JP2766948B2 - Plant failure diagnosis apparatus and method - Google Patents

Plant failure diagnosis apparatus and method

Info

Publication number
JP2766948B2
JP2766948B2 JP10291092A JP10291092A JP2766948B2 JP 2766948 B2 JP2766948 B2 JP 2766948B2 JP 10291092 A JP10291092 A JP 10291092A JP 10291092 A JP10291092 A JP 10291092A JP 2766948 B2 JP2766948 B2 JP 2766948B2
Authority
JP
Japan
Prior art keywords
failure
plant
state quantity
pressure
cause
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10291092A
Other languages
Japanese (ja)
Other versions
JPH05296890A (en
Inventor
裕文 藤田
明男 伊藤
誠 妹尾
博 菅井
浩二 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Information and Control Systems Inc
Original Assignee
Hitachi Ltd
Hitachi Information and Control Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Information and Control Systems Inc filed Critical Hitachi Ltd
Priority to JP10291092A priority Critical patent/JP2766948B2/en
Publication of JPH05296890A publication Critical patent/JPH05296890A/en
Application granted granted Critical
Publication of JP2766948B2 publication Critical patent/JP2766948B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Selective Calling Equipment (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、プラントにおいて保守
要員が故障を認識してから、故障現場に到着するまでに
時間が経過しプラントの状態量が故障発生時から事故原
因を調査する時点までに変化するプラントの故障診断装
置及び方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a plant, in which time elapses from the time when a maintenance person recognizes a failure in a plant to the time when the plant arrives at the failure site, and the state of the plant changes from the occurrence of the failure to the time of investigating the cause of the accident. The present invention relates to an apparatus and a method for diagnosing a failure of a plant.

【0002】[0002]

【従来の技術】保守要員が常駐する監視所と離れている
プラント、例えば出力の小さい水力発電所は建設地点の
地理的条件や運転制御の集中化などにより近年無人化さ
れ、遠隔集中制御されている。しかしプラントの安定な
運転を維持するためには従来より実施されているように
定期的に保守要員が巡視点検を行わなければならない。
この省力化を計るため、日常の巡視点検業務を自動化
し、これに設備の異常診断機能をも付加し、事故の未然
防止をも図りたい、また、一旦事故が発生した場合は速
やかに事故原因を調査し出来るだけ短時間で復旧させた
いとの要望が極めて強い。
2. Description of the Related Art In recent years, plants located far from a monitoring station where maintenance personnel are resident, for example, a hydropower station with a small output, have been unmanned due to the geographical conditions of the construction site and centralized operation control, and have been remotely controlled centrally. I have. However, in order to maintain the stable operation of the plant, maintenance personnel must periodically perform a patrol inspection as conventionally performed.
In order to save labor, we want to automate daily patrol inspection work and add a facility abnormality diagnosis function to this to prevent accidents before they occur. There is an extremely strong demand for investigating and recovering in as short a time as possible.

【0003】例えば特開昭61−87979号公報、三
菱電機技報・Vol.63・No.12・1989 などの技術を実現する
ためには多種のセンサが必要であり、将来、または従来
からオンライン計測用センサ及びオンライン計測システ
ムが取付けられ、オンライン計測が可能なプラントには
有効であるが、オンライン計測システムが取付けられて
いないプラントについては配慮が成されていない。
For example, various kinds of sensors are required to realize technologies such as Japanese Patent Application Laid-Open No. 61-87979 and Mitsubishi Electric Technical Report, Vol. 63, No. 12, 1989. Although this is effective for a plant equipped with a measurement sensor and an online measurement system and capable of online measurement, no consideration is given to a plant without an online measurement system.

【0004】しかし、オンライン計測システムが設置さ
れていないプラント特に発電所で若し事故が発生した場
合には電力系統全体に与える影響は大きく、速やかな事
故原因の調査、復旧を行わなければならないが保守要員
が常駐している場所から事故現場までは距離があり、事
故発生から原因調査開始までにはどうしても時間が経過
する。各保守要員は事故発生直後ではなく、時間経過後
の情報をもとに事故原因の調査を行わなければならない
ので保守要員の個人差により、誤った事故原因を導く可
能性がある。そこで、保守要員の個人差を無くしつつ、
オンライン計測システムを必要としない故障診断装置が
必要になってきている。
[0004] However, if an accident occurs in a plant in which the online measurement system is not installed, especially in a power plant, the influence on the entire power system is large, and the cause of the accident must be promptly investigated and restored. There is a distance from the place where the maintenance staff is resident to the accident site, and time elapses from the occurrence of the accident until the start of the cause investigation. Each maintenance staff must investigate the cause of the accident not based on the time immediately after the occurrence of the accident but on the basis of information after a lapse of time. Therefore, individual differences among maintenance staff may lead to an erroneous cause of the accident. So, while eliminating individual differences in maintenance staff,
There is a need for a failure diagnosis device that does not require an online measurement system.

【0005】[0005]

【発明が解決しようとする課題】従来の技術は、各種オ
ンライン計測用センサとオンライン計測システムが必要
であり、オンライン計測用センサが取付けられていない
プラントで実現しようとした場合にはオンライン計測用
センサを設置するための大幅な改造が必要であり、且つ
オンライン計測用センサからの信号を収集するオンライ
ン計測システムなどシステムが大規模化し、制約された
既存の空間には設置出来ないシステムになる可能性があ
る。そのため、従来から設置されているオフライン計測
機器及びセンサを活用し、既存機器の改造を必要としな
い小型のシステムが必要になる。
The prior art requires various online measurement sensors and an online measurement system. If an attempt is made in a plant where no online measurement sensor is installed, an online measurement sensor is required. It is necessary to make a major modification to install the system, and the system becomes large, such as an online measurement system that collects signals from online measurement sensors, and the system may not be able to be installed in a limited existing space. There is. Therefore, there is a need for a small system that utilizes existing offline measurement devices and sensors and does not require modification of existing devices.

【0006】また、事故発生時点から時間を経過した情
報をもとに事故原因を調査しなければならないため、事
故原因を調査する保守要員の経験的知識や、感覚など、
調査する保守要員の個人差に依存しない情報、つまり計
測でき、数値表現できる情報を基に故障原因を追及でき
るシステムが必要になる。
In addition, since the cause of the accident must be investigated based on information that has elapsed since the time of the accident, the maintenance staff who investigates the cause of the accident must have experience knowledge and feelings.
A system that can pursue the cause of failure based on information that does not depend on individual differences of the maintenance staff to be investigated, that is, information that can be measured and expressed numerically, is required.

【0007】本発明の目的は、プラント監視所から離れ
かつオンライン計測手段を備えていないプラントにおい
て、プラントの故障発生後のプラント状態量から故障診
断を行うことにある。
[0007] It is an object of the present invention to perform a failure diagnosis from a plant state quantity after a plant failure has occurred in a plant that is away from a plant monitoring station and has no on-line measuring means.

【0008】[0008]

【課題を解決するための手段】上記目的は、プラントを
構成する機器に設けられプラント状態量を検出するセン
サと、該機器の故障時に作動する保護手段と、該保護手
段の動作を検出して故障信号を出力する故障検出手段
と、該故障検出手段に接続する通信回線と、遠方監視所
に設けられ該通信回線に接続し伝送される故障信号によ
り前記プラントの故障発生を表示する故障表示手段と、
故障が発生した前記機器のプラント状態量を前記センサ
から読み取り入力する入力手段と、該入力されたプラン
ト状態量からメンバーシップ関数により適合度を演算し
予め定めた適合度と故障原因の相関により故障診断をす
る故障診断手段と、該故障診断手段により得られる故障
診断結果を表示する表示手段とを有することにより達成
される。
SUMMARY OF THE INVENTION The object of the present invention is to provide a sensor provided in equipment constituting a plant for detecting a state quantity of plant, protection means which operates when the equipment fails, and detecting operation of the protection means. Failure detection means for outputting a failure signal, a communication line connected to the failure detection means, and failure display means provided at a remote monitoring station and displaying the occurrence of a failure in the plant by a failure signal connected to the communication line and transmitted. When,
Input means for reading and inputting a plant state quantity of the equipment in which the failure has occurred from the sensor, and calculating a fitness based on the input plant state quantity by a membership function, and performing a failure by correlation between a predetermined fitness and a failure cause. This is achieved by having a failure diagnosis means for performing a diagnosis and a display means for displaying a failure diagnosis result obtained by the failure diagnosis means.

【0009】上記目的は、プラントを構成する機器の故
障発生後のプラント状態量を入力し、該入力されたプラ
ント状態量をメンバーシップ関数により適合度に変換
し、予め定めた適合度と故障原因の相関により故障原因
を特定することにより達成される。
The object of the present invention is to input a plant state quantity after the occurrence of a failure of a device constituting a plant, convert the input plant state quantity into a fitness by a membership function, and determine a predetermined fitness and a failure cause. This is achieved by specifying the cause of the failure by the correlation of

【0010】[0010]

【作用】上記構成によれば、予め、プラント状態量が数
値表現できるもので、2つ以上の数値情報間に相関関係
が有るものを抽出し、プラント状態の適合度と故障原因
との相関関係を定めておく。保守要員が常駐しないプラ
ントを構成する機器に重大な故障が発生すると、保護手
段が動作しその動作を検出して故障信号が出力され、故
障信号は保守要員が常駐する遠方監視所に設けられた故
障表示手段に故障として表示され、保守要員が故障発生
情報のみを認識して故障現場に行き故障発生後のプラン
トの状態量をセンサから読み取り入力手段に入力する。
故障診断手段はこの入力されたプラント状態量からメン
バーシップ関数により適合度を演算し、予め定めた適合
度と故障原因の相関により故障原因を特定する。このよ
うにしてオンライン計測手段を備えていないプラントに
故障が発生し時間が経過しても、従来から設置されてい
るセンサが示すプラント状態量から故障診断を行うこと
ができる。
According to the above arrangement, a plant state quantity which can be numerically represented in advance and which has a correlation between two or more pieces of numerical information is extracted, and the correlation between the degree of conformity of the plant state and the cause of the failure is extracted. Is defined. When a serious failure occurs in equipment that constitutes a plant where maintenance personnel do not reside, the protection means operates, detects the operation, outputs a failure signal, and the failure signal is provided at a remote monitoring station where maintenance personnel reside. A failure is displayed on the failure display means, and the maintenance staff recognizes only the failure occurrence information, goes to the failure site, reads the state quantity of the plant after the failure occurrence from the sensor, and inputs it to the input means.
The failure diagnosing means calculates a fitness from the input plant state quantity by a membership function, and specifies a failure cause by a correlation between a predetermined fitness and a failure cause. In this way, even if a failure occurs in a plant that does not have the online measurement means and time elapses, failure diagnosis can be performed from the plant state quantity indicated by a conventionally installed sensor.

【0011】[0011]

【実施例】以下に本発明の一実施例を図を用いて説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings.

【0012】まず、本実施例の装置の構成を説明する。First, the configuration of the apparatus according to the present embodiment will be described.

【0013】図1は本発明の実施例の構成を説明するブ
ロック図である。
FIG. 1 is a block diagram illustrating the configuration of an embodiment of the present invention.

【0014】1は保守要員が常駐する遠方監視所で、保
守要員に故障を知らせるための故障警報装置2が設けら
れている。4は遠方監視所1と離れた場所にあり保守要
員が常駐しないプラントで、例えば出力の小さい水力発
電所があげられ遠方監視所1とは専用回線3で結ばれて
いる。
Reference numeral 1 denotes a remote monitoring station where maintenance personnel are stationed, and a failure alarm device 2 for notifying maintenance personnel of a failure is provided. Reference numeral 4 denotes a plant which is located at a location remote from the remote monitoring station 1 and does not have any maintenance personnel. For example, a hydroelectric power plant having a small output is used and is connected to the remote monitoring station 1 by a dedicated line 3.

【0015】プラント4を構成する機器のうちには油圧
制御用の作動油を貯留し各使用先、例えば油圧シリンダ
等に補給する圧油タンク10があり、この圧油タンク1
0には作動油を各使用先に補給する為に必要な圧力を付
与する圧縮空気が一定量封入されている。さらに圧油タ
ンク10には圧縮空気の圧力を示す圧油タンク圧力計9
と圧油タンク10の圧力即ち圧縮空気の圧力が異常に高
くなったとき、圧油タンク10を保護する為に圧縮空気
を外部に放出する空気安全弁8が取付けられている。空
気安全弁8にはその動作を検出する空気安全弁動作セン
サ7が取付けられており、空気安全弁動作センサ7と故
障検出機5は信号線6で結ばれ、故障検出機5は専用回
線3に接続されている。
Among the equipment constituting the plant 4, there is a pressure oil tank 10 for storing hydraulic oil for hydraulic control and replenishing it to each use destination, for example, a hydraulic cylinder or the like.
0 is filled with a fixed amount of compressed air for giving a pressure necessary for replenishing the working oil to each use destination. Further, the pressure oil tank 10 has a pressure oil tank pressure gauge 9 indicating the pressure of the compressed air.
In order to protect the pressure oil tank 10 when the pressure of the pressure oil tank 10, that is, the pressure of the compressed air becomes abnormally high, an air safety valve 8 for discharging the compressed air to the outside is provided. An air safety valve operation sensor 7 for detecting the operation of the air safety valve 8 is attached to the air safety valve 8. The air safety valve operation sensor 7 and the failure detector 5 are connected by a signal line 6, and the failure detector 5 is connected to the dedicated line 3. ing.

【0016】なお、図示はしていないが圧油タンク10
には油面計と、検出した油面が異常に低くなったとき故
障検出機5へ油面低信号を出力する油面スイッチを設け
てある。 プラント4内にはオフラインで保守要員が読
み取った数値を入力するキーボード11、キーボード1
1から入力された数値をもとに、数値情報の相互関係か
ら故障を診断する故障診断装置12、故障診断結果を表
示するディスプレイ13からなる故障診断装置がある。
キーボード11と故障診断装置12は信号線14で結ば
れ、故障診断装置12とディスプレイ13も同様に信号
線15で結ばれている。
Although not shown, the pressure oil tank 10
Is provided with an oil level gauge and an oil level switch that outputs a low oil level signal to the failure detector 5 when the detected oil level becomes abnormally low. A keyboard 11 and a keyboard 1 for inputting numerical values read by maintenance personnel offline in the plant 4
There is a failure diagnosis device 12 that diagnoses a failure based on the mutual relationship of numerical information based on a numerical value input from 1 and a display 13 that displays a failure diagnosis result.
The keyboard 11 and the failure diagnosis device 12 are connected by a signal line 14, and the failure diagnosis device 12 and the display 13 are also connected by a signal line 15.

【0017】次ぎに、本実施例の装置の動作を説明す
る。
Next, the operation of the apparatus of this embodiment will be described.

【0018】図2は図1に示した空気安全弁8が動作す
る故障が発生した場合の圧油タンク10内の圧力変化を
示したタイミングチャートである。
FIG. 2 is a timing chart showing a pressure change in the pressure oil tank 10 when a failure occurs in which the air safety valve 8 shown in FIG. 1 operates.

【0019】圧油タンク10内の圧力が上昇し空気安全
弁8の設定圧力を超えると空気安全弁8が動作し圧油タ
ンク内の圧力を設定圧力まで低下させる。そのとき空気
安全弁8の動作を空気安全弁動作センサ7が検出し信号
線6を介して故障検出機5に入力する。故障検出機5は
空気安全弁8の動作を専用線3を介し故障警報装置2に
表示し保守要員に故障を知らせる。故障を知った保守要
員はプラント4に入り故障発生から時間を経過したプラ
ント状態量を圧油タンク圧力計9、油面計等で調査し、
キーボード11を介しプラント状態量を故障診断装置1
2に入力することにより故障診断が行われ、故障診断結
果はディスプレイ13に表示される。保守要員はディス
プレイ13により故障原因を確認し故障を復旧すること
ができる。
When the pressure in the pressure oil tank 10 rises and exceeds the set pressure of the air safety valve 8, the air safety valve 8 operates to reduce the pressure in the pressure oil tank to the set pressure. At this time, the operation of the air safety valve 8 is detected by the air safety valve operation sensor 7 and input to the failure detector 5 via the signal line 6. The failure detector 5 displays the operation of the air safety valve 8 on the failure alarm device 2 via the dedicated line 3 to notify the maintenance personnel of the failure. The maintenance personnel who knew the failure entered the plant 4 and examined the state of the plant over time from the occurrence of the failure with a pressure oil tank pressure gauge 9, an oil level gauge, and the like.
Failure diagnostic device 1 for determining plant state quantity via keyboard 11
2, the failure diagnosis is performed, and the failure diagnosis result is displayed on the display 13. The maintenance staff can confirm the cause of the failure on the display 13 and restore the failure.

【0020】図2の様に故障を確認してから保守要員が
プラント状態量を把握するまでには時間の経過T1を伴
うため、油圧単独で故障診断を行うと正常値としては高
いが、正常値範囲内なので故障と判定することはできな
い。
As shown in FIG. 2, since the time T1 elapses from the time when the failure is confirmed to the time when the maintenance personnel grasps the plant state quantity, a normal value is high as a normal value when the failure diagnosis is performed by the hydraulic pressure alone. Since it is within the value range, it cannot be determined that a failure has occurred.

【0021】図3は本発明の実施例の圧油タンク10に
おける油圧と油面の相関関係を示す図表である。
FIG. 3 is a table showing the correlation between the oil pressure and the oil level in the pressure oil tank 10 according to the embodiment of the present invention.

【0022】圧油タンク10内の油面が上昇すること
は、圧油タンク10内に封入されている圧縮空気をさら
に圧縮して圧力が高くなり同時に容積が小さくなること
であり、ボイル及びシャールの法則により本図に示すよ
うな相関関係が得られる。油圧と油面位置が正常であれ
ば油圧と油面位置の交点は多角形20内に入る。例え
ば、油圧が正常値47.4(kg/cm2)、油面が正常値の
+25(mm)の場合交点21となり、多角形20の範囲
内に入る。しかし異常な場合、例えば油圧が正常値4
8.5(kg/cm2)、油面が正常値+120(mm)で、油
圧、油面単独で調査した場合は正常となるが、図3上で
の交点22は正常範囲の多角形20の外側にあり、油
圧、油面の相関関係で調査した場合は異常が発生したこ
とが明らかとなるので、時間を経過したプラント状態量
からも故障を診断することが可能となる。故障が発生し
保守要員がプラントに到着するまでに長い時間を要する
と、図2のT2時間が経過し油圧と油面の相関関係にお
いて、図2の正常範囲の多角形20内に入り油圧と油面
の相関関係からは異常の発見が出来無い。これは故障が
発生したことが明らかな場合の故障原因をプラント設計
者、保守要員の経験、知識を基に、図2の正常範囲の多
角形20内、外の故障原因を予め整理し、それにより故
障診断を行なうことが可能と成る。
The rise in the oil level in the pressurized oil tank 10 means that the compressed air sealed in the pressurized oil tank 10 is further compressed to increase the pressure and at the same time reduce the volume. According to the law, a correlation as shown in this figure is obtained. If the oil pressure and the oil level are normal, the intersection of the oil pressure and the oil level is within the polygon 20. For example, when the hydraulic pressure is normal value 47.4 (kg / cm 2 ) and the oil level is the normal value +25 (mm), it becomes the intersection 21 and falls within the range of the polygon 20. However, if abnormal, for example, if the hydraulic pressure is normal
8.5 (kg / cm 2 ), the oil level is a normal value +120 (mm), and when the oil pressure and the oil level alone are examined, the result is normal. However, the intersection 22 in FIG. In the case of investigating the correlation between the oil pressure and the oil level, it is clear that an abnormality has occurred. Therefore, the failure can be diagnosed from the plant state quantity over time. If it takes a long time for the maintenance personnel to arrive at the plant due to the occurrence of a failure, the time T2 in FIG. 2 elapses and the correlation between the oil pressure and the oil level indicates that the oil enters the polygon 20 in the normal range in FIG. No abnormality can be found from the correlation of the oil level. In this case, based on the experience and knowledge of the plant designer and maintenance personnel, the causes of failure when it is clear that a failure has occurred are arranged in advance into the inside and outside of the polygon 20 in the normal range in FIG. This makes it possible to perform a failure diagnosis.

【0023】表1は故障診断を行なうために、プラント
設計者、保守要員の経験、知識を基に故障発生から時間
が経過した油圧と油面のプラント状態量から故障原因を
特定する表で、プラント状態量が正常時と比較して高
い、正常、低いを調査して、油圧と油面位置の相関関係
から故障原因101〜故障原因109を特定することが
できる。
Table 1 is a table for specifying the cause of a failure from the hydraulic pressure and the plant state quantity of the oil level, which have elapsed since the occurrence of the failure, based on the experience and knowledge of the plant designer and maintenance personnel in order to perform the failure diagnosis. By investigating whether the plant state quantity is higher, normal, or lower than the normal state, the failure causes 101 to 109 can be specified from the correlation between the oil pressure and the oil level.

【0024】[0024]

【表1】 [Table 1]

【0025】故障原因105の場合、圧油タンク10へ
作動油を供給する系例えば配管からの漏洩、ポンプの不
調により圧油タンク10への送油量が不足し、油面が異
常に低くなり油面スイッチが故障検出機5へ油面低信号
を出力し、故障検出機5に入力された油面低信号が専用
線3を介し故障警報装置2に故障発生として表示され、
保守要員がプラント状態量を調査した時点ではプラント
状態量が変化し油面、油圧が正常範囲に回復した可能性
が有り、故障原因を送油量不足とした。故障原因109
の場合も故障原因105と同様に油面が異常に低くな
り、保守要員がプラント状態量を調査した時点ではプラ
ント状態量が変化し油面、油圧が共に低い範囲に回復し
た可能性が有る。
In the case of the failure cause 105, a system for supplying hydraulic oil to the pressure oil tank 10, for example, leakage from a pipe or malfunction of a pump causes an insufficient amount of oil to be supplied to the pressure oil tank 10, resulting in an abnormally low oil level. The oil level switch outputs a low oil level signal to the failure detector 5, and the low oil level signal input to the failure detector 5 is displayed as a failure occurrence on the failure alarm device 2 via the dedicated line 3,
At the time when the maintenance personnel investigated the plant state quantity, the plant state quantity could have changed and the oil level and oil pressure could have returned to normal ranges, and the cause of the failure was insufficient oil supply. Failure cause 109
In this case as well, the oil level becomes abnormally low similarly to the cause 105 of the failure, and when the maintenance personnel investigates the state quantity of the plant, the state quantity of the plant may have changed, and the oil level and the oil pressure may have both returned to the low range.

【0026】次ぎに、本実施例の故障診断の進めかたを
説明する。
Next, how to proceed with the failure diagnosis of the present embodiment will be described.

【0027】1)遠方監視所1に常駐する保守要員が故
障警報装置2でプラント4の故障発生を認識する。
1) A maintenance person resident at the remote monitoring station 1 recognizes the occurrence of a failure in the plant 4 by the failure alarm device 2.

【0028】2)保守要員がプラント4へ入る。2) Maintenance personnel enter the plant 4.

【0029】3)故障診断装置12を起動する。3) Activate the failure diagnosis device 12.

【0030】4)ディスプレイ13に故障診断を行う為
に必要な調査項目が表示される。
4) Investigation items necessary for performing a fault diagnosis are displayed on the display 13.

【0031】5)調査項目によりプラント状態量を調査
する。
5) Investigate the plant state quantity according to the investigation item.

【0032】6)調査したプラント状態量をディスプレ
イ13と会話しながらキーボード11から入力する。
6) The surveyed plant state quantity is input from the keyboard 11 while talking with the display 13.

【0033】7)故障診断装置12が故障原因を推論す
る。
7) The failure diagnosis device 12 infers the cause of the failure.

【0034】8)確定した故障原因がディスプレイ13
に表示される。
8) The determined cause of the failure is the display 13
Will be displayed.

【0035】図4は図1に示した故障診断装置の構成を
説明するブロック図である。
FIG. 4 is a block diagram for explaining the configuration of the failure diagnosis device shown in FIG.

【0036】本図に示すように故障診断装置12は、入
力された数値を項目毎に分割する数値分割装置30、油
圧の状態量を油圧メンバシップ関数32を使用し適合度
に変換する油圧状態量適合度変換装置31、同様に油面
の状態量を油面メンバシップ関数34を使用し適合度に
変換する油面状態量適合度変換装置33、故障原因特定
表1から故障原因を特定する総合判定装置35から構成
される。
As shown in the figure, the failure diagnosis device 12 includes a numerical value dividing device 30 that divides an inputted numerical value for each item, and a hydraulic state that converts a state amount of hydraulic pressure into a degree of conformity using a hydraulic membership function 32. Similarly, the oil level condition quantity conversion apparatus 33 converts the state quantity of the oil level into the degree of adaptation using the oil level membership function 34, and identifies the cause of the failure from the failure cause identification table 1. It is composed of an overall judgment device 35.

【0037】ここで図4により、保守要員の入力したプ
ラント状態量から表1を使用し故障原因を特定する方法
を示す。
FIG. 4 shows a method of identifying the cause of a failure from Table 1 based on the plant state quantities input by the maintenance personnel.

【0038】保守要員は故障発生後にプラントから収集
したプラント状態量、油圧と油面位置をキーボード11
から入力する。入力されたプラント状態量は、数値分割
装置30により、油面、油圧状態量に分割される。分割
された油圧状態量は油圧状態量適合度変換装置31によ
り、油圧が油圧単体として正常時と比較して、油圧が低
い、正常、高いの適合度を油圧メンバシップ関数32に
より求める。
The maintenance staff inputs the plant state quantity, hydraulic pressure and oil level position collected from the plant after the occurrence of the failure using the keyboard 11.
Enter from. The input plant state quantity is divided by the numerical value dividing device 30 into an oil level and a hydraulic state quantity. With respect to the divided hydraulic state quantities, the hydraulic state quantity adaptability conversion device 31 obtains, using the hydraulic membership function 32, the adaptability of low, normal, and high hydraulic pressures as compared with the normal hydraulic pressure as a single unit.

【0039】図5は本発明の実施例の油圧と適合度の関
係を示すメンバシップ関数の図表である。
FIG. 5 is a chart of a membership function showing the relationship between the hydraulic pressure and the degree of conformity according to the embodiment of the present invention.

【0040】油圧メンバシップ関数32は図5のように
なっており、表1と同様にプラント設計者と保守要員の
知識により予め作成されている。油圧状態量適合度変換
装置31が油圧メンバシップ関数32から適合度を求め
る方法は、入力されたプラント状態量と交差する適合度
の線分40、41、42の交点の値を用い、その値は低
い、正常、高いの適合度とされる。
The hydraulic membership function 32 is as shown in FIG. 5, and is created in advance based on the knowledge of the plant designer and maintenance personnel as in Table 1. The method of calculating the degree of conformity from the hydraulic membership function 32 by the hydraulic state quantity conformity conversion device 31 uses the value of the intersection of the segments 40, 41, and 42 of the degree of conformity that intersects with the input plant state quantity and calculates the value. Is defined as low, normal, and high fitness.

【0041】図6は図5に示したメンバシップ関数を用
いて油圧52.5(kg/cm2)における適合度を求める説
明図である。
FIG. 6 is an explanatory diagram for obtaining the degree of conformity at a hydraulic pressure of 52.5 (kg / cm 2 ) using the membership function shown in FIG.

【0042】本図の様に油圧52.5(kg/cm2)が入力
された場合、一点鎖線50と交差する線分41との交点
52が正常の適合度、一点鎖線50と交差する線分42
との交点51が高いの適合度と成り、正常の適合度は
0.33、高いの適合度は0.70となり、低いに関し
ては線分40と一点鎖線50は交差しないので適合度は
0.0と成る。油圧の適合度は低い<正常<高いの順と
なり、結果として油圧は「高い」が得られる。
As shown in the figure, when a hydraulic pressure of 52.5 (kg / cm 2 ) is input, the intersection 52 with the line segment 41 intersecting with the one-dot chain line 50 has a normal fitness, and the line intersecting with the one-dot chain line 50. Min 42
Is a high degree of fitness, the normal degree of fitness is 0.33, the high degree of fitness is 0.70, and the low degree is zero because the line segment 40 and the one-dot chain line 50 do not intersect. It becomes 0. The conformity of the hydraulic pressure is in the order of low <normal <high, and as a result, “high” is obtained for the hydraulic pressure.

【0043】図7は本発明の実施例の油面と適合度の関
係を示すメンバシップ関数の図表である。
FIG. 7 is a chart of a membership function showing the relationship between the oil level and the degree of conformity in the embodiment of the present invention.

【0044】同様に油面位置に関しても油面状態量変換
装置33、油面メンバシップ関数34により適合度を求
める。総合判定装置35は油面状態量適合度変換装置3
1、油圧状態量適合度変換装置33により油圧が「高
い」、油面位置が「正常」であった場合、表1に従い故
障原因102を導きだす。故障原因102はディスプレ
イ3を介して故障診断を行う保守要員に表示される。
Similarly, with respect to the oil level, the degree of conformity is determined by the oil level change unit 33 and the oil level membership function 34. The overall judgment device 35 is an oil level condition quantity conformity conversion device 3
1. If the hydraulic pressure is "high" and the oil level is "normal" by the hydraulic state quantity adaptability conversion device 33, the cause of failure 102 is derived according to Table 1. The failure cause 102 is displayed via the display 3 to maintenance personnel who perform failure diagnosis.

【0045】[0045]

【発明の効果】本発明によれば、保守要員が常駐しない
プラントを構成する機器に重大な故障が発生した時、保
守要員が故障の発生のみを認識して故障現場に行き故障
発生後のプラントの状態量を故障診断手段へ入力し、故
障診断手段はこの入力されたプラント状態量からメンバ
ーシップ関数により適合度を演算し、予め定めた適合度
と故障原因の相関により故障原因を特定することによ
り、プラント監視所から離れかつオンライン計測手段を
備えていないプラントの機器に故障が発生し時間が経過
してもプラント状態量から故障診断を行うことが可能と
なる。
According to the present invention, when a serious failure occurs in equipment constituting a plant where no maintenance staff is resident, the maintenance staff only recognizes the occurrence of the failure, goes to the failure site, and returns to the plant after the occurrence of the failure. The state quantity of the above is input to the failure diagnosis means, and the failure diagnosis means calculates the fitness by the membership function from the input plant state quantity, and specifies the failure cause by the correlation between the predetermined fitness and the failure cause. Accordingly, even if a failure occurs in a device of a plant that is away from the plant monitoring station and does not include the online measurement unit and a time elapses, it is possible to perform a failure diagnosis based on the plant state quantity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の構成を説明するブロック図で
ある。
FIG. 1 is a block diagram illustrating a configuration of an embodiment of the present invention.

【図2】図1に示した空気安全弁が動作する故障が発生
した場合の圧油タンク内の圧力変化を示したタイミング
チャートである。
FIG. 2 is a timing chart showing a pressure change in a pressure oil tank when a failure occurs in which the air safety valve shown in FIG. 1 operates.

【図3】本発明の実施例の圧油タンクにおける油圧と油
面の相関関係を示す図表である。
FIG. 3 is a table showing the correlation between the oil pressure and the oil level in the pressure oil tank according to the embodiment of the present invention.

【図4】図1に示した故障診断装置の構成を説明するブ
ロック図である。
FIG. 4 is a block diagram illustrating a configuration of the failure diagnosis device shown in FIG.

【図5】本発明の実施例の油圧と適合度の関係を示すメ
ンバシップ関数の図表である。
FIG. 5 is a chart of a membership function showing the relationship between the hydraulic pressure and the fitness in the embodiment of the present invention.

【図6】図5に示したメンバシップ関数を用いて油圧5
2.5(kg/cm2)における適合度を求める説明図であ
る。
6 is a diagram showing a hydraulic pressure 5 using the membership function shown in FIG.
FIG. 4 is an explanatory diagram for obtaining a degree of conformity at 2.5 (kg / cm 2 ).

【図7】本発明の実施例の油面と適合度の関係を示すメ
ンバシップ関数の図表である。
FIG. 7 is a chart of a membership function showing a relationship between an oil level and a fitness according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 遠方監視所 2 故障表示装置 3 専用回線 4 プラント 5 故障検出装置 6 信号線 7 空気安全弁動作センサ 8 空気安全弁 9 圧油タンク圧力計 10 圧油タンク 12 故障診断装置 13 ディスプレイ 14 信号線 15 信号線 20 油圧と油面の正常範囲 21 正常時の油圧と油面の交点 22 異常時の油圧と油面の交点 30 数値分割装置 31 油圧状態量適合度変換装置 32 油圧メンバシップ関数 33 油面状態量適合度変換装置 34 油面メンバシップ関数 35 総合判定装置 40 低いの適合度を示す線分 41 正常の適合度を示す線分 42 高いの適合度を示す線分 50 油圧52.5(kg/cm2)の線分 51 線分50と線分42の交点 52 線分50と線分41の交点DESCRIPTION OF SYMBOLS 1 Remote monitoring station 2 Failure display device 3 Dedicated line 4 Plant 5 Failure detection device 6 Signal line 7 Air safety valve operation sensor 8 Air safety valve 9 Pressure oil tank pressure gauge 10 Pressure oil tank 12 Failure diagnosis device 13 Display 14 Signal line 15 Signal line 20 Normal range of oil pressure and oil level 21 Intersection of oil pressure and oil level at normal time 22 Intersection of oil pressure and oil level at abnormal time 30 Numerical divider 31 Hydraulic state quantity adaptability converter 32 Hydraulic membership function 33 Oil level state quantity Goodness-of-fit conversion device 34 Oil level membership function 35 Comprehensive judgment device 40 Line segment showing good fitness 41 Line segment showing good fitness 42 Line segment showing good fitness 50 Hydraulic pressure 52.5 (kg / cm) 2 ) Line segment 51 Intersection of line segment 50 and line segment 42 52 Intersection of line segment 50 and line segment 41

───────────────────────────────────────────────────── フロントページの続き (72)発明者 妹尾 誠 茨城県日立市森山町1168番地 株式会社 日立製作所 エネルギー研究所内 (72)発明者 菅井 博 茨城県日立市幸町三丁目1番1号 株式 会社 日立製作所 日立工場内 (72)発明者 加藤 浩二 茨城県日立市大みか町五丁目2番1号 株式会社 日立製作所 大みか工場内 (56)参考文献 特開 昭58−90122(JP,A) 特開 平2−73499(JP,A) (58)調査した分野(Int.Cl.6,DB名) G01M 19/00 G01D 21/00──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Makoto Senoo 1168 Moriyama-cho, Hitachi City, Ibaraki Prefecture Inside Energy Laboratory, Hitachi, Ltd. Hitachi, Ltd. Hitachi factory (72) Koji Kato 5-2-1, Omikacho, Hitachi City, Ibaraki Prefecture Hitachi, Ltd. Omika Factory (56) References JP-A-58-90122 (JP, A) 2-73499 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) G01M 19/00 G01D 21/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 保守要員が常駐しないプラントを構成す
る機器に設けられプラント状態量を検出するセンサと、
該機器の故障時に作動する保護手段と、該保護手段の動
作を検出して故障信号を出力する故障検出手段と、該故
障検出手段に接続する通信回線と、遠方監視所に設けら
れ該通信回線に接続し伝送される故障信号により前記プ
ラントの故障発生を表示する故障表示手段と、故障が発
生した前記機器のプラント状態量を前記センサから読み
取り入力する入力手段と、該入力されたプラント状態量
からメンバーシップ関数により適合度を演算し、予め定
めた適合度と故障原因の相関により故障診断をする故障
診断手段と、該故障診断手段により得られる故障診断結
果を表示する表示手段とを有することを特徴とするプラ
ント故障診断装置。
Claims: 1. A sensor provided in a device constituting a plant where maintenance personnel are not resident to detect a plant state quantity;
A protection unit that operates when the device fails; a failure detection unit that detects an operation of the protection unit and outputs a failure signal; a communication line connected to the failure detection unit; and a communication line provided at a remote monitoring station. Failure display means for displaying the occurrence of a failure in the plant by a failure signal transmitted to the apparatus, input means for reading and inputting a plant state quantity of the equipment in which the failure has occurred from the sensor, and the input plant state quantity A failure diagnosis means for calculating a fitness by a membership function from, a failure diagnosis based on a correlation between a predetermined fitness and a failure cause, and a display means for displaying a failure diagnosis result obtained by the failure diagnostic means. A plant failure diagnosis device characterized by the above-mentioned.
【請求項2】 保守要員が常駐しないプラントを構成す
る機器の故障発生後のプラント状態量を入力し、該入力
されたプラント状態量をメンバーシップ関数により適合
度に変換し、予め定めた適合度と故障原因の相関により
故障原因を特定することを特徴とするプラント故障診断
方法。
2. A plant state quantity after a failure of a device constituting a plant where maintenance personnel are not resident is input, and the inputted plant state quantity is converted into a fitness by a membership function, and a predetermined fitness is determined. A plant failure diagnosis method characterized by identifying a failure cause based on a correlation between the failure cause and the failure cause.
JP10291092A 1992-04-22 1992-04-22 Plant failure diagnosis apparatus and method Expired - Fee Related JP2766948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10291092A JP2766948B2 (en) 1992-04-22 1992-04-22 Plant failure diagnosis apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10291092A JP2766948B2 (en) 1992-04-22 1992-04-22 Plant failure diagnosis apparatus and method

Publications (2)

Publication Number Publication Date
JPH05296890A JPH05296890A (en) 1993-11-12
JP2766948B2 true JP2766948B2 (en) 1998-06-18

Family

ID=14340014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10291092A Expired - Fee Related JP2766948B2 (en) 1992-04-22 1992-04-22 Plant failure diagnosis apparatus and method

Country Status (1)

Country Link
JP (1) JP2766948B2 (en)

Also Published As

Publication number Publication date
JPH05296890A (en) 1993-11-12

Similar Documents

Publication Publication Date Title
US20130066568A1 (en) Integrated system with acoustic technology, mass imbalance and neural network for detecting, locating and quantifying leaks in ducts
CN107424380A (en) Urban Underground pipe gallery monitoring and warning system and method
EA032736B1 (en) System and method for supervising, managing and monitoring the structural integrity of a pipeline network for fluid transportation, locating the leaking point and evaluating the extent of the failure
CN107764336A (en) A kind of pumping station operation state real time on-line monitoring and fault diagnosis system and method
CN107332917B (en) Underground pipe gallery space environment data acquisition method and system with fault judgment function
CN101878415A (en) Process fluid pressure transmitter with pressure transient detection
CN107403537A (en) A kind of artificial intelligence early warning system for bridge deformation monitoring
CN110660199A (en) Ship monitoring alarm system
CN112728423A (en) Remote heat supply pipeline fault monitoring system
CN110032094A (en) Control method, device, computer equipment and the storage medium of engine room facilities
KR101114294B1 (en) Real-time Weight sensing Apparatus of fire extinguishing chemical and Method thereof
CN110136852B (en) Nuclear power station primary loop hydrostatic test overpressure protection system
CN203024763U (en) Construction beam posture monitoring system
CN110044631A (en) Trend prediction method, device and the computer equipment of ship machine diesel engine
CN110070205A (en) Trend prediction method, device, computer equipment and the storage medium of ship machine dredge pump
JP2766948B2 (en) Plant failure diagnosis apparatus and method
RU2668487C2 (en) Management decision making information support system for operational personnel of a ship power plant
CN112928820B (en) Automatic detection system for power distribution cabinet and detection method thereof
KR102396189B1 (en) Monitoring system for damage of infrastructure facility
JPH07128098A (en) Remote diagnostic system for instrumentation facility
JPH0526784A (en) Central control method for malfunction generation in construction machine
CN113586960A (en) Petroleum pipeline conveying monitoring system
CN105913884A (en) Nuclear power station electrical penetration piece gas state monitoring system
CN102721406A (en) Construction beam gesture monitoring system
CN111397822A (en) Bridge safety monitoring device and method based on laser gyroscope

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080410

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090410

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090410

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100410

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110410

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees