JP2767634B2 - Tensile type dynamic viscoelasticity measuring device - Google Patents

Tensile type dynamic viscoelasticity measuring device

Info

Publication number
JP2767634B2
JP2767634B2 JP30379689A JP30379689A JP2767634B2 JP 2767634 B2 JP2767634 B2 JP 2767634B2 JP 30379689 A JP30379689 A JP 30379689A JP 30379689 A JP30379689 A JP 30379689A JP 2767634 B2 JP2767634 B2 JP 2767634B2
Authority
JP
Japan
Prior art keywords
sample
moving
ratio
output
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30379689A
Other languages
Japanese (ja)
Other versions
JPH03165237A (en
Inventor
信隆 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP30379689A priority Critical patent/JP2767634B2/en
Publication of JPH03165237A publication Critical patent/JPH03165237A/en
Application granted granted Critical
Publication of JP2767634B2 publication Critical patent/JP2767634B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、材料の粘弾性を引張り方式で時間,温度,
周波数の関数として測定する引張り式動的粘弾性測定装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for measuring the time, temperature,
The present invention relates to a tension type dynamic viscoelasticity measuring device which measures as a function of frequency.

〔発明の概要〕[Summary of the Invention]

本発明は引張り方式で動的粘弾性を測定する際、試料
の熱膨張や軟化に伴う張力の変化を速やかに除去し、単
に交流力を上回る最適な張力を試料に加える測定を目的
とし、試料の長さ変化を検出する歪検出器と、試料に力
を加える電磁力発生器と、電磁力発生器を移動する移動
機構と、前記移動機構を移動した際の移動量と前記歪検
出器の出力変化量の間の比を測定する移動比測定回路と
を備え、前記移動比測定回路の出力を利用して移動機構
の移動量と張力、交流力間の出力比を決める引張り式動
的粘弾性測定装置。
The present invention aims at measuring dynamic viscoelasticity by a tension method by quickly removing a change in tension due to thermal expansion and softening of a sample, and simply applying an optimum tension to the sample exceeding the AC force. A strain detector that detects a change in length, an electromagnetic force generator that applies a force to the sample, a moving mechanism that moves the electromagnetic force generator, a moving amount when the moving mechanism is moved, and the strain detector. A moving ratio measuring circuit for measuring a ratio between the output change amounts, and a tension type dynamic viscosity determining an output ratio between the moving amount and the tension of the moving mechanism and the output between the AC force using the output of the moving ratio measuring circuit. Elasticity measurement device.

〔従来の技術〕[Conventional technology]

従来、この種の装置においては、試料の熱膨張や軟化
に伴う張力の変化を除去するために、電磁力発生器を移
動する移動機構を備え、歪検出器の歪出力の量だけ移動
機構を移動し、張力と交流力の関係については、常に張
力が交流力振幅を上回るように電磁力を発生させる構成
になっていた。
Conventionally, this type of apparatus has a moving mechanism for moving the electromagnetic force generator to remove the change in tension due to thermal expansion and softening of the sample, and a moving mechanism for the amount of strain output of the strain detector. As for the relationship between the tension and the AC force, the electromagnetic force is generated such that the tension always exceeds the amplitude of the AC force.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上記従来技術においては、電磁力発生器で発生した力
を試料に伝える検出棒を支持する支持機構の弾性が試料
の弾性を越えるような場合、移動機構の移動が殆ど歪検
出器の出力に反映されず、移動機構の移動回数が著しく
増加し、張力変化の除去が困難になるという問題があ
る。また、張力の変化をうまく除去できても、支持機構
の弾性の影響により、交流力の大部分は支持機構の変形
のために費やされ、試料に加わる交流力の成分は小さな
ものであるため、張力は交流力振幅を大幅に上回ってし
まい、この結果、試料を徒らに引伸ばして測定不能にな
るという問題もある。
In the above prior art, when the elasticity of the support mechanism that supports the detection rod that transmits the force generated by the electromagnetic force generator to the sample exceeds the elasticity of the sample, the movement of the moving mechanism is almost reflected on the output of the strain detector. However, there is a problem that the number of movements of the moving mechanism is significantly increased, and it becomes difficult to remove a change in tension. Even if the change in tension can be removed successfully, most of the AC force is spent for deformation of the support mechanism due to the elasticity of the support mechanism, and the component of the AC force applied to the sample is small. However, the tension greatly exceeds the amplitude of the AC force, and as a result, there is also a problem that the sample is unnecessarily stretched and cannot be measured.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は、上記の問題を速やかに解決するために開発
されたものであり、試料の一端を固定する試料ホルダー
と、試料の他端を把持する試料チャックと、試料チャッ
クに連結された検出棒と、検出棒の位置変化により試料
の歪を検出する歪検出器と、前記検出棒の一端に設けら
れ前記検出棒および前記試料チャックを介して試料に力
を伝達する電磁力発生器と、前記電磁力発生器を移動す
る移動機構と、前記移動機構の移動に伴う前記歪検出器
の出力信号の変化の比を測定する移動比測定回路と、前
記電磁力発生器に張力を発生させる直流発生回路と、前
記電磁力発生器に正弦波力を発生させる正弦波発生器と
から構成されている。
The present invention has been developed in order to solve the above-described problem quickly, and includes a sample holder for fixing one end of a sample, a sample chuck for holding the other end of the sample, and a detection rod connected to the sample chuck. A strain detector that detects strain of the sample by a change in the position of the detection rod, an electromagnetic force generator provided at one end of the detection rod and transmitting a force to the sample via the detection rod and the sample chuck, A moving mechanism for moving the electromagnetic force generator, a moving ratio measuring circuit for measuring a ratio of a change in an output signal of the strain detector accompanying the movement of the moving mechanism, and a DC generator for generating tension in the electromagnetic force generator And a sine wave generator for generating a sine wave force in the electromagnetic force generator.

〔作用〕[Action]

上記構成の作用は、まず、ある張力の下で試料に熱膨
張や硬化に伴う長さの変化が生じた場合、歪検出器で試
料長の変化が検出される。このとき、試料に加わる実効
的な張力の変化が生じるため、前記移動機構を前記歪検
出器の出力に基づいて動作させる。その際の移動機構に
よる移動量と歪検出器の出力変化量の比は、試料の弾性
と検出棒支持のために生じる支持機構の弾性の間の比に
関係する。このため、初回の移動で前記移動比測定回路
により移動比を求め、次回は前記歪検出回路の歪出力に
初回の移動比を乗じた量だけ移動機構を移動することに
より、直ちに歪検出器の出力はゼロに収束し、張力変化
が速やかに除去される。また、交流力のうち試料の変形
に費やされる成分と検出棒支持機構の変形に費やされる
成分の間の比は、同様に前記移動比から決まり、正確に
は前記交流力のうち試料の変形に費やされる成分は、前
記交流力を前記移動比で除したものとなる。従って、測
定のために試料に加えるべき張力は(交流力)/(移動
比)より大きければ常に試料には張力が加わり、この条
件で正弦波発生器と直流発生回路の出力を調節すること
により、過大な張力を試料に加えることが防止される。
The operation of the above configuration is as follows. First, when a sample undergoes a change in length due to thermal expansion or hardening under a certain tension, a change in the sample length is detected by a strain detector. At this time, since the effective tension applied to the sample changes, the moving mechanism is operated based on the output of the strain detector. The ratio between the amount of movement by the moving mechanism and the amount of change in the output of the strain detector at that time is related to the ratio between the elasticity of the sample and the elasticity of the support mechanism generated for supporting the detection rod. For this reason, the movement ratio is obtained by the movement ratio measurement circuit in the first movement, and the movement mechanism is moved by the amount obtained by multiplying the distortion output of the distortion detection circuit by the first movement ratio in the next movement, so that the distortion detector is immediately moved. The output converges to zero and the change in tension is quickly eliminated. In addition, the ratio between the component of the AC force that is used for deformation of the sample and the component that is used for deformation of the detection rod support mechanism is similarly determined by the moving ratio. The component consumed is the AC force divided by the travel ratio. Therefore, if the tension to be applied to the sample for measurement is greater than (AC force) / (moving ratio), the sample is always tensioned, and under these conditions, the output of the sine wave generator and the DC generation circuit can be adjusted. , Preventing excessive tension from being applied to the sample.

〔実施例〕〔Example〕

以下、本発明を一実施例に示した図面に基づき詳細に
説明する。
Hereinafter, the present invention will be described in detail with reference to the drawings shown in one embodiment.

第1図中1は試料であり、試料1の一端は試料ホルダ
ー2に固定的に把持されている。試料1の他端は試料チ
ャック3により把持されており、試料チャック3は検出
棒4の一端に連結されている。検出棒4は2枚の板バネ
5により機構部保持体14に弾性的に固定され、かつ検出
棒4の運動は直線(一次元)方向に規制されている。ま
た、検出棒4の一部にはコア6が固定され、コア6の周
囲には差動トランス7が前記機構部保持体14に固定され
る形で保持され、コア6の相対変位を試料の歪として検
出する歪検出器を構成している。
In FIG. 1, reference numeral 1 denotes a sample, and one end of the sample 1 is fixedly held by a sample holder 2. The other end of the sample 1 is held by a sample chuck 3, and the sample chuck 3 is connected to one end of a detection rod 4. The detection rod 4 is elastically fixed to the mechanism holder 14 by two leaf springs 5, and the movement of the detection rod 4 is regulated in a linear (one-dimensional) direction. A core 6 is fixed to a part of the detection rod 4, and a differential transformer 7 is held around the core 6 so as to be fixed to the mechanism holder 14. The relative displacement of the core 6 This constitutes a distortion detector for detecting distortion.

検出棒4の他端にはコイル8が固定され、コイル8を
取り巻く形で前記機構部保持体14に固定されたマグネッ
ト9が配置され、コイル8とマグネット9とは電磁力発
生器を構成している。
A coil 8 is fixed to the other end of the detection rod 4, and a magnet 9 fixed to the mechanism holding member 14 is arranged around the coil 8, and the coil 8 and the magnet 9 constitute an electromagnetic force generator. ing.

一方、前記試料1の周囲には、試料1の温度を設定す
る目的で炉17が配設されている。
On the other hand, a furnace 17 is provided around the sample 1 for the purpose of setting the temperature of the sample 1.

図中の正弦波発生器20の出力(正弦波)は、増幅器21
により振幅を調節され加算器22に送られ、直流発生回路
23の出力と加算器22で加算され、加算器22の出力は前記
コイル8に送られ、前記マグネット9との共働により直
流重畳された正弦波力を発生する。発生した力は前記検
出棒4および前記試料チャック3を介して前記試料1に
歪を生じさせ、試料1に生じた歪は検出棒4を介して前
記コア6に伝えられ、前記差動トランス7により検出さ
れ、差動トランス7で検出された信号は歪測定回路24に
送られる。また、前記増幅器21の出力および前記歪測定
回路24の出力は位相差測定回路25に送られ、位相差信号
として出力される。
The output (sine wave) of the sine wave generator 20 in FIG.
The amplitude is adjusted by
The output of the adder 22 is added to the output of the adder 22, and the output of the adder 22 is sent to the coil 8 to generate a DC-superimposed sine wave force in cooperation with the magnet 9. The generated force causes distortion in the sample 1 via the detection rod 4 and the sample chuck 3, and the distortion generated in the sample 1 is transmitted to the core 6 via the detection rod 4, and the differential transformer 7 And the signal detected by the differential transformer 7 is sent to the distortion measuring circuit 24. Further, the output of the amplifier 21 and the output of the distortion measuring circuit 24 are sent to a phase difference measuring circuit 25 and output as a phase difference signal.

前記増幅器21の出力は力振幅測定回路27に送られ、前
記歪測定回路24の出力は歪振幅測定回路26に送られ、力
および歪の振幅がそれぞれ測定される。力振幅測定回路
27および歪振幅測定回路26の出力は振幅比測定回路28に
送られ、振幅比信号として出力される。
The output of the amplifier 21 is sent to a force amplitude measuring circuit 27, and the output of the strain measuring circuit 24 is sent to a strain amplitude measuring circuit 26, where the amplitudes of the force and the strain are measured. Force amplitude measurement circuit
The outputs of 27 and the distortion amplitude measurement circuit 26 are sent to an amplitude ratio measurement circuit 28, and output as an amplitude ratio signal.

一方、前記機構部保持体14は軸受13を介して、ボール
ネジ12と案内棒11に係合しており、ステッピングモータ
15の回転に伴う駆動ベルト16の運動により駆動されるボ
ールネジ12の回転に従い左右に移動する。前記案内棒1
1、ボールネジ12、軸受13、ステッピングモータ15、駆
動ベルト16は全体として、前記機構部保持体14の移動機
構を形成している。前記ステッピングモータ15は、ステ
ッピングモータ駆動回路18の出力に基づいて移動を行
い、ステッピングモータ駆動回路18および前記歪測定回
路24の出力は移動比測定回路19に送られ、歪測定回路24
および移動比測定回路19の出力は乗算器29に送られ、乗
算器29の出力は前記ステッピングモータ駆動回路18に送
られる。
On the other hand, the mechanism holding member 14 is engaged with the ball screw 12 and the guide rod 11 via the bearing 13, and the stepping motor
It moves left and right according to the rotation of the ball screw 12 driven by the movement of the drive belt 16 accompanying the rotation of 15. Guide rod 1
1, the ball screw 12, the bearing 13, the stepping motor 15, and the drive belt 16 form a moving mechanism of the mechanism holder 14 as a whole. The stepping motor 15 moves based on the output of the stepping motor driving circuit 18, and the outputs of the stepping motor driving circuit 18 and the distortion measuring circuit 24 are sent to the moving ratio measuring circuit 19, and the distortion measuring circuit 24
The output of the moving ratio measurement circuit 19 is sent to a multiplier 29, and the output of the multiplier 29 is sent to the stepping motor drive circuit 18.

本実施例の動作について説明すると、前記コイル8お
よびマグネット9で発生された直流力が印加された状態
で、前記試料1に熱膨張や硬化に伴う長さ変化が生じる
と、前記歪測定回路24で歪が測定され、これをゼロに復
帰するよう前記ステッピングモータ駆動回路18により前
記ステッピングモータ15を動作させる。このときのステ
ッピングモータ駆動回路18の移動量と前記歪測定回路24
の出力変化の比は前記移動比測定回路19で測定される。
The operation of the present embodiment will be described. When a change in length due to thermal expansion or hardening occurs in the sample 1 in a state where the DC force generated by the coil 8 and the magnet 9 is applied, the strain measurement circuit 24 Then, the stepping motor 15 is operated by the stepping motor driving circuit 18 so as to return the distortion to zero. At this time, the movement amount of the stepping motor drive circuit 18 and the distortion measurement circuit 24
The output change ratio is measured by the moving ratio measuring circuit 19.

前記試料ホルダー2、試料1,試料チャック3、プロー
ブ4、板バネ5、コア6と差動トランス7で形成される
歪検出器、コイル8とマグネット9で形成される力発生
器、前記案内棒11とボールネジ12と軸受13とステッピン
グモータ15と駆動ベルト16で形成される機構部保持体14
の移動機構、筐体ベース10から構成される測定機構は第
2図の力学モデルで表される。
Sample holder 2, sample 1, sample chuck 3, probe 4, leaf spring 5, strain detector formed by core 6 and differential transformer 7, force generator formed by coil 8 and magnet 9, guide rod 11, a ball screw 12, a bearing 13, a stepping motor 15, and a mechanism holder 14 formed by a drive belt 16
The moving mechanism and the measuring mechanism composed of the housing base 10 are represented by a dynamic model in FIG.

第2図の力学系では次式が成り立つ。 In the dynamical system shown in FIG. 2, the following equation holds.

F=−kx−K(x−X2) =−k(X1+X2)−KX1 …… (ただし、F=0のとき、x=X1=X2=0) 次に張力Fを加えた状態で歪検出器の出力X1=x−X2
をゼロにするために、機構部保持***置をΔX2だけ移動
し、その時、歪検出器の検出信号がΔX1だけ変化したと
すると、次式が成り立つ。
F = −kx−K (x−X 2 ) = − k (X 1 + X 2 ) −KX 1 (However, when F = 0, x = X 1 = X 2 = 0) In the added state, the output of the distortion detector X 1 = x−X 2
If the position of the mechanism holder is moved by ΔX 2 in order to reduce the value of Δ to zero, and the detection signal of the strain detector changes by ΔX 1 at that time, the following equation holds.

F=−k(X2+ΔX2+X1+ΔX1)− K(X1+ΔX1) …… ,式より すなわち、移動比(|ΔX2/ΔX1|)は、検出棒支持系
と試料の弾性比に1を加えたものである。
F = −k (X 2 + ΔX 2 + X 1 + ΔX 1 ) − K (X 1 + ΔX 1 ) That is, the movement ratio (| ΔX 2 / ΔX 1 |) is obtained by adding 1 to the elastic ratio between the detection rod support system and the sample.

第1図の実施例からも明らかであるが、試料が充分硬
ければ(k≫K)、式より移動比は1となり、試料が
軟らかくなると(k<K)、移動比は0に近づき、前記
ステッピングモータ駆動回路18による移動量を大きく増
加する必要がある。本実施例においては、移動量は前記
歪測定回路24で出力される歪と移動比との積である前記
乗算器29の出力に基づいて決められるため、2回目の移
動で歪出力がほぼゼロとなり、所望の張力が維持され
る。なお、このときX1=x−X2=0となり、張力Fはす
べて試料に付与される。
As is clear from the embodiment of FIG. 1, if the sample is sufficiently hard (k≫K), the transfer ratio becomes 1 according to the formula, and if the sample becomes softer (k <K), the transfer ratio approaches 0, It is necessary to greatly increase the amount of movement by the stepping motor drive circuit 18. In the present embodiment, the amount of movement is determined based on the output of the multiplier 29, which is the product of the distortion and the moving ratio output from the distortion measuring circuit 24, so that the distortion output becomes almost zero in the second movement. And the desired tension is maintained. At this time, X 1 = x−X 2 = 0, and all the tension F is applied to the sample.

次に、張力Fを加え、X2=x−X2=0の状態でX2を固
定し、交流力を印加する。このときの交流力振幅をF0
歪振幅をx0(X1の振幅)とすると、交流力振幅F0のうち
試料の変形に費やされる成分(kx0)は次のように求め
られる。
Then, the tension F is added, the X 2 is fixed in a state of X 2 = x-X 2 = 0, to apply an AC power. The AC force amplitude at this time is F 0 ,
Assuming that the strain amplitude is x 0 (the amplitude of X 1 ), the component (kx 0 ) of the alternating-current force amplitude F 0 consumed for deforming the sample is obtained as follows.

F0=Kx0+kx0=(K+k)x0 だから、 となり、,式より、実効交流力は与えた交流力を
移動比で除したものであることがわかる。
Since F 0 = Kx 0 + kx 0 = (K + k) x 0 , From the equation, it can be seen that the effective AC force is obtained by dividing the applied AC force by the moving ratio.

試料に加える張力は実効的な交流力を上回ってさえい
れば、試料にたるみを生じないから、前記直流回路23の
出力を、交流力振幅および移動比に基づいて式のよう
に低減することにより、より低弾性試料の測定が可能に
なる。
As long as the tension applied to the sample does not exceed the effective AC force, the sample does not sag, so the output of the DC circuit 23 is reduced based on the AC force amplitude and the moving ratio as shown in the following equation. Thus, the measurement of a lower elasticity sample becomes possible.

〔発明の効果〕 以上のように、本発明によれば張力制御系に移動比測
定回路を導入し、測定された移動比に基づいて張力機構
のサーボ制御を行うため、試料に熱膨張や軟化等の著し
い特性の変化が生じた場合においても、速やかに張力変
化を除去できるという効果を有し、さらに、試料に対
し、測定に必要な最小限の張力を付与することが可能な
ため、測定できる弾性範囲が拡大するという効果もあ
る。
[Effects of the Invention] As described above, according to the present invention, the moving ratio measuring circuit is introduced into the tension control system, and the servo control of the tension mechanism is performed based on the measured moving ratio. Even when a remarkable change in properties such as occurs, the change in tension can be quickly removed, and the minimum tension required for measurement can be applied to the sample. There is also an effect that a possible elastic range is expanded.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を示す一部ブロック図入り断
面図、第2図は測定機構の力学モデルを示す説明図であ
る。 1……試料 2……試料ホルダー 3……試料チャック 4……検出棒 5……板バネ 6……コア 7……差動トランス 8……コイル 9……マグネット 10……筐体ベース 11……案内棒 12……ボールネジ 13……軸受 14……機構部保持体 15……ステッピングモータ 16……駆動ベルト 17……炉 18……ステッピングモータ駆動回路 19……移動比測定回路 20……正弦波発生器 21……増幅器 22……加算器 23……直流発生回路 24……歪測定回路 25……位相差測定回路 26……歪振幅測定回路 27……力振幅測定回路 28……振幅比測定回路 29……乗算器
FIG. 1 is a partial cross-sectional view showing an embodiment of the present invention, and FIG. 2 is an explanatory view showing a dynamic model of a measuring mechanism. DESCRIPTION OF SYMBOLS 1 ... sample 2 ... sample holder 3 ... sample chuck 4 ... detection rod 5 ... leaf spring 6 ... core 7 ... differential transformer 8 ... coil 9 ... magnet 10 ... housing base 11 ... … Guide rod 12… Ball screw 13… Bearing 14… Mechanical part holder 15… Stepping motor 16… Driving belt 17 …… Furnace 18… Stepping motor driving circuit 19 …… Moving ratio measurement circuit 20 …… Sine Wave generator 21… Amplifier 22… Adder 23… DC generation circuit 24… Strain measurement circuit 25… Phase difference measurement circuit 26… Strain amplitude measurement circuit 27… Force amplitude measurement circuit 28… Amplitude ratio Measuring circuit 29 …… Multiplier

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】試料の一端を固定的に把持する試料ホルダ
ーと、試料の他端を把持する試料チャックと、前記試料
チャックに連結された検出棒と、前記検出棒の位置変化
を検出する歪検出器と、前記検出棒の一端に設けられ前
記検出棒および前記試料チャックを介して試料に力を伝
達する電磁力発生器と、前記電磁力発生器を移動する移
動機構と、前記移動機構の移動量と前記歪検出器の出力
信号の変化量の間の比を測定する移動比測定回路と、前
記電磁力発生器に張力を発生させる直流発生回路と、前
記電磁力発生器に正弦波力を発生させる正弦波発生器と
を備え、前記歪検出器の出力と前記移動比測定回路の出
力に基づいて前記移動機構の移動量を決めることを特徴
とする引張り式動的粘弾性測定装置。
1. A sample holder for fixedly holding one end of a sample, a sample chuck for holding the other end of the sample, a detection rod connected to the sample chuck, and a strain for detecting a change in the position of the detection rod. A detector, an electromagnetic force generator provided at one end of the detection rod and transmitting a force to the sample via the detection rod and the sample chuck, a moving mechanism for moving the electromagnetic force generator, and A moving ratio measuring circuit for measuring a ratio between a moving amount and a change amount of an output signal of the strain detector; a DC generating circuit for generating a tension in the electromagnetic force generator; and a sine wave force applied to the electromagnetic force generator. A tension type dynamic viscoelasticity measuring apparatus, comprising: a sinusoidal wave generator for generating the displacement; and determining a moving amount of the moving mechanism based on an output of the strain detector and an output of the moving ratio measuring circuit.
【請求項2】前記直流発生回路と前記正弦波発生器の増
幅率の比を前記移動比測定回路の出力に基づいて決める
ことを特徴とする特許請求の範囲第1項記載の引張り式
動的粘弾性測定装置。
2. The tension type dynamic device according to claim 1, wherein a ratio of an amplification factor between said DC generation circuit and said sine wave generator is determined based on an output of said moving ratio measurement circuit. Viscoelasticity measuring device.
JP30379689A 1989-11-24 1989-11-24 Tensile type dynamic viscoelasticity measuring device Expired - Lifetime JP2767634B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30379689A JP2767634B2 (en) 1989-11-24 1989-11-24 Tensile type dynamic viscoelasticity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30379689A JP2767634B2 (en) 1989-11-24 1989-11-24 Tensile type dynamic viscoelasticity measuring device

Publications (2)

Publication Number Publication Date
JPH03165237A JPH03165237A (en) 1991-07-17
JP2767634B2 true JP2767634B2 (en) 1998-06-18

Family

ID=17925402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30379689A Expired - Lifetime JP2767634B2 (en) 1989-11-24 1989-11-24 Tensile type dynamic viscoelasticity measuring device

Country Status (1)

Country Link
JP (1) JP2767634B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3939053B2 (en) * 1999-09-28 2007-06-27 エスアイアイ・ナノテクノロジー株式会社 Dynamic viscoelasticity measuring device

Also Published As

Publication number Publication date
JPH03165237A (en) 1991-07-17

Similar Documents

Publication Publication Date Title
JPH06123696A (en) Dynamic viscoelasticity device
JPS60225001A (en) Regulator for probe force of probe contour measuring device
Auchet et al. A new method of cutting force measurement based on command voltages of active electro-magnetic bearings
Dejima et al. Precision positioning of a five degree-of-freedom planar motion stage
GB2045437A (en) Coordinate measuring machine
JP2002202244A (en) Experimental device for minute frictional wear
US5115664A (en) Tunable feedback transducer for transient friction measurement
JP2964094B2 (en) Tensile type dynamic viscoelasticity measuring device
JP2767634B2 (en) Tensile type dynamic viscoelasticity measuring device
US5287749A (en) Thermomechanical analyzer
JP3459710B2 (en) Stylus probe
JP2598686B2 (en) Viscoelasticity measuring device
JP2003337094A (en) Microhardness tester
US4819491A (en) Position-determining apparatus
JPH02259546A (en) Measuring instrument for dynamic viscoelasticity
JP3018100B2 (en) Tensile type dynamic viscoelasticity measuring device
JP2777848B2 (en) Thermomechanical analyzer
JPH0357420B2 (en)
JPH0382934A (en) Dynamic viscoelasticity measuring apparatus
JP3641556B2 (en) Viscoelasticity measuring device
JPH11230875A (en) Micro spring constant measuring device and measuring method therefor
JP2581635B2 (en) Dynamic viscoelasticity measuring device
JPS60259930A (en) Apparatus for measuring internal friction of metallic specimen
JP2638157B2 (en) Shape measuring apparatus and method
JP2879245B2 (en) Dynamic viscoelasticity measurement method

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090410

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100410

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100410