JP2772178B2 - Condenser - Google Patents

Condenser

Info

Publication number
JP2772178B2
JP2772178B2 JP3279971A JP27997191A JP2772178B2 JP 2772178 B2 JP2772178 B2 JP 2772178B2 JP 3279971 A JP3279971 A JP 3279971A JP 27997191 A JP27997191 A JP 27997191A JP 2772178 B2 JP2772178 B2 JP 2772178B2
Authority
JP
Japan
Prior art keywords
flow path
wall surface
heat
passage
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3279971A
Other languages
Japanese (ja)
Other versions
JPH05118779A (en
Inventor
康夫 石井
正夫 古川
浩一 川本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3279971A priority Critical patent/JP2772178B2/en
Publication of JPH05118779A publication Critical patent/JPH05118779A/en
Application granted granted Critical
Publication of JP2772178B2 publication Critical patent/JP2772178B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、相変化の伴う媒体によ
り熱を輸送する二相流体ループ式排熱システム等に組込
むのに適した凝縮装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a condensing apparatus suitable for being incorporated in a two-phase fluid loop heat rejection system for transferring heat by means of a phase-change medium.

【0002】[0002]

【従来の技術】宇宙構造物の排熱処理システムとして、
相変化の伴う媒体、例えばフロン、アンモニア、水など
の流れにより熱を輸送する二相流体ループ式排熱システ
ムが有望視されている。図4にはこの排熱システムの概
略図が示されている。
2. Description of the Related Art As an exhaust heat treatment system for a space structure,
Promising is a two-phase fluid loop heat removal system that transports heat by means of a flow of a medium with a phase change, such as Freon, ammonia, and water. FIG. 4 shows a schematic diagram of this heat removal system.

【0003】この排熱システムは、蒸発器1、輸送管
2、凝縮器3、輸送管4、ポンプ5を閉ループに接続し
てなる流体ループ6と、この流体ループ6内の圧力を調
整するアキュムレータ7とで構成される。
[0003] This exhaust heat system includes a fluid loop 6 formed by connecting an evaporator 1, a transport pipe 2, a condenser 3, a transport pipe 4, and a pump 5 to a closed loop, and an accumulator for adjusting the pressure in the fluid loop 6. 7 is comprised.

【0004】このシステムでは次のようにして排熱が行
われる。すなわち、被冷却物8に熱的に接続された蒸発
器1に輸送管4を介して媒体液が流れると、この媒体液
は被冷却物8で発生した熱を奪って蒸発し、気液二相流
状態になる。この気液二相流体は輸送管2を通って凝縮
器3へ送られる。凝縮器3では冷却装置であるラジエー
タ9の作用により気液二相流体中の蒸気を凝縮する。し
たがって、媒体は液単相状態となる。このとき、媒体が
吸収していた熱はラジエータ9からふく射によって排熱
される。液単相状態の媒体は、輸送管4を通してポンプ
5へ移動し、ここで加圧されて蒸発器1へと還流する。
なお、アキュムレータ7は、流体ループ6へ媒体液を出
し入れすることにより、流体ループ6内の圧力を調整
し、凝縮器9の能力を増減させることによって、被冷却
物8の温度をほぼ一定に保つ役割を果たしている。
[0004] In this system, exhaust heat is performed as follows. That is, when the medium liquid flows through the transport pipe 4 to the evaporator 1 which is thermally connected to the object to be cooled 8, the medium liquid evaporates by removing heat generated in the object to be cooled 8 and evaporates. It becomes a phase flow state. This gas-liquid two-phase fluid is sent to the condenser 3 through the transport pipe 2. In the condenser 3, the vapor in the gas-liquid two-phase fluid is condensed by the action of a radiator 9 as a cooling device. Therefore, the medium is in a liquid single-phase state. At this time, the heat absorbed by the medium is discharged from the radiator 9 by radiation. The medium in the liquid single-phase state moves to the pump 5 through the transport pipe 4, where the medium is pressurized and refluxed to the evaporator 1.
The accumulator 7 keeps the temperature of the object 8 to be cooled substantially constant by adjusting the pressure in the fluid loop 6 by moving medium fluid into and out of the fluid loop 6 and increasing or decreasing the capacity of the condenser 9. Plays a role.

【0005】しかしながら、上記のように構成された排
熱システムにあっても次のような問題があった。すなわ
ち、この排熱システムでは、凝縮器3を出た後の媒体液
が過冷却状態となる。この場合、過冷却度が小さいと、
ポンプ5内で媒体が蒸発し、ポンプ5でキャビテーショ
ンが発生して媒体を循環させることが困難になる。逆に
過冷却度が大きいと、被冷却物8の温度を一定に保てな
くなる。したがって、凝縮された媒体の過冷却度を被冷
却物8の発生熱量に拘らずある範囲に保つ必要がある。
しかし、従来のシステム、特に凝縮器3では、被冷却物
8の発生熱量の減少に伴って凝縮器3からの排熱量が減
少すると、ラジエータ9の温度が低下し、これが原因し
て凝縮器流路の壁面温度が低下するため、過冷却度が大
きく増加する。この増加を抑制するには、アキュムレー
タ7から媒体液を送り出して凝縮器流路内に存在する媒
体液の媒体蒸気に対する体積比を大きくする必要があ
る。このため、アキュムレータ7で調節すべき媒体質量
が大きくなり、大きな容量のアキュムレータ7を必要と
する問題があった。
[0005] However, the heat exhaust system configured as described above has the following problems. That is, in this exhaust heat system, the medium liquid after leaving the condenser 3 is in a supercooled state. In this case, if the degree of subcooling is small,
The medium evaporates in the pump 5, cavitation occurs in the pump 5, and it becomes difficult to circulate the medium. Conversely, if the degree of supercooling is large, the temperature of the object to be cooled 8 cannot be kept constant. Therefore, the degree of supercooling of the condensed medium needs to be maintained within a certain range regardless of the amount of heat generated by the object 8 to be cooled.
However, in the conventional system, particularly in the condenser 3, when the amount of heat exhausted from the condenser 3 decreases with a decrease in the amount of heat generated from the object 8 to be cooled, the temperature of the radiator 9 decreases, which causes Since the wall surface temperature of the road decreases, the degree of supercooling greatly increases. To suppress this increase, it is necessary to send out the medium liquid from the accumulator 7 to increase the volume ratio of the medium liquid existing in the condenser flow path to the medium vapor. For this reason, the mass of the medium to be adjusted by the accumulator 7 becomes large, and there is a problem that the accumulator 7 having a large capacity is required.

【0006】[0006]

【発明が解決しようとする課題】このように従来の二相
流体ループ式排熱システムでは、特に凝縮器から出た媒
体液の過冷却度を一定範囲に保持することが困難で、こ
れが原因して大型のアキュムレータを必要とする問題が
あった。
As described above, in the conventional two-phase fluid loop type heat removal system, it is difficult to keep the degree of supercooling of the medium liquid discharged from the condenser within a certain range. There is a problem that requires a large accumulator.

【0007】そこで本発明は、凝縮された媒体の過冷却
度を常にほぼ一定、つまり温度をほぼ一定の範囲に保つ
ことができ、たとえば二相流体ループ式排熱システムに
組込んだときに、アキュムレータの小型小容量化に寄与
できる凝縮装置を提供することを目的としている。
Therefore, the present invention can maintain the degree of supercooling of the condensed medium almost always, that is, the temperature can be kept in a substantially constant range. For example, when incorporated in a two-phase fluid loop type heat removal system, It is an object of the present invention to provide a condensing device that can contribute to reducing the size and capacity of an accumulator.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係る凝縮装置では、凝縮用の流路の内壁面
と上記内壁面を冷却するための冷却装置との間の熱抵抗
を可変する手段を備えている。
In order to achieve the above object, in a condensing device according to the present invention, a heat resistance between an inner wall surface of a condensing flow path and a cooling device for cooling the inner wall surface is provided. Is provided.

【0009】[0009]

【作用】排熱量の変化に対応させて凝縮用の流路の内壁
面と冷却装置との間の熱抵抗を変化させることによっ
て、上記内壁面の温度を一定範囲に保つことができる。
すなわち、排熱量が増加した場合には、凝縮用の流路の
内壁面温度が上昇するので、熱抵抗を減少させる。これ
によって内壁面と冷却装置との温度差が小さくなるので
上記内壁面の温度上昇を抑制できる。また、逆に排熱量
が減少した場合には、内壁面温度が低下するので、熱抵
抗を増加させる。これによって内壁面と冷却装置との温
度差が大きくなるので上記内壁面の温度低下を抑制でき
る。このように、凝縮用の流路の内壁面温度を一定範囲
に保てるため、凝縮液の過冷却度を一定範囲に保つこと
が可能となる。
The temperature of the inner wall surface can be kept within a certain range by changing the thermal resistance between the inner wall surface of the flow path for condensation and the cooling device in accordance with the change in the amount of exhaust heat.
That is, when the amount of exhaust heat increases, the temperature of the inner wall surface of the flow path for condensation increases, so that the thermal resistance decreases. As a result, the temperature difference between the inner wall surface and the cooling device becomes smaller, so that the temperature rise of the inner wall surface can be suppressed. Conversely, when the amount of exhaust heat decreases, the temperature of the inner wall surface decreases, so that the thermal resistance increases. As a result, the temperature difference between the inner wall surface and the cooling device is increased, so that the temperature decrease of the inner wall surface can be suppressed. As described above, since the inner wall surface temperature of the condensing flow path can be maintained within a certain range, the degree of supercooling of the condensate can be maintained within a certain range.

【0010】[0010]

【実施例】以下、図面を参照しながら実施例を説明す
る。図1には本発明の一実施例に係る凝縮装置、ここに
は二相流体ループ式排熱システム用の凝縮装置11が示
されている。
Embodiments will be described below with reference to the drawings. FIG. 1 shows a condenser according to one embodiment of the present invention, here a condenser 11 for a two-phase fluid loop heat removal system.

【0011】この凝縮装置11は、大きく分けて熱伝導
の良い材料で形成された流路形成板12と、この流路形
成板12内に図2および図3に示すように複数形成され
た凝縮用の流路13と、これらの流路13に気液二相媒
体を分配供給する上流側ヘッダ14と、各流路13を通
った媒体を集める下流側ヘッダ15と、流路形成板12
に複数の固定熱伝導部材16を介して熱的に接続された
ラジエータ17と、流路形成板12とラジエータ17と
の間の熱抵抗を可変する熱抵抗可変装置18とで構成さ
れている。そして、上流側ヘッダ14は輸送管19を介
して図示しない蒸発器に接続され、また下流側ヘッダ1
5は輸送管20を介して図示しないポンプに接続され
る。
The condensing device 11 is roughly divided into a flow path forming plate 12 made of a material having good heat conductivity, and a plurality of condensing forms formed in the flow path forming plate 12 as shown in FIGS. Flow path 13, an upstream header 14 for distributing and supplying a gas-liquid two-phase medium to these flow paths 13, a downstream header 15 for collecting media passing through each flow path 13, and a flow path forming plate 12.
The radiator 17 is thermally connected to the radiator 17 via a plurality of fixed heat conducting members 16 and a thermal resistance variable device 18 that varies the thermal resistance between the flow path forming plate 12 and the radiator 17. The upstream header 14 is connected to an evaporator (not shown) via a transport pipe 19, and the downstream header 1
Reference numeral 5 is connected to a pump (not shown) via a transport pipe 20.

【0012】流路形成板12は、図3に示すように、図
中上面が平坦に形成されており、下面に突条21が複数
平行に形成されたものとなっている。そして、各突条2
1の中心部に、これら突条21の延びる方向に前述した
凝縮用の流路13がそれぞれ形成されている。
As shown in FIG. 3, the flow path forming plate 12 has a flat upper surface in the figure and a plurality of ridges 21 formed in parallel on the lower surface. And each ridge 2
The above-described condensing flow path 13 is formed in the central portion of the projection 1 in the direction in which the projections 21 extend.

【0013】ラジエータ17は、流路形成板12の図3
における上面側、つまり平坦に形成された面側に前述し
た固定熱伝導部材16を介して固定されている。各固定
熱伝導部材16は、流路形成板12の平坦な面で、かつ
前記突条21の境界部分に対応した位置に突条21と平
行状態に配置されている。このような配置によって、隣
接する固定熱伝導部材16間に、これらの部材と流路形
成板12およびラジエータ17とで囲まれた断面矩形の
熱抵抗調整用の隙間22が流路13に沿って複数形成さ
れている。
The radiator 17 is provided on the flow path forming plate 12 as shown in FIG.
Is fixed to the upper surface side, that is, the flat surface side, via the above-described fixed heat conducting member 16. Each of the fixed heat conducting members 16 is disposed parallel to the ridge 21 at a position corresponding to the boundary of the ridge 21 on the flat surface of the flow path forming plate 12. With such an arrangement, a gap 22 for adjusting a thermal resistance having a rectangular cross section surrounded by the adjacent fixed heat conducting members 16 and the channel forming plate 12 and the radiator 17 is formed along the channel 13. A plurality is formed.

【0014】熱抵抗可変装置18は、各隙間22へそれ
ぞれ移動自在に挿入された可動熱伝導板23と、前述し
た下流側ヘッダ15の側に配置されて各可動熱伝導板2
3の一端側を共通に連結する連結板24と、この連結板
24を介して各可動熱伝導板23を図2中実線矢印25
で示す方向に移動させて各隙間22への挿入度を可変す
る駆動装置26とで構成されている。各可動熱伝導板2
3は、熱伝導率の良い銅、アルミニウム等で流路形成板
12とラジエータ17との間の距離よりわずかに薄い厚
みに形成されている。
The variable thermal resistance device 18 includes a movable heat conductive plate 23 movably inserted into each of the gaps 22 and the movable heat conductive plate 2 disposed on the downstream header 15 described above.
2 and a movable plate 23 through which the movable heat conducting plates 23 are connected by solid lines 25 in FIG.
And a driving device 26 that moves in the direction shown by the arrow to change the degree of insertion into each gap 22. Each movable heat conduction plate 2
Numeral 3 is made of copper, aluminum, or the like having good thermal conductivity and is formed to have a thickness slightly smaller than the distance between the flow path forming plate 12 and the radiator 17.

【0015】一方、駆動装置26は、下流側ヘッダ15
を通った媒体の温度を検出する図示しない温度センサの
出力T1 を導入し、このT1 が一定の範囲に入るように
可動熱伝導板23の挿入度を制御するように構成されて
いる。具体的には、T1 が予め定められたT0 より増加
の方向に変化したときには可動熱伝導板23の挿入度を
増加させるように制御し、T0 より減少する方向に変化
したときには可動熱伝導板23の挿入度を減少させるよ
うに制御する。
On the other hand, the driving device 26 is connected to the downstream header 15.
Introducing the output T 1 of the temperature sensor (not shown) for detecting the temperature of the medium passing through the, the T 1 is configured to control the insertion of the movable heat conducting plate 23 to enter a predetermined range. Specifically, when T 1 changes in a direction increasing from a predetermined T 0 , control is performed so as to increase the degree of insertion of the movable heat conductive plate 23, and when T 1 changes in a direction decreasing from T 0 , the movable heat conducting plate 23 increases. Control is performed to reduce the degree of insertion of the conductive plate 23.

【0016】このような構成であると、上流側ヘッダ1
4を介して各流路13に流れ込む気液二相媒体の蒸気温
度が上昇し、これに伴って下流側ヘッダ15から流れ出
る媒体液の温度がT0 より上昇しようとすると、駆動装
置26は隙間22への挿入度を増加させるように可動熱
伝導板23を移動制御する。この制御が行われると、流
路形成板12とラジエータ17との間に可動熱伝導板2
3の介在する度合が増すので、流路形成板12とラジエ
ータ17との間に存在する熱伝達路の通路断面積が増加
し、流路形成板12とラジエータ17との間の熱抵抗が
減少する。この減少によって各流路13の内壁面とラジ
エータ17との間の温度差が小さくなり、各流路13の
内壁面温度が低下し、これによって下流側ヘッダ15か
ら流れ出る媒体液温度が低下する。
With such a configuration, the upstream header 1
When the vapor temperature of the gas-liquid two-phase medium flowing into each flow path 13 through the flow path 4 increases and the temperature of the medium liquid flowing out of the downstream header 15 tends to rise above T 0 , the driving device 26 The movement of the movable heat conductive plate 23 is controlled so as to increase the degree of insertion into the plate 22. When this control is performed, the movable heat conductive plate 2 is placed between the flow path forming plate 12 and the radiator 17.
3 increases, the cross-sectional area of the heat transfer path between the flow path forming plate 12 and the radiator 17 increases, and the thermal resistance between the flow path forming plate 12 and the radiator 17 decreases. I do. Due to this decrease, the temperature difference between the inner wall surface of each flow path 13 and the radiator 17 becomes smaller, and the temperature of the inner wall surface of each flow path 13 decreases, whereby the temperature of the medium liquid flowing out of the downstream header 15 decreases.

【0017】一方、下流側ヘッダ15から流れ出る媒体
液の温度がT0 より低下しようとすると、駆動装置26
は隙間22への挿入度を減少させるように可動熱伝導板
23を移動制御する。この制御が行われると、前述の場
合とは逆に、流路形成板12とラジエータとの間に可動
熱伝導板23の介在する度合が減少するので、流路形成
板12とラジエータ17との間の熱抵抗が増加する。こ
の増加によって各流路13の内壁面とラジエータ17と
の間の温度差が大きくなり、各流路13の内壁面温度が
上昇し、これによって下流側ヘッダ15から流れ出る媒
体液温度が上昇する。
On the other hand, if the temperature of the medium flowing out of the downstream header 15 is going to fall below T 0 , the driving device 26
Controls the movement of the movable heat conducting plate 23 so as to reduce the degree of insertion into the gap 22. When this control is performed, contrary to the above-described case, the degree of interposition of the movable heat conductive plate 23 between the flow path forming plate 12 and the radiator decreases, so that the flow path forming plate 12 and the radiator 17 The thermal resistance between them increases. Due to this increase, the temperature difference between the inner wall surface of each flow passage 13 and the radiator 17 increases, and the temperature of the inner wall surface of each flow passage 13 rises, whereby the temperature of the medium liquid flowing out of the downstream header 15 rises.

【0018】このように、熱抵抗可変装置18を設けて
いるので、上流側ヘッダ14を介して流れ込む気液二相
媒体の蒸気温度が変化した場合でも、換言すると被冷却
物の発生熱量が変化した場合でも凝縮装置11からほぼ
一定温度の凝縮媒体液を送り出すことが可能となる。し
たがって、凝縮媒体液の過冷却度を常に一定範囲に抑え
ることができるので、実施例のように二相流体ループ式
排熱システムに組込んだときにはアキュムレータの小容
量化に寄与できる。また、実施例のように、可動熱伝導
部材23の移動方向を流路13の延びる方向に対して平
行させ、かつ可動熱伝達部材23を流路13に沿って下
流側に移動させるにしたがって流路形成板12とラジエ
ータ17との間の熱抵抗を減少させる構成であると、流
路13内の液体積に対する蒸気体積の比を増すことがで
きるので、アキュムレータから流体ループへ移動させる
媒体質量を抑えることができ、アキュムレータを一層小
容量化できる。
As described above, since the thermal resistance variable device 18 is provided, even when the vapor temperature of the gas-liquid two-phase medium flowing through the upstream header 14 changes, in other words, the amount of heat generated by the object to be cooled changes. Even in this case, it is possible to send out the condensing medium liquid at a substantially constant temperature from the condensing device 11. Therefore, the degree of supercooling of the condensing medium liquid can always be kept within a certain range, and when incorporated in a two-phase fluid loop type heat removal system as in the embodiment, it is possible to contribute to a reduction in the capacity of the accumulator. Further, as in the embodiment, the moving direction of the movable heat conducting member 23 is made parallel to the direction in which the flow path 13 extends, and the flow direction is changed as the movable heat transfer member 23 is moved downstream along the flow path 13. With a configuration in which the thermal resistance between the passage forming plate 12 and the radiator 17 is reduced, the ratio of the vapor volume to the liquid volume in the flow path 13 can be increased, so that the mass of the medium moved from the accumulator to the fluid loop is reduced. Therefore, the capacity of the accumulator can be further reduced.

【0019】なお、本発明は上述した実施例に限定され
るものではない。すなわち、上述した実施例では、流路
形成板12とラジエータ17との間への可動熱伝導板2
3の挿入度を可変することによって流路形成板12とラ
ジエータ17との間の熱抵抗を可変するようにしている
が、流路形成板12とラジエータ17との間に流体を介
在させたり、流路形成板12とラジエータ17との間の
距離を変えたりすることによって両者間の熱抵抗を可変
するようにしてもよい。また、本発明に係る凝縮装置
は、その使用を二相流体ループ式排熱システムに限定さ
れるものではなく、各種のシステムにおいて使用できる
ことは勿論である。
The present invention is not limited to the embodiment described above. That is, in the above-described embodiment, the movable heat conductive plate 2 is inserted between the flow path forming plate 12 and the radiator 17.
Although the thermal resistance between the flow path forming plate 12 and the radiator 17 is changed by changing the insertion degree of 3, the fluid is interposed between the flow path forming plate 12 and the radiator 17, The thermal resistance between the flow path forming plate 12 and the radiator 17 may be varied by changing the distance between the two. Further, the use of the condensing device according to the present invention is not limited to the two-phase fluid loop type heat removal system, and it goes without saying that the condensing device can be used in various systems.

【0020】[0020]

【発明の効果】以上述べたように、本発明によればほぼ
一定温度の凝縮媒体液を常に送り出すことができるの
で、たとえば二相流体ループ式排熱システムに組込んだ
ときには、アキュムレータの小容量化に寄与できるとと
もにシステムの安定した運転に寄与できる。
As described above, according to the present invention, since the condensing medium liquid at a substantially constant temperature can always be sent out, the small capacity of the accumulator can be reduced, for example, when the condensing medium liquid is incorporated in a two-phase fluid loop type heat removal system. And stable operation of the system.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係る凝縮装置の斜視図。FIG. 1 is a perspective view of a condenser according to an embodiment of the present invention.

【図2】図1におけるA−A線に沿って切断し矢印方向
に見た図。
FIG. 2 is a view taken along the line AA in FIG. 1 and viewed in the direction of the arrow.

【図3】図1におけるB−B線に沿って切断し矢印方向
に見た図。
FIG. 3 is a view taken along line BB in FIG. 1 and viewed in the direction of the arrow.

【図4】二相流体ループ式排熱システムの概略図。FIG. 4 is a schematic diagram of a two-phase fluid loop heat removal system.

【符号の説明】[Explanation of symbols]

11…凝縮装置、 12…流路形成
板、13…凝縮用の流路、14…上流側ヘッダ、15…
下流側ヘッダ、 16…固定熱伝導部材、
17…ラジエータ、 18…熱抵抗可変
装置、21…突条、22…熱抵抗調整用の隙間、23…
可動熱伝導部材、 26…駆動装置。
11: Condenser, 12: Flow path forming plate, 13: Flow path for condensation, 14: Upstream header, 15 ...
Downstream header, 16 ... fixed heat conducting member,
17: radiator, 18: variable thermal resistance, 21: ridge, 22: gap for adjusting thermal resistance, 23:
Movable heat conducting member, 26 ... Drive device.

フロントページの続き (72)発明者 川本 浩一 神奈川県川崎市幸区小向東芝町1番地 株式会社東芝総合研究所内 (56)参考文献 実開 平3−57989(JP,U) (58)調査した分野(Int.Cl.6,DB名) F28D 15/02Continuing from the front page (72) Inventor Koichi Kawamoto 1 Toshiba, Komukai Toshiba-cho, Saisaki-ku, Kawasaki-shi, Kanagawa Prefecture (56) References Tokai Shiba 3-57989 (JP, U) (58) Investigated Field (Int.Cl. 6 , DB name) F28D 15/02

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】蒸気を凝縮するための流路と、この流路の
内壁面を冷却するための冷却装置と、前記流路の内壁面
と前記冷却装置との間の熱抵抗を、前記流路の内壁面と
前記冷却装置との間に設けられた熱伝達路の通路断面積
を可変することにより可変する熱抵抗可変手段とを備
え、 前記熱抵抗を可変する手段は、前記流路の内壁面と前記
冷却装置との間に設けられて通路断面積の不変な第一の
熱伝達路を構成する固定熱伝導部材と、前記流路の内壁
面と前記冷却装置との間に挿入度可変に設けられて通路
断面積の可変な第2の熱伝達路を構成する可動熱伝導部
材と、前記流路を通過後の流体温度に対応させて前記可
動熱伝導部材の挿入度を調整する手段とを具備してなる
ことを特徴とする凝縮装置。
1. A flow path for condensing steam, a cooling device for cooling an inner wall surface of the flow passage, and a heat resistance between the inner wall surface of the flow passage and the cooling device, A heat transfer path provided between the inner wall surface of the passage and the cooling device; anda heat resistance change unit that changes the passage cross-sectional area of the heat transfer passage. A fixed heat conducting member that is provided between an inner wall surface and the cooling device and forms a first heat transfer path having an invariable passage cross-sectional area, and a degree of insertion between the inner wall surface of the flow passage and the cooling device. A movable heat conducting member variably provided to constitute a second heat transfer path having a variable passage cross-sectional area; and an insertion degree of the movable heat conducting member adjusted to correspond to a fluid temperature after passing through the flow path. And a condensing device.
【請求項2】前記可動熱伝導部材は、前記流路に沿った
方向に移動自在に設けられ、上記流路の下流側方向へ移
動されるにしたがって前記第2の熱伝達路の通路断面積
を減少させるものであることを特徴とする請求項1に記
載の凝縮装置。
2. The movable heat conducting member is provided so as to be movable in a direction along the flow path, and has a passage cross-sectional area of the second heat transfer path as it moves in a downstream direction of the flow path. 2. The condensing device according to claim 1, wherein the concentration is reduced.
JP3279971A 1991-10-25 1991-10-25 Condenser Expired - Fee Related JP2772178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3279971A JP2772178B2 (en) 1991-10-25 1991-10-25 Condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3279971A JP2772178B2 (en) 1991-10-25 1991-10-25 Condenser

Publications (2)

Publication Number Publication Date
JPH05118779A JPH05118779A (en) 1993-05-14
JP2772178B2 true JP2772178B2 (en) 1998-07-02

Family

ID=17618494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3279971A Expired - Fee Related JP2772178B2 (en) 1991-10-25 1991-10-25 Condenser

Country Status (1)

Country Link
JP (1) JP2772178B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007210425A (en) * 2006-02-09 2007-08-23 Nissan Motor Co Ltd Heat radiator of interior member for vehicle
WO2017110740A1 (en) * 2015-12-25 2017-06-29 日本電気株式会社 Heat-dissipating device, phase-change cooling device in which same is used, and method for dissipating heat

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3057989U (en) * 1998-09-25 1999-06-08 劉 富欽 Evaporative cooler

Also Published As

Publication number Publication date
JPH05118779A (en) 1993-05-14

Similar Documents

Publication Publication Date Title
US3788388A (en) Heat exchange system
US7934386B2 (en) System and method for cooling a heat generating structure
JP3883965B2 (en) Heat exchanger
KR960706054A (en) Adsorbent Chiller, Cooling Output Control Method and Finned Adsorption Heat Exchanger
JPH10503580A (en) Energy transfer system between hot and cold heat sources
JP2772178B2 (en) Condenser
JP3644845B2 (en) High-efficiency steam condenser in vacuum equipment.
JP3305653B2 (en) Plate type evaporator and absorber of absorption refrigerator
US3313123A (en) Condensate removal apparatus
JP3549933B2 (en) Plate fin type element cooler
Ibrahim et al. A hybrid method to analyse the performance of falling film absorbers
JP4737219B2 (en) Exhaust heat recovery system
EP1618344B1 (en) Evaporator and heat exchanger with external loop, as well as heat pump system and air conditioning system comprising said evaporator or heat exchanger
JPH07294179A (en) Heat exchanging device
JPH0518634A (en) Absorption refrigerating apparatus
JP4297822B2 (en) Absorption refrigerator
JPH04254170A (en) Multiunit type refrigerant evaporator
JPH0814776A (en) Heat pipe type heat exchanger
JP3475003B2 (en) Plate evaporator for absorption refrigerator
JP2979379B2 (en) Absorption refrigerator heat exchanger
JPH1062033A (en) Absorption type cold and hot water machine
JPS60171389A (en) Heat transfer device
JP2008095989A (en) Condenser and refrigerating cycle device
JP2000081289A (en) Plate fin type heat exchanger
KR0135253Y1 (en) Vaporizer of absorption refrigerator and eliminate of absorber

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees