JP2771849B2 - Cooling system using external surface cooler for avionics - Google Patents

Cooling system using external surface cooler for avionics

Info

Publication number
JP2771849B2
JP2771849B2 JP1161160A JP16116089A JP2771849B2 JP 2771849 B2 JP2771849 B2 JP 2771849B2 JP 1161160 A JP1161160 A JP 1161160A JP 16116089 A JP16116089 A JP 16116089A JP 2771849 B2 JP2771849 B2 JP 2771849B2
Authority
JP
Japan
Prior art keywords
heat exchanger
cooling
refrigerant
reservoir
cooling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1161160A
Other languages
Japanese (ja)
Other versions
JPH0325096A (en
Inventor
清夫 尼子
甫 高橋
貴啓 花木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ESU TEI ESU KK
Original Assignee
ESU TEI ESU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ESU TEI ESU KK filed Critical ESU TEI ESU KK
Priority to JP1161160A priority Critical patent/JP2771849B2/en
Publication of JPH0325096A publication Critical patent/JPH0325096A/en
Application granted granted Critical
Publication of JP2771849B2 publication Critical patent/JP2771849B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は航空機を代表例とする飛翔体の機体の外表面
(胴体、翼、機首、ポッド、支柱等構造体の外表面)部
材の内側に外表面に接触して設置した熱交換器(クーラ
ー)を利用する航空電子機器の冷却装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a member of the outer surface (outer surface of a structure such as a fuselage, a wing, a nose, a pod, and a support) of a body of a flying body represented by an aircraft. The present invention relates to a cooling device for avionics equipment using a heat exchanger (cooler) installed in contact with an outer surface inside.

本発明は、特に既存の航空機において新たに熱負荷が
生じた場合に、その新たな熱負荷に対応するのに有効で
ある。
The present invention is effective in responding to a new heat load, particularly when a new heat load occurs in an existing aircraft.

〔従来の技術〕[Conventional technology]

従来、航空機の冷却装置として次のものが知られてい
る。
2. Description of the Related Art Conventionally, the following are known as aircraft cooling devices.

従来の溜水式冷却装置では機体内タンクに予め低温の
冷媒を貯蔵し、貯蔵された冷媒をポンプで電子機器の発
熱部へ送り、冷媒循環させているものが一般的である。
In general, in a conventional pooled water cooling device, a low-temperature refrigerant is stored in a body tank in advance, and the stored refrigerant is sent to a heat generating portion of an electronic device by a pump to circulate the refrigerant.

従来の冷凍機付冷却装置では冷凍サイクル、すなわち
冷媒を圧縮機で加圧することにより高圧蒸気とし、次
に、高圧液体、低圧液体、低圧蒸気と変化させて循環さ
せることにより電子機器の発熱を蒸発器で奪うサイクル
が一般的である。
In a conventional cooling device with a refrigerator, a refrigeration cycle, that is, a refrigerant is pressurized by a compressor to produce high-pressure vapor, and then heat is generated by evaporating heat generated by electronic devices by circulating the refrigerant while changing it into high-pressure liquid, low-pressure liquid, and low-pressure vapor. The cycle of robbing with a vessel is common.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

溜水式冷却装置では、冷媒−循環系は、他の系から低
温を得ることができない。このため、電子機器の発熱に
より機体内リザーバ(タンク)内の冷媒温度は、冷却装
置の使用とともに単調に上昇し、やがて電子機器の使用
限界温度に到達する。すなわち、この系では、リザーバ
の冷媒容量により電子機器の冷却能力が決まり、リザー
バの冷媒容量分しか冷却時間が保証されない。
In a pool cooling system, the refrigerant-circulation system cannot obtain low temperatures from other systems. For this reason, the temperature of the refrigerant in the internal reservoir (tank) of the electronic device rises monotonously with the use of the cooling device due to the heat generated by the electronic device, and eventually reaches the use limit temperature of the electronic device. That is, in this system, the cooling capacity of the electronic device is determined by the refrigerant capacity of the reservoir, and the cooling time is guaranteed only for the refrigerant capacity of the reservoir.

また、冷凍機付冷却装置では、溜水式冷却装置の欠点
を克服し、冷凍サイクルを電子機器の発熱量を考慮して
設計すれば冷却継続時間は無限となる。しかしながら冷
凍機を搭載することにより a)冷凍機使用による消費電力 b)冷凍機使用による冷却装置の重量、スペース が問題となる。特に、上記a、bの問題は新たに発生し
た熱負荷に対応する場合には大きな問題となる。
Further, in the cooling device with a refrigerator, if the refrigeration cycle is designed in consideration of the amount of heat generated by the electronic device, by overcoming the drawbacks of the water storage type cooling device, the cooling duration becomes infinite. However, by installing a refrigerator, a) power consumption by using a refrigerator b) weight and space of a cooling device by using a refrigerator become a problem. In particular, the above-mentioned problems a and b become serious problems when dealing with a newly generated heat load.

また、電子機器の冷却を含む機体内環境制御システム
において低温源を空気とする場合には、従来は航空機の
機体に空気取入口を設けてラムエアーを取り込み熱交換
させることが一般的である。しかし、熱負荷が新たに発
生した場合に、同様にラムエアーにより冷却しようとす
ると、この新たなラムエアー用に新たに空気取入口を機
体に設ける必要がある。このような空気取入口を設ける
ことにより、航空機の空気力学的飛行性能が損われるこ
とがある。
In addition, when air is used as a low-temperature source in an in-flight environment control system including cooling of electronic devices, conventionally, it is common to provide an air intake in an aircraft body to take in ram air and exchange heat. However, if a new thermal load is to be generated and the air is to be similarly cooled by ram air, it is necessary to newly provide an air intake for the new ram air. Providing such an air intake may impair the aerodynamic flight performance of the aircraft.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は航空電子機器の冷却装置において、航空電子
機器の冷却装置において、航空機の機体内側位置に機体
の外表面壁部材に接触させて熱交換器を設置しており、
該熱交換器内にランスドオフセットフィンを設けてお
り、機体内に貯蔵・搭載された冷媒を該熱交換器を通じ
て循環させて冷却能力を向上させたことを特徴とする航
空電子機器の機体外表面クーラーを利用した冷却装置に
より上記問題を解決する。
The present invention is a cooling device for avionics, in the cooling device for avionics, a heat exchanger is installed in contact with the outer surface wall member of the fuselage at the position inside the fuselage of the aircraft,
A lanced offset fin is provided in the heat exchanger, and a refrigerant stored and mounted in the body is circulated through the heat exchanger to improve a cooling capacity. The above problem is solved by a cooling device using a surface cooler.

〔作用〕[Action]

本発明は、機体内の機体外表面に設置した熱交換器
(クーラー)を通じて冷媒を循環させ、飛行中は熱交換
媒体である空気を強制冷却に利用し冷却手段とするもの
である。
In the present invention, a refrigerant is circulated through a heat exchanger (cooler) installed on the outer surface of the fuselage inside the fuselage, and air, which is a heat exchange medium, is used for forced cooling during flight and used as cooling means.

これにより、本発明を溜水式冷却装置に実施した場合
には、飛行中は熱交換媒体である空気が強制冷却媒体と
なって作用し、冷却能力の向上がはかれる。
As a result, when the present invention is applied to a pooled water cooling device, air serving as a heat exchange medium acts as a forced cooling medium during flight, and the cooling capacity is improved.

また、冷凍機付冷却装置では、冷凍機を使用しない状
態が実現し、大幅な消費電力軽減および冷却システム全
体の重量減となる。
Further, in the cooling device with a refrigerator, a state in which the refrigerator is not used is realized, so that the power consumption is significantly reduced and the weight of the entire cooling system is reduced.

しかも、本発明を既存の航空機に適用した場合にも、
新たに空気取入口を設ける必要がなく、空気力学的飛行
性能が何ら損われることがない。
Moreover, when the present invention is applied to an existing aircraft,
There is no need to provide a new air intake, and no aerodynamic flight performance is impaired.

更に、本発明においては、熱交換器内にランスドオフ
セットフィンを設けており、ランスドオフセットフィン
は熱交換器内で流れをブロックすることなく乱流の発生
を促進して高い熱伝達率が得られるとともに外表面の曲
率にも追随し易いので、本発明の熱交換器は熱交換率が
極めてよい。
Further, in the present invention, a lanced offset fin is provided in the heat exchanger, and the lanced offset fin promotes the generation of turbulence without blocking the flow in the heat exchanger, thereby increasing the heat transfer rate. The heat exchanger of the present invention has an extremely high heat exchange rate because it is obtained and easily follows the curvature of the outer surface.

〔実施例〕〔Example〕

(a)溜水式冷却装置の実施例 (1)冷却装置の基本回路、制御図 第1図および第2図に本発明に係る溜水式冷却装置の
基本回路図(各図の(a)図)と制御図(各図の(b)
図)の概略を示す。なお、図中、一点鎖線で囲まれた範
囲が冷却装置である。
(A) Example of a water storage cooling device (1) Basic circuit and control diagram of a cooling device FIGS. 1 and 2 show a basic circuit diagram of a water storage cooling device according to the present invention ((a) of each drawing). Figure) and control diagram ((b) of each figure)
FIG. In the drawing, a region surrounded by a chain line is a cooling device.

溜水式冷却装置の場合、タンク(リザーバ)のタイプ
によって2タイプに分類される。第1図はオープンタイ
プリザーバの実施例であり、第2図はアキュムレータタ
イプリザーバの実施例である。
In the case of the storage type cooling device, it is classified into two types depending on the type of the tank (reservoir). FIG. 1 shows an embodiment of an open type reservoir, and FIG. 2 shows an embodiment of an accumulator type reservoir.

第1図および第2図において、リザーバ(R)1には
低温の冷媒が貯蔵されている。電源(EPS)により駆動
されるポンプ2により、冷媒がリザーバ1から吸出さ
れ、電子機器の熱負荷(EHL)を冷却する。
1 and 2, a low-temperature refrigerant is stored in a reservoir (R) 1. The refrigerant is sucked out of the reservoir 1 by the pump 2 driven by the power supply (EPS), and cools the heat load (EHL) of the electronic device.

リザーバ1に接続された圧力調整弁(RV)はリザーバ
1内の圧力を調整する。流量調整弁(FV)はポンプ2か
ら電子機器の熱負荷(EHL)へ流れる冷媒の流量を調整
する。
A pressure regulating valve (RV) connected to the reservoir 1 regulates the pressure in the reservoir 1. The flow control valve (FV) controls the flow rate of the refrigerant flowing from the pump 2 to the heat load (EHL) of the electronic device.

なお、第1図(a)および第2図(a)に示すよう
に、液量センサー(LS)、圧力センサー(PS)、温度セ
ンサー(TS)および流量センサー(FS)が設けられ、各
部の冷媒の特性を検出するようになっている。
As shown in FIG. 1 (a) and FIG. 2 (a), a liquid amount sensor (LS), a pressure sensor (PS), a temperature sensor (TS) and a flow rate sensor (FS) are provided. The characteristics of the refrigerant are detected.

電子機器の熱負荷(EHL)とリザーバ(R)1の間
(第1図)または熱負荷(L)とリザーバ(R)1の出
口の間に、三方向切換電磁弁(SV)4が設けられてい
る。三方向切換電磁弁4の切換えにより、電子機器の熱
負荷(EHL)を出た冷媒がそのまま三方向切換電磁弁4
へ到達し、または、本発明に係る機体の外表面壁部材に
接触配置した熱交換器3を経て三方向切換電磁弁4へ到
達するようになっている。
A three-way switching solenoid valve (SV) 4 is provided between the heat load (EHL) of the electronic device and the reservoir (R) 1 (FIG. 1) or between the heat load (L) and the outlet of the reservoir (R) 1. Have been. By switching the three-way switching solenoid valve 4, the refrigerant that has left the heat load (EHL) of the electronic device remains unchanged.
Or reaches the three-way switching solenoid valve 4 via the heat exchanger 3 disposed in contact with the outer surface wall member of the fuselage according to the present invention.

なお、熱交換器3内には、後述するように、第7図に
示すようなランスドオフセットフィン37を設けている。
Note that a lanced offset fin 37 as shown in FIG. 7 is provided in the heat exchanger 3 as described later.

(2)作動 リザーバ1の冷媒をポンプ2で吸い上げ、電子機器の
冷却部(EHL)へ送る。電子機器の冷却部、すなわち熱
負荷(EHL)を通過した冷媒は、通常モードでは機体の
外表面壁部材に接触設置した熱交換器3とは別ルートを
通過してリザーバ1に戻る。
(2) Operation The pump 2 sucks up the refrigerant in the reservoir 1 and sends it to the cooling unit (EHL) of the electronic device. In the normal mode, the refrigerant that has passed through the cooling section of the electronic device, that is, the heat load (EHL), returns to the reservoir 1 through a different route from the heat exchanger 3 that is installed in contact with the outer surface wall member of the body.

しかし、次の関係があるときは、電子制御装置(EC)
からの信号を三方向切換電磁弁(SV)が受けて熱交換器
3を冷媒が通過する回路に切換える。
However, if the following relationship exists, the electronic control unit (EC)
The three-way switching solenoid valve (SV) receives the signal from the heat exchanger 3 and switches the heat exchanger 3 to a circuit through which the refrigerant passes.

すなわち、冷媒が熱交換器3を通過するよう制御する
ための条件は下記の式1〜式3を同時に満足することで
ある。
That is, the condition for controlling the refrigerant to pass through the heat exchanger 3 is to satisfy the following expressions 1 to 3 at the same time.

TE,in(またはTE,out)>TW (式1) ここで、TE,inは電子機器の熱負荷部入口温度(すな
わち冷却装置出口温度)であり、温度センサーTS1で検
知する。
T E , in (or T E , out)> T W (Equation 1) Here, T E , in is the temperature of the heat load section of the electronic device (that is, the temperature of the cooling device outlet) and is detected by the temperature sensor TS1. .

また、TE,outは電子機器の熱負荷部出口温度(すなわ
ち冷却装置入口温度)であり、温度センサーTS1を、熱
負荷部出口箇所に移動させて取付け検知する。従って、
この場合には、TE,in測定用センサーは不要である。
T E , out is the temperature of the heat load unit outlet of the electronic device (that is, the cooling device inlet temperature), and the temperature sensor TS1 is moved to the heat load unit outlet to detect the mounting. Therefore,
In this case, a sensor for measuring T E , in is unnecessary.

更に、TWは機体外表面温度(温度センサーTS2で検
知) TE,in>TLOW (式2) ここで、TLOWは電子機器の使用最低限温度で、コント
ローラ内に設定する。
Further, T W is the outer surface temperature of the airframe (detected by the temperature sensor TS2) T E , in> T LOW (Equation 2) Here, T LOW is the minimum use temperature of the electronic device and is set in the controller.

TE,in<Tup (式3) ここで、Tupは電子機器の使用最高限温度で、コント
ローラ内に設定する。
T E , in <T up (Equation 3) Here, T up is the maximum operating temperature of the electronic device and is set in the controller.

(b)冷凍機付冷却装置の実施例 (1)冷却装置の応用回路、制御図 第3図および第4図に第1図および第2図に示した基
本回路から更に応用発展した回路を示す。なお、図中、
一点鎖線で囲まれた範囲が冷却装置である。
(B) Embodiment of cooling device with refrigerator (1) Applied circuit and control diagram of cooling device FIGS. 3 and 4 show circuits further developed from the basic circuit shown in FIGS. 1 and 2. . In the figure,
The area surrounded by the dashed line is the cooling device.

すなわち、第3図(a)はオープンタイプリザーバを
有する冷却システム冷媒循環回路図、第3図(b)はそ
のコントローラによる制御回路図を示す。また、第4図
(a)はアキュームレータリザーバを有する冷却システ
ム冷媒循環回路図、第4図(b)はそのコントローラに
よる制御回路図を示す。
That is, FIG. 3 (a) shows a refrigerant circuit diagram of a cooling system having an open type reservoir, and FIG. 3 (b) shows a control circuit diagram of the controller. FIG. 4A shows a refrigerant circuit diagram of a cooling system having an accumulator reservoir, and FIG. 4B shows a control circuit diagram of the controller.

第3図および第4図に示すベーパーサイクル、は通常
の冷凍機能力を有するサイクルであり、気体状の冷媒を
圧縮する圧縮機11、冷媒蒸気を冷熱して凝縮液化する凝
縮器12、液化した冷媒を膨脹させる膨脹弁13、冷媒を蒸
発させて周囲の熱を奪う蒸発器14、および受液器から構
成されている。
The vapor cycle shown in FIGS. 3 and 4 is a cycle having a normal refrigeration function, a compressor 11 for compressing a gaseous refrigerant, a condenser 12 for cooling and condensing and liquefying refrigerant vapor, and a liquefied liquid. It comprises an expansion valve 13 for expanding the refrigerant, an evaporator 14 for evaporating the refrigerant and removing surrounding heat, and a liquid receiver.

上述の公知のベーパーサイクル回路に加えて、更に、
第3図および第4図に示すように、外表面壁部材に接触
配置された熱交換器3およびこの熱交換器3へのバイパ
ス回路(三方向切換電磁弁(SV)4を含む)が設けられ
ている。
In addition to the known vapor cycle circuit described above,
As shown in FIGS. 3 and 4, a heat exchanger 3 arranged in contact with the outer surface wall member and a bypass circuit (including a three-way switching solenoid valve (SV) 4) to the heat exchanger 3 are provided. ing.

上述した溜水式冷却装置の実施例と同様に、熱交換器
3内には、後述するように、第7図に示すようなランス
ドオフセットフィン37を設けている。
Similarly to the above-described embodiment of the pooled water cooling device, lanced offset fins 37 as shown in FIG. 7 are provided in the heat exchanger 3 as described later.

(2)作動 熱交換器3を除いた基本構成の作動は従来装置と同じ
である。しかし、 TE,in>TW (式4) (ここで、TE,inはセンサーTS1で検知される温度であ
り、TWはセンサーTS2で検知される温度) のときには、三方向切換電磁弁(SV)4が切換わり、外
表面部材に接触配置した熱交換器3の通過回路へ冷媒の
流路が切換る。
(2) Operation The operation of the basic configuration excluding the heat exchanger 3 is the same as that of the conventional device. However, when T E , in> T W (Equation 4) (where T E , in is the temperature detected by the sensor TS1 and T W is the temperature detected by the sensor TS2), the three-way switching electromagnetic The valve (SV) 4 is switched, and the flow path of the refrigerant is switched to the passage circuit of the heat exchanger 3 arranged in contact with the outer surface member.

ただし、外表面部材に接触配置した熱交換器3の容量
が電子機器EHLの熱負荷を相殺できない条件では、電子
機器の使用最高限温度をTUPとして、 TE,in=TUP (式5) となると、蒸発器14を通過する回路へ三方向切換電磁弁
(SV)4の換えを行ない、ベーパーサイクル使用モード
とする。
However, under conditions where the capacity of the heat exchanger 3 placed in contact with the outer surface member cannot offset the heat load of the electronic device EHL, the maximum operating temperature of the electronic device is T UP , and T E , in = T UP (Equation 5) ), The three-way switching solenoid valve (SV) 4 is replaced in the circuit passing through the evaporator 14, and the vapor cycle use mode is set.

次に、機体外表面部材接触熱交換器3の設置場所につ
いて述べる。
Next, the installation location of the body outer surface member contact heat exchanger 3 will be described.

機体外表面熱交換器の設置場所は、航空機の内側の機
体外板上の任意の位置で良い。つまり胴体、翼、機首、
ポッド、支柱等構造体の外表面部材の、機体内側が対象
となる。
The location of the outer fuselage surface heat exchanger may be anywhere on the fuselage skin inside the aircraft. In other words, the fuselage, wings, nose,
The inside of the body of the outer surface member of the structure such as the pod and the strut is the target.

ただし、常識的に温度境界層が厚くなるよどみ点から
後方に遠距離離れた位置は熱交換効率が悪いことが予想
されるので避けることが好ましい。
However, it is common sense to avoid positions far away from the stagnation point where the temperature boundary layer becomes thick, because heat exchange efficiency is expected to be poor.

第5図は外表面部材へ組込んだ熱交換器3の一例を簡
単に示す。
FIG. 5 schematically shows an example of the heat exchanger 3 incorporated in the outer surface member.

外表面部材31の内側に箱形状をしたヘッダー32が嵌着
されており、ヘッダー32には入口管路33および出口管路
34が設けられている。ヘッダー32の内部には第6図に示
すように側板38、仕切り板35によって外表面部材31と平
行に且つ隙間を開けて端板36が支持されており、上記隙
間には第7図に示すランスドオフセットフィン37が設け
られている。このようなランスドオフセットフィン37は
熱交換器内で流れがブロックされることがなく、外表面
の曲率にも追随し易いので熱交換率がよいという利点が
ある。
A box-shaped header 32 is fitted inside the outer surface member 31, and the header 32 has an inlet pipe 33 and an outlet pipe.
34 are provided. As shown in FIG. 6, an end plate 36 is supported inside the header 32 by a side plate 38 and a partition plate 35 in parallel with the outer surface member 31 with a gap therebetween. A lanced offset fin 37 is provided. Such a lanced offset fin 37 has the advantage that the heat exchange rate is good because the flow is not blocked in the heat exchanger and it is easy to follow the curvature of the outer surface.

本実施例の熱交換器3では、入り口管路33から出口管
路34に至るまでに流れが1回反転する2パスとなってお
り、また、一層のフィンを示している。ポンプ性能、圧
力降下、熱交換率等を考慮して、3パス以上とし、ま
た、フィンを多層とした熱交換器を採用することもでき
る。
In the heat exchanger 3 of this embodiment, the flow is reversed once from the inlet pipe 33 to the outlet pipe 34, and two fins are shown. Considering pump performance, pressure drop, heat exchange rate, etc., it is possible to adopt a heat exchanger having three or more passes and a multilayer fin.

上述した熱交換器3の取付け方法の一例を第8図およ
び第9図に示す。航空機の胴体のような外表面部材41に
熱交換器3の外表面部材31に合わせて穴41aをあけ(第
8図)、この穴41aに熱交換器3を装着して外表面部材3
1、41をシーム溶接により接合する。なお熱交換器3の
外表面部材31の厚みは航空機の外表面部材41の厚さと同
程度とする。
FIGS. 8 and 9 show an example of a method of attaching the heat exchanger 3 described above. A hole 41a is drilled in the outer surface member 41 such as the fuselage of the aircraft so as to match the outer surface member 31 of the heat exchanger 3 (FIG. 8), and the heat exchanger 3 is mounted in the hole 41a.
1, 41 are joined by seam welding. The thickness of the outer surface member 31 of the heat exchanger 3 is substantially equal to the thickness of the outer surface member 41 of the aircraft.

なお、上述のシーム溶接に代えて、機体メーカーが一
般的にやるように、はめ込み枠周囲にダブラーをあけ
て、外からリベット加工してもよい。
Instead of the seam welding described above, a doubler may be formed around the fitting frame and riveted from the outside as generally performed by a machine manufacturer.

〔発明の効果〕〔The invention's effect〕

本発明により以下の効果があげられる。 The present invention has the following effects.

(1)本発明を溜水式冷却装置および冷凍機付冷却装置
に適用した場合には、飛行条件(高度、マッハ数)によ
っては無限の冷却継続時間が可能であり、飛行条件と冷
却要求条件に応じてリザーバ、ポンプ、外表面熱交換器
のサイズを最適とできる。
(1) When the present invention is applied to a water storage type cooling device and a cooling device with a refrigerator, an infinite cooling duration is possible depending on flight conditions (altitude, Mach number), and flight conditions and cooling requirements Depending on the size of the reservoir, pump and outer surface heat exchanger can be optimized.

より具体的には、第10図および第11図にそれぞれ外表
面温度が20℃一定および30℃一定としたときの冷却継続
時間に対するリザーバ内の冷媒温度の計算例を示す。計
算の条件は、 リザーバ容量61 使用冷媒 ナイブラインZ−1 80% 熱負荷 3.7KW 冷媒流量 7l/min TUP=50℃、TLOW=5℃、 クーラー外表面積 5.07ft2 また第12図には高温日の航空機のマッハ数に対する外
表面温度を計算した例を示す。
More specifically, FIGS. 10 and 11 show calculation examples of the refrigerant temperature in the reservoir with respect to the cooling duration when the outer surface temperature is constant at 20 ° C. and 30 ° C., respectively. The calculation conditions are as follows: Reservoir capacity 61 Refrigerant used Naiveline Z-1 80% Heat load 3.7KW Refrigerant flow rate 7l / min T UP = 50 ° C, T LOW = 5 ° C, Cooler outer surface area 5.07ft 2 The example which calculated the outer surface temperature with respect to the Mach number of the aircraft of the day is shown.

通常電子機器の冷却温度は0〜50℃程度であるから、
第10図および第11図から60分以上冷却可能であり、また
第11図からマッハ数=1.5程度まで利用可能であること
がわかる。
Usually, the cooling temperature of electronic equipment is about 0 to 50 ° C,
It can be seen from FIGS. 10 and 11 that cooling can be performed for 60 minutes or more, and that FIG. 11 can be used up to a Mach number of about 1.5.

(2)更に、本発明に係る溜水式冷却装置および冷凍機
付冷却装置では、冷却に利用している低温源は機体外強
制冷却空気であり、飛行中においてはエネルギー源は無
限である。
(2) Further, in the pooled water cooling device and the cooling device with a refrigerator according to the present invention, the low-temperature source used for cooling is forced-air cooling air outside the body, and the energy source during flight is infinite.

特に、本発明の冷凍機付冷却装置においては、飛行中
冷凍機を使用しない状態が実現できる。このため、消費
電力が大幅に軽減できる。従って、全体冷却システムの
重量の低減が図れる。
In particular, in the cooling device with a refrigerator of the present invention, a state where the refrigerator is not used during flight can be realized. Therefore, power consumption can be significantly reduced. Therefore, the weight of the entire cooling system can be reduced.

(3)従来の溜水式冷却装置では、飛行直前に地上支援
設備から低温冷媒をリザーバへ送る方法が取られている
が、本発明によれば飛行中にリザーバ内の冷媒を低温に
することができる。従って、従来の地上支援設備を不要
とすることもできる。また、本発明の溜水式冷却装置お
よび冷凍機付冷却装置では、、飛行開始前に予めリザー
バに低温冷媒を送り貯蔵する手間を省くこともできる。
(3) In the conventional pooled water cooling device, a method of sending a low-temperature refrigerant from the ground support equipment to the reservoir immediately before the flight is adopted. According to the present invention, the refrigerant in the reservoir is cooled during the flight. Can be. Therefore, the conventional ground support equipment can be eliminated. Moreover, in the cooling system with a water storage system and the cooling system with a refrigerator according to the present invention, it is possible to save the labor of sending and storing the low-temperature refrigerant in the reservoir before the flight starts.

(4)更に、本発明の溜水式冷却装置および冷凍機付冷
却装置では、空気取入口を設けていない。従って、空気
取入口を設け、ラムエアーを取り込み、低温源を確保す
る一般的な機体内環境制御システムと相違し、本発明で
は空気力学的飛行性能を何ら損われない。
(4) Further, in the storage-water type cooling device and the cooling device with a refrigerator of the present invention, no air inlet is provided. Therefore, unlike a general in-flight environment control system that provides an air intake, takes in ram air, and secures a low temperature source, the present invention does not impair the aerodynamic flight performance at all.

(5)本発明においては、熱交換器内にランスドオフセ
ットフィンを設けており、ランスドオフセットフィンは
熱交換器内で流れをブロックすることなく乱流の発生を
促進して高い熱伝達率が得られるとともに外表面の曲率
にも追随し易いので、本発明の熱交換器は熱交換率が極
めてよい。
(5) In the present invention, a lanced offset fin is provided in the heat exchanger, and the lanced offset fin promotes the generation of turbulent flow without blocking the flow in the heat exchanger and has a high heat transfer coefficient. Is obtained, and it is easy to follow the curvature of the outer surface. Therefore, the heat exchanger of the present invention has a very good heat exchange rate.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)および(b)は本発明に係るオープンタイ
プリザーバ付の溜水式冷却装置の実施例の基本回路図お
よび制御図、第2図(a)および(b)はアキュムレー
タタイプリザーバ付の本発明に係る溜水式冷却装置の実
施例の基本回路図および制御図、第3図(a)はオープ
ンタイプリザーバを有する冷却システム冷媒循環回路
図、第3図(b)はそのコントローラによる制御回路
図、第4図(a)はアキュームレータリザーバを有する
冷却システム冷媒循環回路図の要部、第4図(b)はそ
のコントローラによる制御回路図、第5図は本発明に係
る熱交換器の斜視図、第6図は第5図のヘッダの一部を
取除いた斜視図、第7図は第6図のVII部の一部を除去
した拡大斜視図、第8図および第9図は本発明の熱交換
器の取付け状態を示す斜視図、第10図および第11図はそ
れぞれ外表面温度が20℃一定および30℃一定としたとき
の冷却継続時間に対するリザーバ内の冷媒温度の計算結
果を示す線図、第12図は高温日の航空機のマッハ数に対
する外表面温度を試算した結果を示す線図である。 1……リザーバ、2……ポンプ、3……熱交換器、4…
…三方向切換電磁弁。
1 (a) and 1 (b) are a basic circuit diagram and a control diagram of an embodiment of a reservoir type cooling device with an open type reservoir according to the present invention, and FIGS. 2 (a) and 2 (b) are accumulator type reservoirs. FIG. 3A is a basic circuit diagram and control diagram of an embodiment of a reservoir type cooling apparatus according to the present invention, FIG. 3A is a circuit diagram of a cooling system refrigerant circuit having an open type reservoir, and FIG. FIG. 4 (a) is a main part of a refrigerant circuit circulation circuit diagram of a cooling system having an accumulator reservoir, FIG. 4 (b) is a control circuit diagram by its controller, and FIG. 5 is a heat exchange according to the present invention. FIG. 6 is a perspective view of FIG. 5 with a part of the header removed, FIG. 7 is an enlarged perspective view of FIG. 6 with a part of the VII part removed, FIG. 8 and FIG. The figure shows the mounting condition of the heat exchanger of the present invention. FIGS. 10, 10 and 11 are diagrams showing calculation results of the refrigerant temperature in the reservoir with respect to the cooling duration when the outer surface temperature is constant at 20 ° C. and 30 ° C., respectively. FIG. 8 is a diagram showing a result of trial calculation of an outer surface temperature with respect to an Mach number of an aircraft. 1 ... reservoir, 2 ... pump, 3 ... heat exchanger, 4 ...
... Three-way switching solenoid valve.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】航空電子機器の冷却装置において、航空機
の機体内側位置で機体の外表面壁部材に接触させて熱交
換器を設置しており、該熱交換器内にランスドオフセッ
トフィンを設けており、機体内に貯蔵・搭載された冷媒
を該熱交換器を通じて循環させて冷却能力を向上させた
ことを特徴とする航空電子機器の機体外表面クーラーを
利用した冷却装置。
In a cooling device for avionics equipment, a heat exchanger is installed in contact with an outer surface wall member of an airframe at a position inside the airframe of an aircraft, and a lanced offset fin is provided in the heat exchanger. A cooling device using an aero electronic device exterior surface cooler, wherein a refrigerant stored and mounted in the aircraft is circulated through the heat exchanger to improve the cooling capacity.
JP1161160A 1989-06-23 1989-06-23 Cooling system using external surface cooler for avionics Expired - Fee Related JP2771849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1161160A JP2771849B2 (en) 1989-06-23 1989-06-23 Cooling system using external surface cooler for avionics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1161160A JP2771849B2 (en) 1989-06-23 1989-06-23 Cooling system using external surface cooler for avionics

Publications (2)

Publication Number Publication Date
JPH0325096A JPH0325096A (en) 1991-02-01
JP2771849B2 true JP2771849B2 (en) 1998-07-02

Family

ID=15729738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1161160A Expired - Fee Related JP2771849B2 (en) 1989-06-23 1989-06-23 Cooling system using external surface cooler for avionics

Country Status (1)

Country Link
JP (1) JP2771849B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008025951A1 (en) * 2008-05-30 2010-04-29 Airbus Deutschland Gmbh Cooling an electronic device in an aircraft by a case-wise single-phase or two-phase cooling

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5423498A (en) * 1993-04-27 1995-06-13 E-Systems, Inc. Modular liquid skin heat exchanger
FR2894563B1 (en) 2005-12-14 2009-06-05 Liebherr Aerospace Toulouse Sa CIRCUIT AND METHOD FOR REALIZING THERMAL EXCHANGES THROUGH A COOLANT FLUID IN AN AIRCRAFT ENVIRONMENTAL CONTROL SYSTEM.
US8950468B2 (en) * 2007-05-11 2015-02-10 The Boeing Company Cooling system for aerospace vehicle components
DE102008035823A1 (en) 2008-07-31 2010-02-25 Airbus Deutschland Gmbh Heat exchanger for the outer skin of an aircraft
FR2995589B1 (en) * 2012-09-19 2015-07-31 Liebherr Aerospace Toulouse Sas BODY PANEL FOR A TRANSPORT VEHICLE COMPRISING A THERMAL EXCHANGE DEVICE AND A TRANSPORT VEHICLE COMPRISING SUCH A BODY PANEL
FR3006430B1 (en) * 2013-05-30 2015-05-29 Bull Sas COOLING SYSTEM, COOLING COMPUTER SYSTEM AND COMPUTER INSTALLATION
US10618636B2 (en) 2014-03-04 2020-04-14 Parker-Hannifin Corporation Heat exchanger for laminar-flow aircraft
JP6447630B2 (en) 2014-08-13 2019-01-09 株式会社Ihi Cooling device for cooling aircraft electronic equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5826942B2 (en) * 1980-02-22 1983-06-06 岩谷産業株式会社 Method for producing pressure-bubbled confectionery granules and pressure-bubbled confectionery liquid coagulation/grinding container used therein
JPS6382669A (en) * 1986-09-26 1988-04-13 傅法 文夫 Sterilizing method and apparatus utilizing ozone gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008025951A1 (en) * 2008-05-30 2010-04-29 Airbus Deutschland Gmbh Cooling an electronic device in an aircraft by a case-wise single-phase or two-phase cooling
DE102008025951B4 (en) * 2008-05-30 2010-10-28 Airbus Deutschland Gmbh Cooling an electronic device in an aircraft by a case-wise single-phase or two-phase cooling

Also Published As

Publication number Publication date
JPH0325096A (en) 1991-02-01

Similar Documents

Publication Publication Date Title
EP2628680B1 (en) Integrated environmental control systems and methods for controlling environmental temperature of an enclosed space
US7007501B2 (en) System, apparatus, and method for passive and active refrigeration of at least one enclosure
US10098260B2 (en) Thermal management systems for electronics
US9080802B2 (en) Modular ice storage for uninterruptible chilled water
RU2121636C1 (en) Air cooling system
US10450069B2 (en) Vehicle refrigeration equipment having a liquid heat rejection system
JP2771849B2 (en) Cooling system using external surface cooler for avionics
GB2201499A (en) Refrigerating circuit utilizing cold accumulation material
EP2757343B1 (en) Sub freezing load heat exchanger bypass
EP3980700A1 (en) Modular waterside economizer integrated with air-cooled chillers
KR101181511B1 (en) Cooling apparatus for electronic components which is equipped with aircraft
JP6444618B2 (en) COOLING SYSTEM, COOLING COMPUTER SYSTEM AND COMPUTER EQUIPMENT
CN108302834A (en) Air-conditioning system
EP3910265B1 (en) Cooling system
CN210653663U (en) Airborne photoelectric turret ring control device
EP2631565B1 (en) Cooling system for operation with a two-phase refrigerant
JP2508924Y2 (en) Refrigeration equipment
JP2001183026A (en) Cooling device for moving body
EP2801526A1 (en) Galley cooling heat exchanger defrost mechanism
US20200196490A1 (en) Device for cooling avionics racks with a heat-transfer fluid
CN114599199B (en) Refrigeration system of data center
JPH06331253A (en) Superconducting cooling device
JPS6082758A (en) Refrigerator
JPH086974B2 (en) Air conditioner
JPH0395364A (en) Capacitor controller for absorption refrigerating machine

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080417

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090417

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees