JP2768337B2 - Optical axis adjusting device and optical axis adjusting method - Google Patents

Optical axis adjusting device and optical axis adjusting method

Info

Publication number
JP2768337B2
JP2768337B2 JP7336289A JP33628995A JP2768337B2 JP 2768337 B2 JP2768337 B2 JP 2768337B2 JP 7336289 A JP7336289 A JP 7336289A JP 33628995 A JP33628995 A JP 33628995A JP 2768337 B2 JP2768337 B2 JP 2768337B2
Authority
JP
Japan
Prior art keywords
light
optical axis
shutter
amount
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7336289A
Other languages
Japanese (ja)
Other versions
JPH09179002A (en
Inventor
陽彦 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7336289A priority Critical patent/JP2768337B2/en
Publication of JPH09179002A publication Critical patent/JPH09179002A/en
Application granted granted Critical
Publication of JP2768337B2 publication Critical patent/JP2768337B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光軸を調整する位置
及びその方法に関する。
The present invention relates to a position and a method for adjusting an optical axis.

【0002】[0002]

【従来の技術】一般に光源から出射された光を光ファイ
バに入射させ、或いは受光素子で受光する光学系を構築
する場合、光源の光軸と光ファイバや受光素子の光軸と
を一致させることが好ましい。このような光軸の調整を
行うための光軸調整装置の一例を図4に示す。同図は光
源に対して光ファイバの光軸を一致させるための装置で
あり、光を出射する光源21と、その光を結合する光フ
ァイバ22と、この結合した光量を測定する光量モニタ
23と、モニタされた光量により光ファイバ22の位置
を制御する位置制御系24と、この位置制御系24から
の信号により光ファイバ22の軸位置を動かす位置駆動
系25を有している。
2. Description of the Related Art Generally, when constructing an optical system in which light emitted from a light source is made incident on an optical fiber or received by a light receiving element, the optical axis of the light source must be coincident with the optical axis of the optical fiber or the light receiving element. Is preferred. FIG. 4 shows an example of an optical axis adjusting device for performing such optical axis adjustment. FIG. 1 shows a device for aligning the optical axis of an optical fiber with a light source, a light source 21 for emitting light, an optical fiber 22 for coupling the light, and a light quantity monitor 23 for measuring the combined light quantity. A position control system 24 for controlling the position of the optical fiber 22 based on the monitored light quantity, and a position drive system 25 for moving the axial position of the optical fiber 22 based on a signal from the position control system 24.

【0003】この光軸調整装置では、図5に示すよう
に、初期状態では光源11の光軸と光ファイバ22の光
軸とはかなりのずれがあるため、まずスパイラル状に光
ファイバ22の光軸を動かして、光検出できる位置を検
出する。次に、その検出した位置を起点にして、光分布
の光量が増加する方向に定ピッチで光ファイバ22を動
かしていき、最終的に光量のピーク位置を検出し、これ
をすなわち光軸として位置調整するものであった。
In this optical axis adjusting device, as shown in FIG. 5, since the optical axis of the light source 11 and the optical axis of the optical fiber 22 are considerably displaced in the initial state, the optical axis of the optical fiber 22 is first spirally shifted. By moving the axis, the position where light can be detected is detected. Next, with the detected position as a starting point, the optical fiber 22 is moved at a constant pitch in a direction in which the light amount of the light distribution increases, and finally the peak position of the light amount is detected. It was something to adjust.

【0004】また、他の例として特開平1−10241
1号公報に記載の技術がある。これは、光源とコリメー
ト用の収束レンズを組合わせた光学系についての光軸調
整装置であり、収束レンズの前に主開口と補助開口を持
つシャッタを置いて、光束の中央部を遮断して外周部の
光束のみ通過させ、その光束が収束した点を、分割受光
素子で求め、光軸調整を行うというものである。
[0004] Another example is disclosed in Japanese Patent Application Laid-Open No. 1-10241.
There is a technique described in Japanese Patent Publication No. This is an optical axis adjustment device for an optical system that combines a light source and a converging lens for collimation.A shutter having a main opening and an auxiliary opening is placed in front of the converging lens to block the central part of the light beam. Only a light beam at the outer peripheral portion is passed, a point at which the light beam converges is obtained by a divided light receiving element, and optical axis adjustment is performed.

【0005】[0005]

【発明が解決しようとする課題】これら従来の光軸調整
技術において、前者の光ファイバを移動させながら光軸
調整を行う技術では、光ファイバを定ピッチ(例えばス
パイラルサーチ約2μm、粗調0.6μm、微調0.2
μm)で動かしながら光量を測定していくので、初期位
置ずれが大きいとピッチ数が増えてしまい、光軸に調整
するまで時間がかかってしまうという問題点があった。
また、後者の開口を持つシャッタを利用する技術では、
光源の光束を収束するための収束レンズを使ってコリメ
ートする光学系にのみ適用できるものであって、前者の
ように光源から光が平行あるいは発散状態に出射される
光学系においては適用できないという問題点がある。
In these conventional optical axis adjustment techniques, in the former technique of adjusting the optical axis while moving the optical fiber, the optical fiber is fixed at a constant pitch (for example, a spiral search of about 2 μm, a coarse adjustment of 0.1 μm). 6 μm, fine adjustment 0.2
Since the amount of light is measured while moving at a distance of (μm), if the initial position shift is large, the number of pitches increases, and there is a problem that it takes time to adjust to the optical axis.
In the latter technology using a shutter having an opening,
It can be applied only to an optical system that collimates using a converging lens for converging the light flux of the light source, and cannot be applied to an optical system in which light is emitted from the light source in a parallel or divergent state like the former. There is a point.

【0006】本発明の目的は、光源からの光の出射状態
にかかわらず光源に対して迅速に光軸位置の調整を行う
ことができる光軸調整装置及び光軸調整方法を提供する
ことにある。
An object of the present invention is to provide an optical axis adjusting device and an optical axis adjusting method capable of quickly adjusting the optical axis position of a light source irrespective of the state of light emission from the light source. .

【0007】[0007]

【課題を解決するための手段】本発明の光軸調整装置
は、光を出射する光源と、その光を受ける大口径受光素
子と、この受光素子における受光光量を測定する光量モ
ニタと、受光素子の前面に設置されて前記受光素子の受
光面をX方向及びY方向においてその一方から他方に向
けて一定速度で遮光する2方向遮蔽式のシャッタとを備
えている。ここで、光量モニタは、受光光量の変化をシ
ャッタの遮光動作時間に関係付けて測定するように構成
される。また、シャッタはX方向に遮光するX方向シャ
ッタと、Y方向に遮光するY方向シャッタとを備えてお
り、これらのシャッタは独立して遮光動作でき、かつ各
シャッタの遮光動作に伴うの受光光量をそれぞれ個別に
測定可能な構成とする。
An optical axis adjusting apparatus according to the present invention comprises a light source for emitting light, a large-diameter light receiving element for receiving the light, a light amount monitor for measuring the amount of light received by the light receiving element, and a light receiving element. And a two-way shield type shutter that is installed on the front surface of the light-receiving element and shields the light-receiving surface of the light-receiving element from one side to the other in the X direction and the Y direction at a constant speed. Here, the light amount monitor is configured to measure a change in the amount of received light in relation to the light blocking operation time of the shutter. The shutter includes an X-direction shutter that shields light in the X direction and a Y-direction shutter that shields light in the Y direction. These shutters can independently perform a light-shielding operation, and the amount of received light accompanying the light-shielding operation of each shutter. Are configured to be individually measurable.

【0008】また、本発明の光軸調整方法は、シャッタ
を一定の速度で閉じる時に得られる受光素子の光量変化
に基づいて光軸位置を算出することを特徴とする。例え
ば、シャッタが遮光動作を開始してから受光素子におけ
る受光光量が全受光光量の1/2となったときの時間
と、シャッタの遮光動作速度とから光軸位置を算出す
る。そして、算出された光軸位置に、前記光源に対して
光軸合わせを行う光学系を設置することで光軸調整が実
現される。
The optical axis adjusting method according to the present invention is characterized in that the optical axis position is calculated based on a change in the amount of light of the light receiving element obtained when the shutter is closed at a constant speed. For example, the optical axis position is calculated from the time when the amount of light received by the light receiving element becomes か ら of the total amount of received light after the shutter starts the light shielding operation and the light shielding operation speed of the shutter. Then, by installing an optical system that performs optical axis alignment with the light source at the calculated optical axis position, optical axis adjustment is realized.

【0009】[0009]

【発明の実施の形態】次に、本発明の実施形態について
図面を参照して説明する。図1は本発明の実施形態の概
念構成図である。同図において、1は光源であり、支持
部材2の一部に固定的に支持されており、ここではこの
光源1に対して光ファイバ等の図外の光学系の光軸調整
を行ない、その上でこの光学系を支持部材2の他の部分
に固定支持させるものとする。そこで、この光軸調整を
行う光学系を設置させる箇所、すなわち前記光源1から
出射される光の照射領域の前記支持部材2の上に光軸調
整装置3が設置され、この光軸調整装置3により光源1
の光軸を測定する。
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a conceptual configuration diagram of an embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a light source, which is fixedly supported by a part of a support member 2. Here, the optical axis of an optical system (not shown) such as an optical fiber is adjusted with respect to the light source 1. Above, this optical system is fixedly supported on another portion of the support member 2. Therefore, the optical axis adjusting device 3 is installed at a place where the optical system for performing the optical axis adjustment is installed, that is, on the support member 2 in the irradiation area of the light emitted from the light source 1. By light source 1
The optical axis of is measured.

【0010】前記光軸調整装置3は、前記光源1の光出
射面に対して開口面積が十分に大きなシャッタ4と、こ
のシャッタ4の背後に設置されてシャッタ4の開口面積
に略近い受光面積を有する大口径の受光素子5と、この
受光素子における受光光量を測定する光量モニタ回路6
とで構成される。前記シャッタ4は、図2に斜視構成を
示すように、正方形の開口12を有する枠体11と、こ
の枠体11に設けられて前記開口を開閉可能なX方向シ
ャッタ13とY方向シャッタ14とで構成される。これ
らのX方向シャッタ13とY方向シャッタ14は、例え
ば前記枠体11のX方向とY方向の各両側部に設けられ
た収納部15,16内にそれぞれ巻き取り軸が内装され
ており、その一方の収納部の巻き取り軸に柔軟な遮光板
17,18が巻き付けられ、他方の収納部内の巻き取り
軸をモータ等の駆動手段により回転駆動して遮光板1
7,18の先端部を巻き取るように構成することによ
り、その先端部が収納部から一定速度で引き出されて前
記開口12をX方向、Y方向に徐々に遮光することがで
き、最終的に開口11を全部遮蔽することが可能とされ
る。なお、前記駆動手段は遮光膜17,18の移動速度
が一定となるように、各モータの回転速度が一定速度に
制御される。
The optical axis adjusting device 3 includes a shutter 4 having a sufficiently large opening area with respect to the light emitting surface of the light source 1 and a light receiving area which is provided behind the shutter 4 and is substantially close to the opening area of the shutter 4. A large-diameter light receiving element 5 having a
It is composed of As shown in a perspective view in FIG. 2, the shutter 4 includes a frame 11 having a square opening 12, an X-direction shutter 13 and a Y-direction shutter 14 provided in the frame 11 and capable of opening and closing the opening. It consists of. The X-direction shutter 13 and the Y-direction shutter 14 have winding shafts respectively housed in storage portions 15 and 16 provided on both sides of the frame 11 in the X and Y directions, respectively. Flexible light shielding plates 17 and 18 are wound around a winding shaft of one storage unit, and a winding shaft in the other storage unit is driven to rotate by a driving means such as a motor so that the light shielding plate 1 is rotated.
By winding up the distal end portions of 7 and 18, the distal end portions are pulled out from the storage portion at a constant speed, and the opening 12 can be gradually shielded from light in the X and Y directions. The entire opening 11 can be shielded. The driving unit controls the rotation speed of each motor to a constant speed so that the moving speed of the light shielding films 17 and 18 is constant.

【0011】また、前記受光素子5は、その受光した光
量に応じた電気信号を出力し、この電気信号に基づいて
光量モニタ回路6が受光光量を測定することができるよ
うに構成される。この場合、この光量モニタ回路6には
タイマ(計時手段)が設けられており、前記シャッタ4
の駆動手段により遮光膜17,18が駆動されてからそ
の動作が完了されるまでの間における光量の測定値と経
過時間を関連付けて測定できるように構成されている。
The light receiving element 5 outputs an electric signal corresponding to the amount of received light, and the light amount monitoring circuit 6 can measure the amount of received light based on the electric signal. In this case, the light amount monitor circuit 6 is provided with a timer (time measuring means), and the shutter 4
And the elapsed time from when the light-shielding films 17 and 18 are driven by the driving means until the operation is completed.

【0012】この光軸調整装置3を用いて光源1の光軸
調整を行うには、図1に示したような配置状態におい
て、光源1を発光させた状態で先ずシャッタ4のX方向
シャッタ13を駆動し、枠体11の開口12が全部開口
された状態から徐々に開口12がX方向の一方向に狭め
られ、最後に開口12が全部遮蔽されるようにする。そ
して、その際の受光素子5の受光量を測定する。また、
同様にして開口12が全部開いた状態からY方向シャッ
タ14のみを駆動して開口12を徐々に閉じて行き、最
後に開口12を全部遮蔽して、そのときの受光素子5の
受光量を測定する。図3(a)はその際におけるX方
向、Y方向の各シャッタ13,14により開口12の一
部が閉じられた状態を示す。なお、この図では両方向の
シャッタにより開口の一部が閉じられた状態を合わせて
示しているが、実際にはいずれか一方が閉じられた状態
となる。
In order to adjust the optical axis of the light source 1 by using the optical axis adjusting device 3, in the arrangement state shown in FIG. Is driven so that the opening 12 of the frame 11 is gradually narrowed in one direction in the X direction from the state where the entire opening 12 is opened, and finally the entire opening 12 is shielded. Then, the amount of light received by the light receiving element 5 at that time is measured. Also,
Similarly, from the state where the opening 12 is fully opened, only the Y-direction shutter 14 is driven to gradually close the opening 12, and finally the entire opening 12 is shielded, and the light receiving amount of the light receiving element 5 at that time is measured. I do. FIG. 3A shows a state in which a part of the opening 12 is closed by the shutters 13 and 14 in the X and Y directions at that time. Although FIG. 2 also shows a state in which a part of the opening is closed by the shutters in both directions, one of them is actually closed.

【0013】このようにして、X方向シャッタ13とY
方向シャッタ14を閉じていったときの受光素子におけ
る受光光量の変化を図3(b)に示す。この図に示すよ
うに、各シャッタ13,14が開口12を閉じて行くの
に伴ない、光源1の光軸から離れた位置を各遮光膜1
7,18の先端部が移動しているときには光量の変化は
殆ど生じていないが、光源1の光分布領域にまで移動さ
れてくると光量が徐々に減少され、最終的には光量が零
となる。ここで、受光素子5の受光面積と光源1の発光
面積とを比較した場合、受光素子5の受光面積は極めて
大きいため、光源1から出射された光の略全部が受光素
子において受光されているとみなすことができる。
Thus, the X direction shutter 13 and the Y
FIG. 3B shows a change in the amount of received light in the light receiving element when the directional shutter 14 is closed. As shown in this figure, as the shutters 13 and 14 close the opening 12, the positions away from the optical axis of the light source 1 are moved to the respective light shielding films 1.
When the tips of the light sources 7 and 18 are moving, the light amount hardly changes. However, when the light source 1 is moved to the light distribution region, the light amount is gradually reduced, and finally the light amount becomes zero. Become. Here, when comparing the light receiving area of the light receiving element 5 with the light emitting area of the light source 1, since the light receiving area of the light receiving element 5 is extremely large, substantially all of the light emitted from the light source 1 is received by the light receiving element. Can be considered.

【0014】したがって、シャッタ4が閉じ始めてから
受光素子5での受光光量が半減するまでの時間t1,t
2と、シャッタが閉じ切るまでの時間T1,T2と、シ
ャッタの遮光膜の移動速度Vとにより、光軸の位置座標
は以下の式より求めることができる。 X座標(Lx)= V×(t1−T1/2), Y座標(Ly)= V×(t2−T2/2) なお、これらのX座標(Lx)とY座標(Ly)はいず
れもシャッタの開口中心を原点としたときに、この原点
からの座標位置である。したがって、光源に向かってシ
ャッタの開口12の左下位置を原点としたときには、光
軸の座標は次のようになる。 X座標(LX)=V×t1 Y座標(LY)=V×t2
Therefore, the times t1 and t from when the shutter 4 starts to close until the amount of light received by the light receiving element 5 is reduced by half.
2, the time T1 and T2 until the shutter closes, and the moving speed V of the light shielding film of the shutter, the position coordinates of the optical axis can be obtained from the following equation. X coordinate (Lx) = V × (t1−T1 / 2), Y coordinate (Ly) = V × (t2−T2 / 2) Note that these X coordinate (Lx) and Y coordinate (Ly) are both shutters. Is the coordinate position from this origin when the center of the opening is used as the origin. Therefore, when the origin is set at the lower left position of the opening 12 of the shutter toward the light source, the coordinates of the optical axis are as follows. X coordinate (LX) = V × t1 Y coordinate (LY) = V × t2

【0015】このようにしてシャッタ4及び受光素子5
に対する光源1の光軸位置を正確に測定した後、光源1
に光軸を合わせようとする光ファイバ等の光学系の光軸
をこの測定位置に設定して支持部材2に固定すれば、直
ちに光源と光学系との光軸調整が実現されることにな
る。これにより、極めて短い時間での光軸調整が可能と
なる。また、光源から出射される光が平行または発散さ
れる場合、或いは収束される場合のいずれの場合にも、
光源に対してシャッタ及び受光素子の位置を適宜に変更
させながら設定した上で前記した調整を行うことによ
り、光軸調整が可能となる。
In this manner, the shutter 4 and the light receiving element 5
After accurately measuring the optical axis position of the light source 1 with respect to
If the optical axis of an optical system, such as an optical fiber, whose optical axis is to be aligned with this is set at this measurement position and fixed to the support member 2, the optical axis adjustment between the light source and the optical system can be realized immediately. . Thus, the optical axis can be adjusted in a very short time. Also, when the light emitted from the light source is parallel or divergent, or converged,
The optical axis can be adjusted by setting the positions of the shutter and the light receiving element with respect to the light source while appropriately changing the positions, and then performing the above-described adjustment.

【0016】因みに、本発明の前記した光軸調整装置を
用いて発光ダイオードやレーザダイオード等の光源に対
する光軸調整を行ったところ、図4に示した従来技術で
は約20秒要していた光軸調整が、シャッタを閉じる時
間の2〜3秒程度で実現することができた。
By the way, when the optical axis of a light source such as a light emitting diode or a laser diode is adjusted using the optical axis adjusting apparatus of the present invention, it takes about 20 seconds in the prior art shown in FIG. Axis adjustment could be achieved in about 2-3 seconds of shutter closing time.

【0017】[0017]

【発明の効果】以上説明したように本発明は、大口径の
受光素子の前面に2方向シャッタを設置して、このシャ
ッタを所定の速度で閉じた時の受光光量を測定し、その
受光光量の時間軸上の特性とシャッタ速度との関係から
光軸を算出するようにしたので、シャッタを閉じるのに
要する時間だけで光軸調整が可能となり、迅速な光軸調
整が実現できる。また、光源からの光が発散或いは収束
のいずれの場合でも好適に光軸調整が可能となる。
As described above, according to the present invention, a two-way shutter is provided in front of a large-diameter light receiving element, and the amount of received light when the shutter is closed at a predetermined speed is measured. Since the optical axis is calculated from the relationship between the characteristic on the time axis and the shutter speed, the optical axis can be adjusted only by the time required to close the shutter, and quick optical axis adjustment can be realized. In addition, the optical axis can be suitably adjusted regardless of whether the light from the light source diverges or converges.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光軸調整装置の実施形態の概念構成図
である。
FIG. 1 is a conceptual configuration diagram of an embodiment of an optical axis adjustment device of the present invention.

【図2】シャッタの概略構成を示す斜視図である。FIG. 2 is a perspective view illustrating a schematic configuration of a shutter.

【図3】光軸調整方法を説明するためのシャッタと光軸
との関係、及び受光光量の関係を示す図である。
FIG. 3 is a diagram illustrating a relationship between a shutter and an optical axis and a relationship between received light amounts for explaining an optical axis adjustment method.

【図4】従来の光軸調整装置の一例を示す概念構成図で
ある。
FIG. 4 is a conceptual configuration diagram illustrating an example of a conventional optical axis adjustment device.

【図5】従来の光軸調整方法を説明するための図であ
る。
FIG. 5 is a diagram for explaining a conventional optical axis adjustment method.

【符号の説明】[Explanation of symbols]

1 光源 2 支持部材 3 光軸調整装置 4 シャッタ 5 受光素子 6 光量モニタ回路 11 枠体 12 開口 13 X方向シャッタ 14 Y方向シャッタ 17,18 遮光膜 REFERENCE SIGNS LIST 1 light source 2 support member 3 optical axis adjusting device 4 shutter 5 light receiving element 6 light quantity monitoring circuit 11 frame 12 opening 13 X direction shutter 14 Y direction shutter 17, 18 light shielding film

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 光を出射する光源と、その光を受ける大
口径受光素子と、この受光素子における受光光量を測定
する光量モニタと、前記受光素子の前面に設置されて前
記受光素子の受光面をX方向及びY方向においてその一
方から他方に向けて一定速度で遮光する2方向遮蔽式の
シャッタとを備えることを特徴とする光軸調整装置。
1. A light source for emitting light, a large-diameter light-receiving element for receiving the light, a light-amount monitor for measuring the amount of light received by the light-receiving element, and a light-receiving surface of the light-receiving element installed in front of the light-receiving element An optical axis adjusting device, comprising: a two-way shield type shutter that shields light at a constant speed from one side to the other side in the X and Y directions.
【請求項2】 光量モニタは、受光光量の変化をシャッ
タの遮光動作時間に関係付けて測定する請求項1の光軸
調整装置。
2. The optical axis adjusting device according to claim 1, wherein the light amount monitor measures a change in the amount of received light in relation to a light blocking operation time of the shutter.
【請求項3】 X方向に遮光するX方向シャッタと、Y
方向に遮光するY方向シャッタとを備え、これらのシャ
ッタは独立して遮光動作でき、かつ各シャッタの遮光動
作に伴うの受光光量をそれぞれ個別に測定可能とする請
求項2の光軸調整装置。
3. An X-direction shutter for shielding light in an X-direction;
3. The optical axis adjusting device according to claim 2, further comprising a Y-direction shutter that shields light in a direction, wherein these shutters can independently perform a light-shielding operation, and can individually measure the amount of received light accompanying the light-shielding operation of each shutter.
【請求項4】 請求項1の光軸調整装置を用い、シャッ
タを一定の速度で閉じる時に得られる受光素子の光量変
化に基づいて光軸位置を算出することを特徴とする光軸
調整方法。
4. An optical axis adjustment method using the optical axis adjustment device according to claim 1, wherein an optical axis position is calculated based on a change in light amount of a light receiving element obtained when the shutter is closed at a constant speed.
【請求項5】 シャッタが遮光動作を開始してから受光
素子における受光光量が全受光光量の1/2となったと
きの時間と、シャッタの遮光動作速度とから光軸位置を
算出する請求項4の光軸調整方法。
5. The optical axis position is calculated from the time when the amount of light received by the light receiving element becomes 1/2 of the total amount of received light after the shutter starts the light shielding operation and the light shielding operation speed of the shutter. 4. Optical axis adjustment method.
【請求項6】 算出された光軸位置に、前記光源に対し
て光軸合わせを行う光学系を設置する請求項4または5
の光軸調整方法。
6. An optical system for performing optical axis alignment on the light source at the calculated optical axis position.
Optical axis adjustment method.
JP7336289A 1995-12-25 1995-12-25 Optical axis adjusting device and optical axis adjusting method Expired - Lifetime JP2768337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7336289A JP2768337B2 (en) 1995-12-25 1995-12-25 Optical axis adjusting device and optical axis adjusting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7336289A JP2768337B2 (en) 1995-12-25 1995-12-25 Optical axis adjusting device and optical axis adjusting method

Publications (2)

Publication Number Publication Date
JPH09179002A JPH09179002A (en) 1997-07-11
JP2768337B2 true JP2768337B2 (en) 1998-06-25

Family

ID=18297572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7336289A Expired - Lifetime JP2768337B2 (en) 1995-12-25 1995-12-25 Optical axis adjusting device and optical axis adjusting method

Country Status (1)

Country Link
JP (1) JP2768337B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001108522A (en) 1999-10-07 2001-04-20 Hamamatsu Photonics Kk Variable wavelength light output device
JP4859451B2 (en) * 2005-12-12 2012-01-25 株式会社リコー Apparatus for measuring optical characteristics of laser scanning optical system and method for measuring optical characteristics thereof

Also Published As

Publication number Publication date
JPH09179002A (en) 1997-07-11

Similar Documents

Publication Publication Date Title
JP2874280B2 (en) Peripheral exposure apparatus and peripheral exposure method
EP1219973B1 (en) Optical Distance Measuring System
JPH1114357A (en) Automatic tracking device of surveying equipment
JP2002116133A (en) Scattering particle diameter distribution measuring apparatus
JP2002116133A5 (en)
CN108681093A (en) Double light beam laser colimated light system
JP2768337B2 (en) Optical axis adjusting device and optical axis adjusting method
US4941739A (en) Mirror scanner
JPH09113365A (en) Pyroelectric infrared sensor
JP2001138084A (en) Device and method for adjusting position of attaching optical fiber
EP1517460A2 (en) Image exposure method and image exposure apparatus
JPH11160064A (en) Testing apparatus for azimuth-angle detecting sensor
JP3836408B2 (en) Position adjustment device
JP2004078131A (en) Device and method for adjusting optical axis
JP3051907B2 (en) X-ray fluorescence micrometer thickness meter
JP2822263B2 (en) Semiconductor wafer alignment device
JPH03160317A (en) Laser light controlling device of measuring apparatus
JP2751729B2 (en) Laser beam optical axis position detecting device and laser beam transmitting device provided therewith
JPH0328841A (en) Schlieren device
JP2998950B2 (en) Optical fiber adjustment method for invisible laser
JP2001056250A (en) Optical characteristic measuring device for scanning optical system
JP2024079013A (en) Photometric device and photometric method
JPH1035600A (en) Vacuum chamber
JPH10173031A (en) Circular substrate positioner
JPH03291554A (en) Method and device for adjusting optical axis of sample fixing type x-ray diffraction device