JP2768127B2 - Direct acting servo valve - Google Patents

Direct acting servo valve

Info

Publication number
JP2768127B2
JP2768127B2 JP4085266A JP8526692A JP2768127B2 JP 2768127 B2 JP2768127 B2 JP 2768127B2 JP 4085266 A JP4085266 A JP 4085266A JP 8526692 A JP8526692 A JP 8526692A JP 2768127 B2 JP2768127 B2 JP 2768127B2
Authority
JP
Japan
Prior art keywords
elastic body
spool
cylindrical elastic
valve
servo valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4085266A
Other languages
Japanese (ja)
Other versions
JPH05288207A (en
Inventor
吉道 赤坂
晋一 安成
俊次 尾原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4085266A priority Critical patent/JP2768127B2/en
Publication of JPH05288207A publication Critical patent/JPH05288207A/en
Application granted granted Critical
Publication of JP2768127B2 publication Critical patent/JP2768127B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Springs (AREA)
  • Servomotors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、フォースモータでスプ
ールを直接駆動するタイプの直動形サーボ弁に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a direct-acting servo valve of the type in which a spool is directly driven by a force motor.

【0002】[0002]

【従来の技術】従来より各種油圧制御システムにおい
て、特に制御対象のアクチュエータを高速,高精度に制
御する目的から制御弁には直動形サーボ弁が用いられて
いる。本サーボ弁は磁気回路とコイルが巻回しされたコ
イルボビンで形成されるフォースモータでスプール弁を
直接駆動することにより、入力電流に比例して弁から出
力される作動流体の方向,圧力,流量を制御する、電気
−油圧変換素子である。
2. Description of the Related Art Conventionally, in various hydraulic control systems, a direct-acting servo valve has been used as a control valve for the purpose of controlling an actuator to be controlled with high speed and high accuracy. This servo valve directly drives the spool valve with a force motor formed of a magnetic circuit and a coil bobbin wound with a coil, thereby controlling the direction, pressure and flow rate of the working fluid output from the valve in proportion to the input current. An electro-hydraulic conversion element to be controlled.

【0003】ここで、スプール弁に定位性を付与する手
段には、例えば、スプール片側端面に筒状弾性体を用い
たものがある(特開平2−57705号公報)。また、前記従
来技術(特開平2−57705号公報)の筒状弾性体に関する
製作方法は、実公昭50-762号公報に開示されている。
Here, as means for imparting localization to the spool valve, for example, there is a means using a cylindrical elastic body on one end surface of the spool (Japanese Patent Laid-Open No. 2-57705). In addition,
Related art (Japanese Patent Application Laid-Open No. 2-57705)
The manufacturing method is disclosed in Japanese Utility Model Publication No. 50-762.

【0004】[0004]

【発明が解決しようとする課題】従来技術のスプール片
側端面に筒状弾性体を用いたものでは、この弾性体の接
着すべき座巻のばね部分が皆無であり、軸方向中間部に
らせん状のばね要素部分を形成した金属体で構成してい
るため、ばねの支持すべき荷重が前記ばね要素の中心近
傍に付加される場合には、良好な線形ばね特性が得られ
る。
In the prior art in which a cylindrical elastic body is used on one end surface of a spool, there is no spring portion of the end turn to which the elastic body is to be bonded, and a spiral is formed at the axial middle portion. Of the spring element portion, the load to be supported by the spring is close to the center of the spring element.
When added beside, good linear spring characteristics are obtained.

【0005】一方、荷重を筒状弾性体の端面全体で支持
する場合には、筒状弾性体にばね要素部分を形成すると
ばねの始点と終点の位置の位相関係によっては筒状
弾性体の座巻部端面が筒状弾性体の軸中心線に対して傾
斜するという問題点があった。この結果、半径方向の不
平衡力が誘起され、この外力はスプールの軸線に対して
斜め方向に作用する。このため、スプールが筒状弾性体
によって半径方向に押されて、スリーブ内面に押し付け
られる。これにより、スプールとスリーブ間の摩擦力で
スプールのヒステリシス特性の不感帯成分が増大する。
この結果、操作入力信号に対するスプールの制御性及び
応答性が悪化するという問題点があった。
On the other hand, the load is supported on the entire end face of the cylindrical elastic body.
When the spring element portion is formed on the cylindrical elastic body, the end face of the end turn of the cylindrical elastic body may be positioned with respect to the axial center line of the cylindrical elastic body depending on the phase relation between the starting point and the end point of the spring when forming the spring element portion. There was a problem of tilting. As a result, a radial unbalance force is induced, and the external force acts obliquely with respect to the axis of the spool. For this reason, the spool is pushed in the radial direction by the tubular elastic body, and is pushed against the inner surface of the sleeve. As a result, the dead zone component of the hysteresis characteristic of the spool increases due to the frictional force between the spool and the sleeve.
As a result, there is a problem that the controllability and the response of the spool to the operation input signal are deteriorated.

【0006】本発明の目的は、ヒステリシス特性の向上
を図った高応答で高精度,高信頼性の直動形サーボ弁を
提供することにある。
An object of the present invention is to provide a high-response, high-accuracy, high-reliability direct-acting servo valve with improved hysteresis characteristics.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明の直動形サーボ弁は、スリーブ内に摺動自在
に配置されたスプールの一端にコイルが巻回されたコイ
ルボビンを固定し、前記コイルボビンを軸方向中間部に
らせん形状のばね要素部分が形成された筒状弾性体によ
って一方向に付勢し、前記コイル部分をマグネット、ヨ
ーク及びポールを含んでなる磁路中に配設し、前記コイ
ルに電流を流すことにより電磁力を発生させ、前記電磁
力により前記筒状弾性体の付勢力に抗して前記スリーブ
及び前記コイルボビンを前記スリーブ内で軸方向に摺動
させ得るようにしてなる直動形サーボ弁において、前記
筒状弾性体のばね要素部分の終点は、始点に対して90
°遅れた位置になるようにしたものである。
[MEANS FOR SOLVING THE PROBLEMS] To achieve the above object
The direct acting servo valve of the present invention is slidable inside the sleeve.
Coil with a coil wound around one end of the spool placed at
Fix the bobbin and place the coil bobbin in the middle part in the axial direction.
A cylindrical elastic body with a helical spring element
To urge the coil portion in one direction.
A coil and a pole, and
The electromagnetic force is generated by passing a current through the
The sleeve against the urging force of the cylindrical elastic body by force.
And the coil bobbin slides axially within the sleeve
In the direct acting servo valve, the
The end point of the spring element portion of the cylindrical elastic body is 90 ° with respect to the start point.
° The position is delayed.

【0008】[0008]

【作用】直動形サーボ弁を上記のように構成することに
より、コイルボビンに巻き回されたコイルに通電する
と、フレミングの左手の法則によって軸方向に発生する
電磁力によってコイルボビンが動き、コイルボビンと機
械的に一体結合されている一端固定の前記筒状弾性体の
ばね要素部分は、弾性変形(伸縮)して軸方向に変位す
る。この軸方向変位によりスプール弁の変位は、筒状弾
性体のばね力と電磁力とが釣り合った位置で与えられ
る。この場合、本発明では、ばね要素部分は軸方向変形
のばね要素の面外曲げ剛性を考慮して前述のように形成
する。すなわち、電磁力Fd の付加方向以外の変形量が
最小となるように、ばね要素部分の始点と終点の両者位
置の位相関係の適正化を図っている。これにより、ばね
要素部分を含む筒状弾性体の端面に電磁力Fd が作用し
た場合に、端面の傾きが最小となるように筒状弾性体が
圧縮又は引っ張り変位する。
When the coil wound around the coil bobbin is energized by configuring the direct acting servo valve as described above, the coil bobbin moves by the electromagnetic force generated in the axial direction by Fleming's left hand rule, and the coil bobbin and the machine The spring element portion of the cylindrical elastic body fixed at one end and fixed integrally is elastically deformed (expanded or contracted) and displaced in the axial direction. Due to this axial displacement, the displacement of the spool valve is given at a position where the spring force of the cylindrical elastic body and the electromagnetic force are balanced. In this case, in the present invention, the spring element portion is formed as described above in consideration of the out-of-plane bending stiffness of the spring element that is deformed in the axial direction. In other words, the phase relationship between the starting point and the ending point of the spring element portion is optimized so that the amount of deformation of the electromagnetic force Fd in directions other than the application direction is minimized. Thereby, when the electromagnetic force Fd acts on the end face of the tubular elastic body including the spring element portion, the tubular elastic body is displaced by compression or tension so that the inclination of the end face is minimized.

【0009】[0009]

【実施例】以下、添付図面に基づいて本発明の直動形サ
ーボ弁の実施例を説明する。図1には本発明の3方弁タ
イプの直動形サーボ弁の実施例の構造を示す断面図、図
2には直動形サーボ弁の筒状弾性体24の拡大断面図を
示す。図1において、サーボ弁は駆動力発生部としての
フォースモータ1と、フォースモータ1によって駆動さ
れ、流体の流れる方向,流量,圧力等を制御する弁部2
とで構成される。弁部2はスプール4,スリーブ6,弁
ボディ8を主要構成要素とし、スリーブ6に対するスプ
ール4の相対位置を高精度に制御することによって流路
10a〜10cに流れる流体の方向,流量あるいは圧力等
を制御する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a direct acting servo valve according to the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a sectional view showing the structure of a three-way valve type direct acting servo valve according to an embodiment of the present invention, and FIG. 2 is an enlarged sectional view of a cylindrical elastic body 24 of the direct acting servo valve. In FIG. 1, a servo valve is a force motor 1 as a driving force generating unit, and a valve unit 2 driven by the force motor 1 to control a flowing direction, a flow rate, and a pressure of a fluid.
It is composed of The valve portion 2 includes a spool 4, a sleeve 6, and a valve body 8 as main components, and controls the relative position of the spool 4 with respect to the sleeve 6 with high precision, so that the direction, flow rate or pressure of the fluid flowing through the flow paths 10a to 10c. Control.

【0010】一方、フォースモータ1はマグネット1
2,ヨーク14,ポール16,スプール4の端部に固着
されたコイルボビン18、およびコイルボビン18の周
囲に取り付けられたドライブコイル20を主要構成要素
とし、このドライブコイル20に通電する電流の方向,
大きさを制御してスプール4の軸方向に生じる力の方向
と大きさを制御する。すなわち、マグネット12,ヨー
ク14,ポール16で磁路を形成し、この磁路中に置か
れたドライブコイル20へ電流を流すとフレミングの左
手の法則に基づきスプール4およびコイルボビン18を
駆動させる電磁力Fd(Fd=Bli ここに、B:磁束
密度、l:コイルの有効長さ、i:電流の大きさ)を発
生する。このようにして、ドライブコイル20に発生し
た電磁力Fd はコイルボビン18を介して弁部2のスプ
ール4に伝達され、スプール4を直接駆動する。また、
ヨーク14を貫通し、かつコイルボビン18の反弁部側
端面22と接するように配設された筒状弾性体24は、
スプール4およびドライブコイル20の中立位置を保持
するとともに、ドライブコイル20に発生した電磁力F
d に比例してスプール4に変位を与える。ここで、図3
に示すように筒状弾性体24の軸方向中間部にらせん状
に形成するばね要素部分の始点位置と終点位置との位相
関係は、ばね要素部分の巻数から大別すると、逆相,9
0°遅れ,同相,90°進みの4ケースに分類される。
一方、図4は筒状弾性体24のコイルボビン18と接す
る端面30に電磁力Fd が作用した場合の端面30の変
形状況を初期状態と対比して示す。電磁力Fd によって
端面30は、傾斜状態を呈する。本発明では電磁力Fd
が作用した場合に、端面30の傾斜量が最小となる筒状
弾性体24の形状の適正化のため、ばね要素部分の始点
及び終点位置の位相関係が、筒状弾性体24の端面の傾
きに及ぼす影響について解析及び実験の両面から検討し
た。図5は筒状弾性体に形成するばね要素部分の始点及
び終点位置の位相と、端面傾きの相対比との関係を示
す。図5から分かるように、ばね要素部分の始点及び終
点位置間の位相と、端面の傾きとの間には特異な関係が
存在する。すなわち、位相が90°進んだときの傾き量
が極大値となる。これより、本発明では、軸方向変形時
のばね要素の面外曲げ剛性付与を考慮して、筒状弾性体
24の軸方向中間部に設けるばね要素部分の始点に対す
る終点位置の位相は、少なくとも90°進んだ位置を除
いたことを特徴としている。すなわち、電磁力Fd の付
加方向以外の変形量が最小となるようにばね要素部分の
始点と終点の両者位置の位相関係の適正化を図ってい
る。これにより、筒状弾性体の端面に電磁力Fd が作用
したときに、端面の傾きが最小となるように筒状弾性体
が圧縮又は引っ張り変位する。この結果、筒状弾性体2
4とコイルボビン18を介して、機械的に一体結合され
ているスプール弁に作用する半径方向の不平衡外力の低
減が図れる。これより、スプール弁のアライメントが向
上し、弁の制御安定性が図れる。このように、弁のヒス
テリシス特性を損なう要因の削減ができるため、ディザ
ー信号レベルの低減化も可能となる。ディザーとはスプ
ール弁などで、摩擦及び固着現象などの影響を減少させ
てその特性を改善するために与える比較的高い周波数の
振動。また、スプール弁の信号レベルに重畳させるディ
ザー信号レベルを小さくすると、弁の制御オリフィス部
からの内部漏れ流量の低減並びに高周波数のディザー信
号によるスプール・スリーブ摺動面の摩耗も低減でき
る。
On the other hand, the force motor 1 is a magnet 1
2, a yoke 14, a pole 16, a coil bobbin 18 fixed to the end of the spool 4, and a drive coil 20 attached around the coil bobbin 18 as main components.
By controlling the magnitude, the direction and magnitude of the force generated in the axial direction of the spool 4 are controlled. That is, a magnetic path is formed by the magnet 12, the yoke 14, and the pole 16, and when an electric current is applied to the drive coil 20 placed in the magnetic path, the electromagnetic force for driving the spool 4 and the coil bobbin 18 based on Fleming's left-hand rule. F d (F d = B li where B: magnetic flux density, l: effective length of coil, i: magnitude of current). In this manner, the electromagnetic force F d generated in the drive coil 20 is transmitted to the spool 4 of the valve portion 2 via a coil bobbin 18, and drives the spool 4 directly. Also,
The cylindrical elastic body 24 that penetrates the yoke 14 and is disposed so as to be in contact with the end surface 22 of the coil bobbin 18 opposite to the valve portion,
While maintaining the neutral position of the spool 4 and the drive coil 20, the electromagnetic force F generated in the drive coil 20
The spool 4 is displaced in proportion to d . Here, FIG.
As shown in (1), the phase relationship between the starting point position and the ending point position of the spring element portion spirally formed at the axially intermediate portion of the tubular elastic body 24 can be roughly classified into 9 phases, based on the number of turns of the spring element portion.
It is classified into four cases: 0 ° delay, in-phase, and 90 ° advance.
On the other hand, FIG. 4 shows a state of deformation of the end surface 30 when the electromagnetic force Fd acts on the end surface 30 of the cylindrical elastic body 24 which is in contact with the coil bobbin 18 in comparison with the initial state. The end face 30 by the electromagnetic force F d exhibits a tilt state. In the present invention, the electromagnetic force F d
In order to optimize the shape of the cylindrical elastic body 24 so that the amount of inclination of the end face 30 is minimized, the phase relationship between the start point and the end point of the spring element portion is determined by the inclination of the end face of the cylindrical elastic body 24. The effect on the water content was examined from both analytical and experimental aspects. FIG. 5 shows the relationship between the phase at the start point and the end point of the spring element portion formed on the cylindrical elastic body and the relative ratio of the end face inclination. As can be seen from FIG. 5, there is a peculiar relationship between the phase between the start and end positions of the spring element portion and the inclination of the end face. That is, the amount of inclination when the phase advances by 90 ° becomes a maximum value. Accordingly, in the present invention, in consideration of imparting out-of-plane bending rigidity of the spring element at the time of axial deformation, the phase of the end point position with respect to the start point of the spring element portion provided at the axially intermediate portion of the tubular elastic body 24 is at least It is characterized by excluding the position advanced by 90 °. That is, the phase relationship between the start point and the end point of the spring element portion is optimized so that the amount of deformation of the electromagnetic force Fd in directions other than the application direction is minimized. Accordingly, when the electromagnetic force Fd acts on the end face of the cylindrical elastic body, the cylindrical elastic body is compressed or pulled so as to minimize the inclination of the end face. As a result, the cylindrical elastic body 2
The unbalanced external force in the radial direction acting on the spool valve that is mechanically integrated with the spool valve 4 via the coil bobbin 18 can be reduced. Thereby, the alignment of the spool valve is improved, and the control stability of the valve can be improved. As described above, the factors that impair the hysteresis characteristics of the valve can be reduced, so that the dither signal level can be reduced. Dither is a spool valve, etc., which is a relatively high frequency vibration applied to reduce the effects of friction and sticking phenomena and improve its characteristics. Further, when the dither signal level superimposed on the signal level of the spool valve is reduced, the internal leakage flow rate from the control orifice of the valve can be reduced, and the wear of the spool / sleeve sliding surface due to the high frequency dither signal can be reduced.

【0011】また、本発明の目的を達成するために、ら
せん形状のばね要素部分の始点と終点の位置は同相に構
成してもよい。この場合でも実施例の場合と同様な作用
及び効果が期待できる。
In order to achieve the object of the present invention, the positions of the start point and the end point of the helical spring element portion may be configured in the same phase. In this case, the same operation and effect as in the embodiment can be expected.

【0012】図6は本発明に係る筒状弾性体24で2段
形サーボ弁のパイロット弁を構成した場合である。2段
形サーボ弁の応答性とヒステリシス特性の向上を図るた
めに、本発明の筒状弾性体の軸方向中間部に設けるばね
要素部分の始点と終点の位相関係を適正化することは、
直動形サーボ弁の場合と同様有効な手段である。
FIG. 6 shows a case where a pilot valve of a two-stage servo valve is constituted by the cylindrical elastic body 24 according to the present invention. In order to improve the responsiveness and hysteresis characteristics of the two-stage servo valve, it is necessary to optimize the phase relationship between the starting point and the ending point of the spring element provided at the axially intermediate portion of the cylindrical elastic body of the present invention.
This is an effective means as in the case of the direct acting servo valve.

【0013】図7は本発明の筒状弾性体の構造を電気フ
ィードバック方式の直動形サーボ弁に適用した場合を示
す。すなわち、コイルボビンの反弁体側端面に比較的弱
いばね定数の筒状弾性体52を配設し、スプール4の端
面には変位検出器50を設け、スプール4の位置を電気
的に検出し、この検出値をフィードバックゲインKxで
増幅するとともに、入力指令値Xcと突き合わせること
により生じる偏差信号で直動形サーボ弁のスプール4の
動きを制御するようにした。この場合、サーボ弁の応答
性は電気的にフィードバック補償しているため、高応答
が期待できるのは自明である。また、図7に示した本発
明による実施例は、以下に示すように変形することも可
能である。すなわち、スプールの位置を変位検出器によ
り電気的に検出し、かつサーボ弁のアンプにフィードバ
ックすることにより閉ループ位置サーボ系を構成させ、
しかも出力を直動形サーボ弁駆動用アンプ内で速度信号
に変換し、電力増幅器の入力側に負帰還することにより
電気的にダンピングを付加する方式の直動形サーボ弁に
おいて、コイルボビンの反弁体側端面には軸方向中間部
にらせん状に形成した金属体の筒状弾性体を配設するよ
うに構成したことを特徴とする。このような構成にする
ことで、ヒステリシス特性の向上が図れ、サーボ弁の高
応答性と高制御性を実現できるとともに、電気フィード
バックループがオフとなった場合でも、筒状弾性体のば
ね定数とスプールなどの可動部質量とで決定される応答
性は確保できる。この結果、本サーボ弁による制御対象
が暴走するなどの致命的なトラブルを未然に防止でき
る。
FIG. 7 shows a case where the structure of the cylindrical elastic body of the present invention is applied to a direct acting servo valve of an electric feedback system. That is, a cylindrical elastic body 52 having a relatively weak spring constant is provided on the end face of the coil bobbin opposite the valve body, a displacement detector 50 is provided on the end face of the spool 4, and the position of the spool 4 is electrically detected. The detected value is amplified by the feedback gain Kx, and the movement of the spool 4 of the direct acting servo valve is controlled by a deviation signal generated by matching the detected value with the input command value Xc. In this case, it is obvious that a high response can be expected because the response of the servo valve is electrically compensated by feedback. Further, the embodiment according to the present invention shown in FIG. 7 can be modified as shown below. In other words, the position of the spool is electrically detected by a displacement detector, and a closed-loop position servo system is configured by feeding back to a servo valve amplifier,
In addition, in the direct-acting servo valve, the output is converted into a speed signal in the direct-acting servo valve drive amplifier and negatively fed back to the input side of the power amplifier to electrically add damping. It is characterized in that a tubular elastic body of a metal body formed in a spiral shape at an axially intermediate portion is disposed on the body-side end face. By adopting such a configuration, the hysteresis characteristics can be improved, high responsiveness and high controllability of the servo valve can be realized, and even when the electric feedback loop is turned off, the spring constant of the cylindrical elastic body can be improved. Responsiveness determined by the mass of the movable part such as the spool can be ensured. As a result, a fatal trouble such as a runaway of the control target by the servo valve can be prevented.

【0014】なお、本実施例では3方弁の場合について
の実施例について述べたが、本発明はこれに限定される
ことはなく4方弁の場合についても同様に適用でき、3
方弁の場合と同様な効果が期待できる。
Although the present embodiment has been described with reference to the case of a three-way valve, the present invention is not limited to this and can be similarly applied to the case of a four-way valve.
The same effect as in the case of the valve can be expected.

【0015】図8は本発明の直動形サーボ弁を圧延機用
油圧圧下装置に使用した例である。図に示すように油圧
ポンプ64より吐出される作動油は、本発明の直動形サ
ーボ弁69により圧下ジャッキ61に供給されたり、ま
たは圧下ジャッキ61からタンク63に戻されたりする
ように方向および流量,圧力が制御される。このとき、
圧下ジャッキ61には圧下ラムの高さを検出するセンサ
62が内蔵され、このセンサ62の出力信号を制御装置
70に取り込むことにより、サーボ弁69への入力電流
を制御し圧下ジャッキ61のストロークを制御すること
によって圧延材80の板厚を制御する。本発明の直動形
サーボ弁を使用することにより、直接、圧下ジャッキの
位置を高応答でしかも高精度に制御することが可能とな
る。
FIG. 8 shows an example in which the direct acting servo valve of the present invention is used in a hydraulic pressure reducing device for a rolling mill. As shown in the figure, the hydraulic oil discharged from the hydraulic pump 64 is supplied to the screw-down jack 61 by the direct-acting servo valve 69 of the present invention, or is returned from the screw-down jack 61 to the tank 63 in the direction and direction. Flow rate and pressure are controlled. At this time,
A sensor 62 for detecting the height of the ram is built in the screw-down jack 61. By taking an output signal of the sensor 62 into the control device 70, the input current to the servo valve 69 is controlled to reduce the stroke of the screw-down jack 61. By controlling, the thickness of the rolled material 80 is controlled. By using the direct acting servo valve of the present invention, it is possible to directly control the position of the screw-down jack with high response and high accuracy.

【0016】[0016]

【発明の効果】本発明によれば、軸方向中間部に形成し
たばね要素部分の終点を始点に対して90°遅れた位置
になるようにした筒状弾性体でスプールを付勢するよう
にしたことにより、筒状弾性体の軸方向と直角方向の変
位量を低減することができる。これにより、スプール弁
に作用する半径方向の不平衡外力の低減が図れ、スプー
ル弁のヒステリシス特性を向上させることができるた
め、スプール弁の円滑な動きを実現できる。
According to the present invention, it is formed at an intermediate portion in the axial direction.
90 ° behind the end point of the spring element part
So that the spool is urged by the cylindrical elastic body
The deformation in the direction perpendicular to the axial direction of the cylindrical elastic body
Order amount can be reduced. This allows the spool valve
To reduce the radial unbalanced external force acting on the
The hysteresis characteristics of the valve can be improved.
Therefore, smooth movement of the spool valve can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る3方弁タイプの直動形サーボ弁の
実施例の構造を示す断面図。
FIG. 1 is a sectional view showing the structure of an embodiment of a three-way valve type direct acting servo valve according to the present invention.

【図2】本発明の直動形サーボ弁の筒状弾性体の断面
図。
FIG. 2 is a sectional view of a cylindrical elastic body of the direct acting servo valve of the present invention.

【図3】筒状弾性体の軸方向中間部にらせん状に形成す
るばね要素部分の始点位置と、終点位置との位相関係の
説明図。
FIG. 3 is an explanatory diagram of a phase relationship between a start point position and an end point position of a spring element portion spirally formed at an axially intermediate portion of a cylindrical elastic body.

【図4】電磁力が作用したときの筒状弾性体の説明図。FIG. 4 is an explanatory view of a cylindrical elastic body when an electromagnetic force is applied.

【図5】筒状弾性体に形成するばね要素部分の始点と終
点位置に関する位相と、端面の傾きの相対比との関係の
説明図。
FIG. 5 is an explanatory diagram of a relationship between a phase regarding a start point and an end point position of a spring element portion formed in a cylindrical elastic body and a relative ratio of inclination of an end face.

【図6】本発明を2段形サーボ弁に適用した説明図。FIG. 6 is an explanatory view in which the present invention is applied to a two-stage servo valve.

【図7】本発明を電気フィードバック方式の直動形サー
ボ弁に適用した説明図。
FIG. 7 is an explanatory diagram in which the present invention is applied to a direct acting servo valve of an electric feedback system.

【図8】本発明を圧延機油圧圧下装置に適用した説明
図。
FIG. 8 is an explanatory view in which the present invention is applied to a rolling mill hydraulic pressure reduction device.

【符号の説明】[Explanation of symbols]

4…スプール、6…スリーブ、8…ボディ、12…マグ
ネット、20…ドライブコイル、24…筒状弾性体。
4 ... Spool, 6 ... Sleeve, 8 ... Body, 12 ... Magnet, 20 ... Drive coil, 24 ... Cylindrical elastic body.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−57705(JP,A) 実公 昭50−762(JP,Y1) (58)調査した分野(Int.Cl.6,DB名) F15B 13/044 F16F 1/06──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-2-57705 (JP, A) Jiko 50-762 (JP, Y1) (58) Fields investigated (Int. Cl. 6 , DB name) F15B 13/044 F16F 1/06

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】スリーブ内に摺動自在に配置されたスプー
ルの一端にコイルが巻回されたコイルボビンを固定し、
前記コイルボビンを軸方向中間部にらせん形状のばね要
素部分が形成された筒状弾性体によって一方向に付勢
し、前記コイル部分をマグネット、ヨーク及びポールを
含んでなる磁路中に配設し、前記コイルに電流を流すこ
とにより電磁力を発生させ、前記電磁力により前記筒状
弾性体の付勢力に抗して前記スリーブ及び前記コイルボ
ビンを前記スリーブ内で軸方向に摺動させ得るようにし
てなる直動形サーボ弁において、前記筒状弾性体のばね
要素部分の終点は、始点に対して90°遅れた位置にな
るようにしたことを特徴とする直動形サーボ弁。
1. A coil bobbin around which a coil is wound is fixed to one end of a spool slidably disposed in a sleeve,
The coil bobbin is urged in one direction by a cylindrical elastic body having a helical spring element portion formed at an axial middle portion, and the coil portion is disposed in a magnetic path including a magnet, a yoke, and a pole. An electromagnetic force is generated by applying a current to the coil, and the sleeve and the coil bobbin can slide in the sleeve in the axial direction against the urging force of the cylindrical elastic body by the electromagnetic force. Wherein the end point of the spring element portion of the cylindrical elastic body is at a position delayed by 90 ° from the start point.
JP4085266A 1992-04-07 1992-04-07 Direct acting servo valve Expired - Fee Related JP2768127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4085266A JP2768127B2 (en) 1992-04-07 1992-04-07 Direct acting servo valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4085266A JP2768127B2 (en) 1992-04-07 1992-04-07 Direct acting servo valve

Publications (2)

Publication Number Publication Date
JPH05288207A JPH05288207A (en) 1993-11-02
JP2768127B2 true JP2768127B2 (en) 1998-06-25

Family

ID=13853778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4085266A Expired - Fee Related JP2768127B2 (en) 1992-04-07 1992-04-07 Direct acting servo valve

Country Status (1)

Country Link
JP (1) JP2768127B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2405139B1 (en) * 2010-07-09 2017-08-16 Grundfos Management A/S Metering pump aggregate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50762U (en) * 1973-05-01 1975-01-07
JP2564619B2 (en) * 1988-08-19 1996-12-18 株式会社日立製作所 Direct acting servo valve and method for processing cylindrical elastic body used in the servo valve

Also Published As

Publication number Publication date
JPH05288207A (en) 1993-11-02

Similar Documents

Publication Publication Date Title
US7299112B2 (en) Electrically controlled pressure relief valve and system and method for controlling same
US5207239A (en) Variable gain servo assist
US4267897A (en) Electro-mechanical converters and control apparatus for power steering units utilizing the same
WO2003050441A1 (en) Solenoid-operated proportional flow control valve
US9939081B2 (en) Valve apparatus
JP4463527B2 (en) Proportional pressure regulating valve for regulation of hydraulic circuit pressure level
JP2768127B2 (en) Direct acting servo valve
JPS59113303A (en) Direct-acting type servo valve
JP3089626B2 (en) Solenoid control valve
JP2906318B2 (en) Proportional electromagnetic control valve device
JP2857726B2 (en) Direct acting servo valve
JPH10176701A (en) Direct acting type servo valve
JP2630298B2 (en) Direct acting servo valve and rolling mill
JP2657361B2 (en) Energization control method for linear solenoid
JP2564619B2 (en) Direct acting servo valve and method for processing cylindrical elastic body used in the servo valve
JP4123099B2 (en) Material testing machine
JPH0632535Y2 (en) Solenoid proportional pressure valve
JP3267662B2 (en) Direct drive servo valve
JPS6244122B2 (en)
KR20240096391A (en) Control method of a welding device, an elastic guiding system, a welding device positioning arrangement, and a welding device
JPS6118047B2 (en)
JPS5814954B2 (en) Direct-acting servo valve
JP2003322272A (en) Pressure control valve assembly and method for operating pressure control valve
JPS6145081B2 (en)
JPH1061811A (en) Electromagnetic proportional valve for industrial use

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees