JP2768852B2 - Semiconductor optical device and method of assembling the same - Google Patents

Semiconductor optical device and method of assembling the same

Info

Publication number
JP2768852B2
JP2768852B2 JP24276791A JP24276791A JP2768852B2 JP 2768852 B2 JP2768852 B2 JP 2768852B2 JP 24276791 A JP24276791 A JP 24276791A JP 24276791 A JP24276791 A JP 24276791A JP 2768852 B2 JP2768852 B2 JP 2768852B2
Authority
JP
Japan
Prior art keywords
mesa
semiconductor
semiconductor laser
active region
optical device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24276791A
Other languages
Japanese (ja)
Other versions
JPH0555712A (en
Inventor
悦司 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP24276791A priority Critical patent/JP2768852B2/en
Publication of JPH0555712A publication Critical patent/JPH0555712A/en
Application granted granted Critical
Publication of JP2768852B2 publication Critical patent/JP2768852B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Led Device Packages (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は信頼性に優れた高速の
半導体光デバイス及びその組立方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-speed semiconductor optical device having excellent reliability and a method for assembling the same.

【0002】[0002]

【従来の技術】半導体光デバイスには半導体レーザ,発
光ダイオード及び受光ダイオードなどがあるが、ここで
は説明の都合上、半導体レーザを例にあげて詳しく記述
する。
2. Description of the Related Art Semiconductor optical devices include a semiconductor laser, a light emitting diode, and a light receiving diode. For convenience of explanation, the semiconductor laser will be described in detail using a semiconductor laser as an example.

【0003】図2は従来の半導体レーザの組立方法を示
す模式図である。1は半導体レーザ、101はGaAs
あるいはInP等からなる半導体基板、102は半導体
基板101上に形成された活性領域、106は活性領域
102を含むメサ、103は半導体レーザの応答速度を
向上させる目的で設けられた、寄生容量成分を除去する
ためのメサ溝、201は半導体レーザ1をヒートシンク
材105に固着させるための半田材である。図2は活性
領域102に近い側の半導体主面がヒートシンク材10
5に固着される組立方法であり、“ジャンクションダウ
ン組立法”と呼ばれる。この方法は半導体レーザ駆動時
に活性領域102で発生する熱をヒートシンク材105
に効率的に逃がし得るという特徴を有している。
FIG. 2 is a schematic view showing a conventional method of assembling a semiconductor laser. 1 is a semiconductor laser, 101 is GaAs
Alternatively, a semiconductor substrate made of InP or the like, 102 is an active region formed on the semiconductor substrate 101, 106 is a mesa including the active region 102, 103 is a parasitic capacitance component provided for the purpose of improving the response speed of the semiconductor laser. A mesa groove 201 for removal is a solder material for fixing the semiconductor laser 1 to the heat sink material 105. FIG. 2 shows that the semiconductor main surface near the active region 102 has a heat sink material 10.
5, which is called a "junction down assembly method". In this method, heat generated in the active region 102 when the semiconductor laser is driven is transferred to the heat sink material 105.
It has the feature that it can escape efficiently.

【0004】次に従来方法の動作について説明する。活
性領域102で発生した熱はメサ106内で広がり、半
田材201を介してヒートシンク材105に放熱され
る。放熱効果を高めるためヒートシンク材としては通常
熱伝導度の高い銅,銀等の金属、あるいはダイヤモンド
及び高熱伝導度を有するセラミック(例えばベリリヤ,
アルミナイトライド)などが用いられる。
Next, the operation of the conventional method will be described. The heat generated in the active region 102 spreads in the mesa 106 and is radiated to the heat sink 105 via the solder 201. In order to enhance the heat dissipation effect, the heat sink material is usually a metal such as copper or silver having a high thermal conductivity, or diamond and a ceramic having a high thermal conductivity (for example, beryllia,
Aluminum nitride) is used.

【0005】一般に、半導体と金属では熱膨張係数が大
きく異なる。従って、ヒートシンク材に金属を用いる場
合は、半田固着温度から室温に降温する際に発生する大
きな熱応力を避けるために半田材として、塑性変形しや
すいインジウム等が用いられる。しかし、インジウムは
半導体レーザ1の電極として用いられる金と容易に反応
し、脆弱な金インジウム合金を形成するため、数千時間
以上の長時間動作には適さないという問題がある。一
方、ヒートシンク材にセラミックを用いる場合には、ヒ
ートシンク材であるセラミックと半導体材料の熱膨張係
数がオーダ的にほぼ一致しているので、電極材である金
との反応がほとんどなく、また機械的強度の強い高融点
金錫合金を用いることが可能である。1GHz程度の応
答速度を持つ半導体レーザでは、寄生容量を除去するた
めのメサ溝103が必要でないため、半導体レーザの断
面は矩形状をしており、ジャンクションダウン組立法で
信頼性の高い金錫半田を用いることに何ら問題は生じて
いなかった。
In general, semiconductors and metals have significantly different coefficients of thermal expansion. Therefore, when metal is used for the heat sink material, indium or the like which is easily plastically deformed is used as the solder material in order to avoid a large thermal stress generated when the temperature is lowered from the solder fixing temperature to room temperature. However, since indium easily reacts with gold used as an electrode of the semiconductor laser 1 and forms a fragile gold-indium alloy, there is a problem that it is not suitable for operation for a long time of several thousand hours or more. On the other hand, when ceramic is used as the heat sink material, the thermal expansion coefficient of the ceramic material of the heat sink material and that of the semiconductor material are almost the same in order, so that there is almost no reaction with gold as the electrode material, and mechanical It is possible to use a high-melting gold-tin alloy having high strength. Since a semiconductor laser having a response speed of about 1 GHz does not require the mesa groove 103 for removing the parasitic capacitance, the semiconductor laser has a rectangular cross section, and a gold-tin solder having high reliability by a junction-down assembly method. There was no problem in using.

【0006】[0006]

【発明が解決しようとする課題】数GHz以上の高速応
答性を有する半導体レーザでは、図2に示すようにメサ
溝が形成される。従って、当然ながら半導体レーザの断
面は矩形ではなくなり、メサ溝部分で半導体レーザの厚
みが薄くならざるをえない。この場合、機械的強度が強
く信頼性の高い半田材(例えば金錫)を用いると、図3
に模式的に示すように、降温時に発生するわずかな熱応
力が活性領域近傍にあるメサ溝部分に集中し、活性領域
に致命的なダメージを与えることがある。図3は応力集
中の計算例で、301は等応力線を示す。応力の集中度
合いはメサの形状に依存するが、例えばメサ形状が半径
10μmの半円で半導体レーザの厚みが100μmであ
るとき、最大応力はメサのない場合の約20倍にも達す
る。また、半導体部品で通常行われる熱サイクル試験
(例えば−40度から+100度までの間で昇温・降温
を100サイクル程度繰り返す)で、図4に示すように
応力集中によりメサが破断し、亀裂401が発生し、半
導体レーザが壊れてしまう不具合が発生することもあっ
た。
In a semiconductor laser having a high-speed response of several GHz or more, a mesa groove is formed as shown in FIG. Therefore, naturally, the cross section of the semiconductor laser is no longer rectangular, and the thickness of the semiconductor laser must be reduced at the mesa groove portion. In this case, if a solder material (for example, gold tin) having high mechanical strength and high reliability is used, FIG.
As shown schematically in FIG. 2, a slight thermal stress generated at the time of temperature decrease concentrates on the mesa groove near the active region, and may cause fatal damage to the active region. FIG. 3 is a calculation example of stress concentration, and 301 indicates an iso-stress line. The degree of concentration of the stress depends on the shape of the mesa. For example, when the mesa shape is a semicircle having a radius of 10 μm and the thickness of the semiconductor laser is 100 μm, the maximum stress is about 20 times as large as that without the mesa. In a thermal cycle test (for example, repeating a temperature rise / fall of about 100 cycles between −40 ° C. and + 100 ° C.) normally performed on a semiconductor component, as shown in FIG. There was also a case where 401 occurred and the semiconductor laser was broken.

【0007】本発明は上記のような問題点に鑑みてなさ
れたもので、メサ溝を有する高速応答可能な半導体レー
ザ及びその信頼性の高い組立方法を得ることを目的とし
ている。
The present invention has been made in view of the above problems, and has as its object to provide a semiconductor laser having a mesa groove capable of high-speed response and a highly reliable assembling method thereof.

【0008】[0008]

【課題を解決するための手段】この発明にかかる半導体
光デバイス及びその組立方法は、ジャンクションダウン
に組み立てられた半導体レーザのメサ部分への応力集中
を避けるために、メサ溝の外側の半導体主面はヒートシ
ンク材に固着せず、活性領域を含むメサ部分のみ半田固
着するようにしたものである。
SUMMARY OF THE INVENTION A semiconductor optical device and a method of assembling the same according to the present invention provide a semiconductor main surface outside a mesa groove in order to avoid stress concentration on a mesa portion of a semiconductor laser assembled at a junction down. Is such that only the mesa portion including the active region is fixed by soldering without fixing to the heat sink material.

【0009】[0009]

【作用】メサ溝の外側の半導体主面がヒートシンク材に
固着されていないため、半導体レーザが半田融点で固着
され室温まで降温されるとき、メサ溝外側は半導体が自
然に熱収縮するのみであり、ヒートシンク材との熱膨張
係数の違いによる熱応力は発生しない。従ってメサ部分
への応力集中は起こらず、従来法に見られた不具合の発
生はなくなる。
Since the semiconductor main surface outside the mesa groove is not fixed to the heat sink material, when the semiconductor laser is fixed at the melting point of the solder and the temperature is lowered to room temperature, the semiconductor outside the mesa groove only thermally contracts naturally. No thermal stress is generated due to a difference in thermal expansion coefficient from the heat sink material. Therefore, stress concentration on the mesa portion does not occur, and the problem seen in the conventional method does not occur.

【0010】[0010]

【実施例】以下この発明の一実施例を図について説明す
る。図1は本発明の一実施例による半導体光デバイス及
びその組立方法を示し、図において、1は半導体レー
ザ、104はメサ活性領域102を含むメサ106の主
面に接する部分に用いられた半田材である。上記の例で
は活性領域102が埋め込まれた、いわゆる埋め込み型
半導体レーザを例にあげて示してあるが、他のどのよう
なタイプの半導体レーザにも適用することができる。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. FIG. 1 shows a semiconductor optical device and a method of assembling the same according to an embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a semiconductor laser; It is. In the above example, a so-called buried semiconductor laser in which the active region 102 is buried is shown as an example, but the present invention can be applied to any other type of semiconductor laser.

【0011】図1では、メサ溝103の外側には半田が
形成されておらず、あたかも大きな空隙ができているよ
うに誇張して示しているが、半田融着時は半田材は薄く
引き延ばされ、図1に示した空隙110は無視できる程
度に小さくなる。半田固着の際に、メサ溝の外側から発
生する応力は、いま述べた方法で回避できるが、メサ1
06の主面に設けた半田とヒートシンク材との間に発生
する応力を減少させるために、半田材とメサ106の主
面の間に延性が大きくて柔らかい金などをメッキで数μ
m形成すると、応力の回避にさらに効果がある。
In FIG. 1, no solder is formed on the outside of the mesa groove 103, and it is exaggerated as if a large gap is formed. As a result, the gap 110 shown in FIG. 1 becomes small enough to be ignored. The stress generated from the outside of the mesa groove when the solder is fixed can be avoided by the method just described.
In order to reduce the stress generated between the solder provided on the main surface of the substrate 06 and the heat sink material, a highly ductile, soft gold or the like is plated between the solder material and the main surface of the mesa 106 by several μm.
The formation of m has a further effect on avoiding stress.

【0012】このような本実施例では、活性領域を含む
メサの主面にのみ半田材を使用したので、半田固着の際
に半導体レーザ素子周辺から活性領域に加わる熱応力を
低減することができる。従って、メサ溝を持った高速応
答可能な半導体レーザなどにおいて、放熱的には効果が
大きく、寿命の観点からは信頼性の高い半導体光デバイ
スを得ることができる。
In this embodiment, since the solder material is used only on the main surface of the mesa including the active region, the thermal stress applied to the active region from the periphery of the semiconductor laser element when the solder is fixed can be reduced. . Therefore, in a semiconductor laser having a mesa groove and capable of high-speed response, a semiconductor optical device having a large heat radiation effect and a high reliability in terms of life can be obtained.

【0013】次に組立方法について説明する。一般に、
高速化のために半導体レーザ1は活性領域102の両側
にメサ溝103が形成されている。通常、このメサ溝は
化学エッチング等で形成され、ほぼ幅約20μm,深さ
約20μmである。本実施例のごとくメサの主面に接す
る部分にのみ半田材を限定して用いるためには以下のよ
うにすればよい。半田材となる、例えば金錫半田を半導
体レーザ主面全面に蒸着で形成し、メサ主面上をホトレ
ジストなどで被ったのち、硫酸を主成分とするエッチン
グ液で除去する。あるいは、ヒートシンク材のうち半導
体レーザの半田固着の際接する部分に対して予め半田材
を部分的に形成しておく。この場合も、ヒートシンク材
の全面に半田材である金錫を蒸着などで形成した後、写
真製版とエッチングを行えばよい。半田材の厚みには特
に指定はないが、数μmあればよい。このように、本発
明の組立方法によれば、半田材の面積を限定するだけの
手段によって、後述のような、亀裂の生じない信頼性の
高い半導体光デバイスが得られる。
Next, an assembling method will be described. In general,
For speeding up, the semiconductor laser 1 has mesa grooves 103 formed on both sides of the active region 102. Usually, the mesa groove is formed by chemical etching or the like, and has a width of about 20 μm and a depth of about 20 μm. In order to limit the use of the solder material only to the portion in contact with the main surface of the mesa as in this embodiment, the following may be performed. For example, gold-tin solder, which is a solder material, is formed on the entire main surface of the semiconductor laser by vapor deposition, and the main surface of the mesa is covered with a photoresist or the like, and then removed with an etchant containing sulfuric acid as a main component. Alternatively, a solder material is partially formed in advance on a portion of the heat sink material that is in contact with the semiconductor laser when soldering is performed. In this case as well, photolithography and etching may be performed after gold tin as a solder material is formed on the entire surface of the heat sink material by vapor deposition or the like. The thickness of the solder material is not particularly specified, but may be several μm. As described above, according to the assembling method of the present invention, a highly reliable semiconductor optical device free from cracks as described later can be obtained by means only for limiting the area of the solder material.

【0014】なお上記の例では活性領域102が埋め込
まれた、いわゆる埋め込み型半導体レーザを例にあげて
示してあるが、他のどのようなタイプの半導体レーザに
も本発明による組立方法を適用することができる。また
上記実施例では半導体レーザを例にあげたが、活性領域
が円形の発光ダイオードにも適用できることは勿論であ
る。この場合、メサ溝はストライプ状ではなく、活性領
域を取り囲む円環状になる。さらに、本発明は半導体発
光素子にのみ限定されるものではなく、半導体受光素子
にも適用できることは明らかである。
In the above example, a so-called buried semiconductor laser in which the active region 102 is buried is shown as an example, but the assembling method according to the present invention is applied to any other type of semiconductor laser. be able to. In the above embodiment, a semiconductor laser is described as an example. However, it is needless to say that the present invention can be applied to a light emitting diode having a circular active region. In this case, the mesa groove is not in a stripe shape but in an annular shape surrounding the active region. Further, it is apparent that the present invention is not limited to the semiconductor light emitting device, but can be applied to the semiconductor light receiving device.

【0015】[0015]

【発明の効果】以上のように、この発明によれば、活性
領域を含むメサの主面にのみ半田材が使用されているの
で、半田固着の際に半導体レーザ素子周辺から活性領域
に加わる熱応力を低減することができ、メサ溝を持ち、
高速応答可能な半導体レーザを、放熱的には効果が大き
く、寿命の観点からは信頼性の高い半導体光デバイスを
得ることができる効果がある。また、本発明の組立方法
によれば、半田材の面積を限定するだけの手段によっ
て、亀裂の生じない信頼性の高い半導体光デバイスが得
られる効果がある。
As described above, according to the present invention, since the solder material is used only on the main surface of the mesa including the active region, the heat applied from the periphery of the semiconductor laser element to the active region when the solder is fixed. It can reduce stress, has a mesa groove,
A semiconductor laser capable of high-speed response has a large heat radiation effect, and has an effect that a semiconductor optical device with high reliability can be obtained from the viewpoint of life. Further, according to the assembling method of the present invention, there is an effect that a highly reliable semiconductor optical device free from cracks can be obtained by means only for limiting the area of the solder material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による一実施例による半導体光デバイス
及びその組立方法を示す断面図。
FIG. 1 is a cross-sectional view illustrating a semiconductor optical device and an assembling method according to an embodiment of the present invention.

【図2】従来の半導体光デバイス及びその組立方法の組
立法を示す断面図。
FIG. 2 is a sectional view showing an assembling method of a conventional semiconductor optical device and an assembling method thereof.

【図3】従来の組立法による応力集中を示す図。FIG. 3 is a view showing stress concentration by a conventional assembling method.

【図4】メサ部分に集中した応力により発生した亀裂を
示す図。
FIG. 4 is a diagram showing cracks generated by stress concentrated on a mesa portion.

【符号の説明】[Explanation of symbols]

1 半導体レーザ 102 活性領域 103 メサ溝 104 半田材 105 ヒートシンク 106 メサ DESCRIPTION OF SYMBOLS 1 Semiconductor laser 102 Active region 103 Mesa groove 104 Solder material 105 Heat sink 106 Mesa

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 活性領域近傍にメサ溝を有する半導体発
光デバイスを、メサ溝を有する半導体主面側が放熱部材
に接するように固着させてなる半導体光デバイスにおい
て、 上記半導体発光デバイスの活性領域を含むメサ部分のみ
を固着用半田材を用いて放熱部材に固着してなることを
特徴とする半導体光デバイス。
1. A semiconductor optical device having a semiconductor light emitting device having a mesa groove in the vicinity of an active region fixed such that a semiconductor main surface having a mesa groove is in contact with a heat radiating member, the semiconductor light emitting device including the active region of the semiconductor light emitting device. A semiconductor optical device, wherein only a mesa portion is fixed to a heat radiating member using a fixing solder material.
【請求項2】 活性領域近傍にメサ溝を有する半導体発
光デバイスを、メサ溝を有する半導体主面側が放熱部材
に接するように固着させて組み立てる半導体デバイスの
組立方法において、 上記半導体発光デバイスの活性領域を含むメサ部分のみ
を固着用半田材を用いて放熱部材に固着して組み立てる
ことを特徴とする半導体光デバイスの組立方法。
2. A method for assembling a semiconductor light emitting device having a mesa groove in the vicinity of an active region such that a semiconductor main surface having the mesa groove is in contact with a heat radiating member. A method of assembling a semiconductor optical device, wherein only a mesa portion including the above is fixed to a heat radiating member using a fixing solder material.
JP24276791A 1991-08-27 1991-08-27 Semiconductor optical device and method of assembling the same Expired - Lifetime JP2768852B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24276791A JP2768852B2 (en) 1991-08-27 1991-08-27 Semiconductor optical device and method of assembling the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24276791A JP2768852B2 (en) 1991-08-27 1991-08-27 Semiconductor optical device and method of assembling the same

Publications (2)

Publication Number Publication Date
JPH0555712A JPH0555712A (en) 1993-03-05
JP2768852B2 true JP2768852B2 (en) 1998-06-25

Family

ID=17093977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24276791A Expired - Lifetime JP2768852B2 (en) 1991-08-27 1991-08-27 Semiconductor optical device and method of assembling the same

Country Status (1)

Country Link
JP (1) JP2768852B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11233877A (en) 1998-02-16 1999-08-27 Nec Corp Array-type laser diode
JP2002026465A (en) * 2000-07-12 2002-01-25 Denso Corp Semiconductor laser and its manufacturing method
JP3889933B2 (en) 2001-03-02 2007-03-07 シャープ株式会社 Semiconductor light emitting device
JP2003101144A (en) * 2001-09-27 2003-04-04 Nec Compound Semiconductor Devices Ltd Semiconductor laser device
CN102449373A (en) * 2009-05-28 2012-05-09 皇家飞利浦电子股份有限公司 Illumination device with an envelope enclosing a light source
US20230042492A1 (en) * 2020-03-19 2023-02-09 Mitsubishi Electric Corporation Optical semiconductor element

Also Published As

Publication number Publication date
JPH0555712A (en) 1993-03-05

Similar Documents

Publication Publication Date Title
KR100859137B1 (en) Semiconductor Light Emitting Device
JP4897133B2 (en) Semiconductor light emitting device, method for manufacturing the same, and mounting substrate
JP3386963B2 (en) Manufacturing method of laser diode device
KR20010013085A (en) Method for producing a light-emitting component
US5698897A (en) Semiconductor device having a plated heat sink
JP4258367B2 (en) Optical component mounting package and manufacturing method thereof
KR100437705B1 (en) Manufacturing method of semiconductor laser parts
JP2768852B2 (en) Semiconductor optical device and method of assembling the same
EP1267421B1 (en) Semiconductor laser device
JP3912130B2 (en) Submount
KR100610950B1 (en) Laser diode improved in heat-dissipating structure and fabricating method therefor
JP3501959B2 (en) Manufacturing method of laser fusing semiconductor device and semiconductor device
JPH06350202A (en) Semiconductor light emitting device
US20050079716A1 (en) Semiconductor optical device and method for manufacturing the same
JP2000183438A (en) Manufacture of semiconductor laser
JP2737625B2 (en) Semiconductor laser device
JPH04278593A (en) Photoelectric device and manufacture thereof
JP2008091768A (en) Semiconductor laser device, and electronic instrument
JP4587666B2 (en) Semiconductor laser device
JP3186937B2 (en) Semiconductor light emitting device
JPH04243181A (en) Semiconductor laser module
JP5294913B2 (en) Device mounting board
JPH0377676B2 (en)
KR0121688Y1 (en) Semiconductor laser device
JPH02165686A (en) Optical element and optoelectronic device