241356A (en) Thin organic molecularly oriented film and its production
JP2730124B2 (en) Method for producing indium antimony film
JPH026384A (en) Method for preparing crystalline organic thin film
Hattori et al. Photoluminescence from silicon-chain cluster in poly (dimethylsilane) evaporated film
JPH0564711B2 (en)
JPS61111137A (en) Production of zns film
JPH0895099A (en) Manufacture of nonlinear optical laminated body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees