JP2765722B2 - Separation and concentration method of hydrogen isotope by thermal diffusion method - Google Patents

Separation and concentration method of hydrogen isotope by thermal diffusion method

Info

Publication number
JP2765722B2
JP2765722B2 JP1094395A JP9439589A JP2765722B2 JP 2765722 B2 JP2765722 B2 JP 2765722B2 JP 1094395 A JP1094395 A JP 1094395A JP 9439589 A JP9439589 A JP 9439589A JP 2765722 B2 JP2765722 B2 JP 2765722B2
Authority
JP
Japan
Prior art keywords
thermal diffusion
hydrogen isotope
isotope
concentration
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1094395A
Other languages
Japanese (ja)
Other versions
JPH02273516A (en
Inventor
紀 高安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kagaku Gijutsu Shinko Jigyodan
Original Assignee
Kagaku Gijutsu Shinko Jigyodan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagaku Gijutsu Shinko Jigyodan filed Critical Kagaku Gijutsu Shinko Jigyodan
Priority to JP1094395A priority Critical patent/JP2765722B2/en
Publication of JPH02273516A publication Critical patent/JPH02273516A/en
Application granted granted Critical
Publication of JP2765722B2 publication Critical patent/JP2765722B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、熱拡散法による水素同位体の分離濃縮方
法に関するものである。さらに詳しくは、この発明は、
水素同位体混合ガスから混合ガス中で分子量が最大の成
分を大きな分解能で分離濃縮することができ、その際の
運転コストの削減を図ることもできる、熱拡散法による
水素同位体の分離濃縮方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a method for separating and concentrating hydrogen isotopes by a thermal diffusion method. More specifically, the present invention
Separation / concentration method of hydrogen isotope by thermal diffusion method, which can separate and concentrate the component with the highest molecular weight in the mixed gas from the hydrogen isotope mixed gas with high resolution and can also reduce the operating cost at that time It is about.

(従来の技術) 従来より、同位体混合物から所望の同位体を分離し、
濃縮する方法として熱拡散法が広く知られている。熱拡
散法では、通常、外側が冷却される鉛直に立てられた円
筒と、この円筒内部の中心線に沿って配置されたヒータ
から構成される熱拡散分離塔が用いられる。同位体混合
物は、この熱拡散分離塔内に導入され、同位体混合物の
各成分の分子量の差に基づいて分離濃縮が起こる。一般
に、同位体混合物中の分子量の小さい成分は分離塔の上
端に分離濃縮し、分子量の大きい成分は下端に分離濃縮
する。このため、同位体混合物中の分子量の小さい成分
を分離濃縮する場合には、熱拡散分離塔の下部から同位
体混合物を導入し、上端に目的とする成分を分離濃縮さ
せる。一方、分子量の大きな成分を分離濃縮する場合に
は、熱拡散分離塔の上部から同位体混合物を導入し、下
端に目的とする成分を分離濃縮させる。
(Prior Art) Conventionally, a desired isotope is separated from an isotope mixture,
A thermal diffusion method is widely known as a concentration method. In the thermal diffusion method, usually, a thermal diffusion separation tower composed of a vertical cylinder whose outside is cooled and a heater arranged along a center line inside the cylinder is used. The isotope mixture is introduced into the thermal diffusion separation column, and separation and concentration occur based on the difference in molecular weight of each component of the isotope mixture. Generally, components having a low molecular weight in the isotope mixture are separated and concentrated at the upper end of the separation column, and components having a high molecular weight are separated and concentrated at the lower end. For this reason, when separating and concentrating a component having a small molecular weight in the isotope mixture, the isotope mixture is introduced from the lower portion of the thermal diffusion separation column, and the target component is separated and concentrated at the upper end. On the other hand, when separating and concentrating a component having a large molecular weight, an isotope mixture is introduced from the upper portion of the thermal diffusion separation column, and the target component is separated and concentrated at the lower end.

(発明が解決しようとする課題) しかしながら、従来の熱拡散法においては、一般に、
同位体の分解能、すなわち、熱拡散分離塔の上端と下端
における同位体の濃度比が小さいという欠点があった。
また、使用する熱拡散分離塔の形状が、分離しようとす
る同位体の粘性係数、拡散係数等の同位体固有の性質に
一義的に決まってしまい、このため、分離濃縮しようと
する同位体混合物の量の多少に応じて熱拡散分離塔の形
状を大型又は小型に変更することが不可能でもあった。
(Problems to be solved by the invention) However, in the conventional thermal diffusion method, generally,
There is a disadvantage that the resolution of the isotope, that is, the concentration ratio of the isotope at the upper end and the lower end of the thermal diffusion separation column is small.
In addition, the shape of the thermal diffusion separation tower to be used is uniquely determined by the intrinsic properties of the isotope to be separated, such as the viscosity coefficient and diffusion coefficient, and therefore, the isotope mixture to be separated and concentrated. It has also been impossible to change the shape of the thermal diffusion separation tower to a large or small size depending on the amount of the catalyst.

このような事情に鑑みてこの発明の発明者は、水素同
位体混合ガス中に存在するトリチウムの分離濃縮におい
て、上記した従来の熱拡散法の欠点を解消するために、
水素同位体混合ガスにヘリウムを予め添加し、白金、ニ
ッケル、パラジウム等の触媒を用いてトリチウムを分離
濃縮することを提案している。この方法は、高純度のト
リチウムを水素同位体混合ガス中から分離濃縮すること
ができ、また、熱拡散分離塔を小型化することもできる
という優れた作用効果を有しており、注目されている。
In view of such circumstances, the inventor of the present invention, in separating and concentrating tritium present in a hydrogen isotope mixed gas, in order to eliminate the disadvantages of the conventional thermal diffusion method described above,
It has been proposed to add helium to a hydrogen isotope mixed gas in advance, and to separate and concentrate tritium using a catalyst such as platinum, nickel, and palladium. This method has an excellent effect of separating and concentrating high-purity tritium from a mixed gas of hydrogen isotopes, and also has an excellent effect of being able to reduce the size of a thermal diffusion separation column. I have.

この発明は、先に提案した上記方法の長所を生かしつ
つ、さらにこれを発展させ、水素同位体混合ガスから混
合ガス中で分子量が最大の成分を大きな分解能で分離濃
縮することができ、その際の運転コストを低減させるこ
ともできる、熱拡散法による水素同位体の分離濃縮方法
を提供することを目的としている。
The present invention makes use of the advantages of the above-mentioned method and further develops it, and can separate and concentrate a component having the highest molecular weight in a mixed gas from a hydrogen isotope mixed gas with a high resolution. It is an object of the present invention to provide a method for separating and concentrating hydrogen isotopes by a thermal diffusion method, which can also reduce the operating cost of the method.

(課題を解決するための手段) この発明は、上記の目的を実現するために、熱拡散法
により水素同位体混合ガスから混合ガス中で分子量が最
大の成分を分離濃縮するにあたり、予め水素同位体混合
ガスに少なくともネオンを添加し、前記分子量最大の成
分を分離濃縮することを特徴とする熱拡散法による水素
同位体の分離濃縮方法を提供する。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a method for separating and concentrating a component having the highest molecular weight in a mixed gas from a hydrogen isotope mixed gas by a thermal diffusion method. Provided is a method for separating and concentrating hydrogen isotopes by a thermal diffusion method, wherein at least neon is added to a body mixture gas, and the component having the largest molecular weight is separated and concentrated.

上記方法の原理をH2/HD/D2の系を例にとって説明する
と、分離は、前記の通りに、水素同位体混合ガス中の各
成分の分子量の差に主に起因するため、H2とNeはよく分
離し、次いでHDもNeと分離する。その結果、分離濃縮し
たNeには、D2がH2やHDに比べ多量に存在することとな
り、水素同位体混合ガス中で分子量が最大の成分を大き
な分解能で分離濃縮することができるのである。
To explain the principle of the method as an example a system of H 2 / HD / D 2, separation, as described above, since due primarily to the difference in molecular weight of each component of the hydrogen isotope mixture gas, H 2 And Ne are well separated, and then HD is also separated from Ne. As a result, in the separated and concentrated Ne, D 2 is present in a larger amount than H 2 and HD, and the component having the largest molecular weight can be separated and concentrated with a high resolution in the hydrogen isotope mixed gas. .

このように、水素同位体混合ガスから混合ガス中で分
子量が最大の成分を分離濃縮するには、ネオンの添加が
欠かせないが、トリチウムの分離濃縮の時に使用してい
たヘリウムを補助的な成分として添加することもでき
る。ヘリウムは、H2とよく分離するため、ネオン濃縮域
は濃縮するH2濃度を低減させ、分子量最大の成分(前記
系ではD2)の濃度を高めることができる。
Thus, the addition of neon is indispensable for separating and concentrating the component having the highest molecular weight in the mixed gas from the hydrogen isotope mixed gas, but the helium used at the time of separating and concentrating tritium is supplementarily used. It can also be added as a component. Helium, to be separated and H 2, neon concentration zone reduces the concentration of H 2 to concentrate, (in the system D 2) molecular weight maximum component can increase the concentration of.

熱拡散分離塔下部のネオン濃縮域に濃縮したネオン
は、ここに分離濃縮する水素同位体混合ガス中で分子量
最大の成分と化学的性質が相互に異なっているため、通
常の化学分離法により容易に除去することができる。
The neon enriched in the neon enrichment zone at the bottom of the thermal diffusion separation column is easily separated by the usual chemical separation method because the components with the highest molecular weight and the chemical properties are different from each other in the hydrogen isotope mixture gas separated and concentrated here. Can be removed.

また、ネオンの添加は、分離濃縮時のヒータ加熱に要
する電圧及び電流をともに低減させる。熱拡散分離塔の
運転コストの低減が可能となる。
Further, the addition of neon reduces both the voltage and the current required for heating the heater during separation and concentration. The operation cost of the thermal diffusion separation tower can be reduced.

(実施例1) 以下実施例を示し、この発明の熱拡散法による水素同
位体の分離濃縮方法についてさらに詳しく説明する。
(Example 1) Hereinafter, an example will be described, and the method for separating and concentrating hydrogen isotopes by the thermal diffusion method of the present invention will be described in more detail.

実施例1 ガラス管(32mmφ)を外筒に用い、その外側を水冷で
きるようにし、この外筒内にニクロム線を有する石英管
(7mmφ)を配置して電気的に加熱するヒータとした。
このような構成からなる熱拡散分離塔の有効長を1mと
し、上部には1のガス溜めを設けた。
Example 1 A glass tube (32 mmφ) was used for an outer cylinder, the outside of which was water-cooled, and a quartz tube (7 mmφ) having a nichrome wire was arranged in the outer cylinder to provide a heater for electrically heating.
The effective length of the thermal diffusion separation tower having such a configuration was set to 1 m, and one gas reservoir was provided at the upper part.

NeをH2及びD2の水素同位体混合ガスにH2/D2/Ne=0.3/
0.3/0.4の割合で添加し、これを上記熱拡散分離塔に導
入し、1気圧とした。この後に、ヒータは110V、4Aで通
電し、加熱したところ、およそ2時間後に定常状態に達
した。ヒータは、310℃から440℃の温度分布を示した。
H 2 / D 2 /Ne=0.3/ the Ne hydrogen isotope gas mixture of H 2 and D 2
It was added at a ratio of 0.3 / 0.4, and introduced into the above-mentioned thermal diffusion separation column, and the pressure was adjusted to 1 atm. Thereafter, the heater was energized at 110 V and 4 A and heated, and reached a steady state after about 2 hours. The heater showed a temperature distribution from 310 ° C to 440 ° C.

熱拡散分離塔内のガス組成は、上端でH2/HD/D2/Ne=
0.60/0.29/0.04/0.07(H2/HD/D2=64.7%/30.7%/4.6
%)で、下端では、H2/HD/D2/Ne=6.3×10-4/3.0×10-3
/9.8×10-4/0.995(H2/HD/D2=13.5%/65.3%/21.1%)
であった。
Gas composition thermal diffusion separation tower is at the upper end H 2 / HD / D 2 / Ne =
0.60 / 0.29 / 0.04 / 0.07 ( H 2 / HD / D 2 = 64.7% / 30.7% / 4.6
%), And at the lower end, H 2 / HD / D 2 /Ne=6.3×10 −4 /3.0×10 −3
/9.8×10 -4 /0.995(H 2 / HD / D 2 = 13.5% / 65.3% / 21.1%)
Met.

水素同位体中のD2の濃度は、下端が状態の4.5倍であ
った。後述する比較例よりも分解能は大きいことが確認
された。また、ヒータ加熱に要する電圧及び電流をとも
に小さくすることができることも確認された。
The concentration of D 2 of the hydrogen isotopes in the bottom was 4.5 times the state. It was confirmed that the resolution was higher than that of a comparative example described later. It was also confirmed that both the voltage and current required for heating the heater could be reduced.

比較例1 実施例1と同様の熱拡散分離塔を用い、Neを添加せず
にD2の濃縮を行った。このときのヒータ電圧及び電流
は、それぞれ120V、4.4Aであった。ヒータ温度は、290
℃から370℃の分布を示した。
Comparative Example 1 Using the same thermal diffusion separation column as in Example 1, D 2 was concentrated without adding Ne. The heater voltage and current at this time were 120 V and 4.4 A, respectively. The heater temperature is 290
The distribution from ℃ to 370 ℃ was shown.

ガス組成は、熱拡散分離塔の上端でH2/HD/D2=40.3%
/44.3%/15.3%、下端では、H2/HD/D2=11.2%/39.9%/
48.9%であった。
Gas composition at the upper end of the thermal diffusion separation column H 2 / HD / D 2 = 40.3%
/44.3Pasento/15.3Pasento, the lower end, H 2 / HD / D 2 = 11.2% / 39.9% /
48.9%.

水素同位体中のD2の濃度は、下端が上端の3倍でしか
なく、実施例1に比べ分解能は低かった。また、ヒータ
加熱に要する電圧及び電流はともに大きかった。
The concentration of D 2 in the hydrogen isotope was only three times lower at the lower end than at the upper end, and the resolution was lower than that in Example 1. The voltage and current required for heating the heater were both large.

実施例2 NeとともにHeをH2及びD2の水素同位体混合ガスにH2/D
2/Ne/He=0.25/0.10/0.27/0.38の割合で添加し、これを
実施例1と同様の熱拡散分離塔に導入し、1気圧とし
た。この後に、ヒータに50V、2Aで通電し、加熱したと
ころ、およそ2時間後に定常状態に達した。ヒータは、
120℃から190℃の温度分布を示した。
Example 2 He and H 2 were mixed with H 2 / D 2 in a hydrogen isotope mixture gas of H 2 and D 2.
2 / Ne / He = 0.25 / 0.10 / 0.27 / 0.38 was added, and this was introduced into the same thermal diffusion separation column as in Example 1 to 1 atm. Thereafter, the heater was energized at 50 V, 2 A and heated, and reached a steady state after about 2 hours. The heater is
The temperature distribution was from 120 ° C to 190 ° C.

熱拡散分離塔内のガス組成は、上端でH2/HD/D2/Ne/He
=0.20/0.14/0.01/0.14/0.51(H2/HD/D2=57.5%/40.0
%/2.5%)で、下端では、H2/HD/D2/Ne/He=0.007/0.01
3/0.011/0.917/0.052(H2/HD/D2=23.0%/42.9%/34.1
%)であった。
Gas composition thermal diffusion separation tower has an upper end with H 2 / HD / D 2 / Ne / He
= 0.20 / 0.14 / 0.01 / 0.14 / 0.51 (H 2 / HD / D 2 = 57.5% / 40.0
% / 2.5%), at the lower end, H 2 / HD / D 2 /Ne/He=0.007/0.01
3 / 0.011 / 0.917 / 0.052 ( H 2 / HD / D 2 = 23.0% / 42.9% / 34.1
%)Met.

水素同位体中のD2の濃度は、下端が上端の14倍に達
し、ヒータ加熱に要する電圧及び電流はさらに低減され
た。
The concentration of D 2 in the hydrogen isotope reached 14 times at the lower end compared to the upper end, and the voltage and current required for heating the heater were further reduced.

もちろんこの発明は、以上の例によって限定されるも
のではない。熱拡散分離塔の構造及び構成、水素同位体
混合ガスの組成及び成分比等の細部については様々な態
様が可能であることは言うまでもない。
Of course, the present invention is not limited by the above examples. It goes without saying that various aspects are possible for details such as the structure and configuration of the thermal diffusion separation tower, the composition and the component ratio of the hydrogen isotope mixed gas.

(発明の効果) 以上詳しく説明した通り、この発明によって、水素同
位体混合ガスから分子量最大の成分を大きな分解能で分
離濃縮することが可能となる。また、分離濃縮時にヒー
タに通電する電圧及び電流が低減され、熱拡散分離塔の
運転コストの削減も可能となる。
(Effects of the Invention) As described in detail above, according to the present invention, it is possible to separate and concentrate a component having the largest molecular weight from a hydrogen isotope mixed gas with a high resolution. Further, the voltage and current to be supplied to the heater during the separation and concentration are reduced, and the operation cost of the thermal diffusion separation tower can be reduced.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】熱拡散法により水素同位体混合ガスから混
合ガス中で分子量が最大の成分を分離濃縮するにあた
り、予め水素同位体混合ガスに少なくともネオンを添加
し、前記分子量最大の成分を分離濃縮することを特徴と
する熱拡散法による水素同位体の分離濃縮方法。
When separating and concentrating a component having the highest molecular weight in a mixed gas from a hydrogen isotope mixed gas by a thermal diffusion method, at least neon is added to the hydrogen isotope mixed gas in advance to separate the component having the highest molecular weight. A method for separating and concentrating hydrogen isotopes by a thermal diffusion method, comprising concentrating.
JP1094395A 1989-04-14 1989-04-14 Separation and concentration method of hydrogen isotope by thermal diffusion method Expired - Fee Related JP2765722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1094395A JP2765722B2 (en) 1989-04-14 1989-04-14 Separation and concentration method of hydrogen isotope by thermal diffusion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1094395A JP2765722B2 (en) 1989-04-14 1989-04-14 Separation and concentration method of hydrogen isotope by thermal diffusion method

Publications (2)

Publication Number Publication Date
JPH02273516A JPH02273516A (en) 1990-11-08
JP2765722B2 true JP2765722B2 (en) 1998-06-18

Family

ID=14109080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1094395A Expired - Fee Related JP2765722B2 (en) 1989-04-14 1989-04-14 Separation and concentration method of hydrogen isotope by thermal diffusion method

Country Status (1)

Country Link
JP (1) JP2765722B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7815890B2 (en) * 2005-10-11 2010-10-19 Special Separations Application, Inc. Process for tritium removal from water by transfer of tritium from water to an elemental hydrogen stream, followed by membrane diffusion tritium stripping and enrichment, and final tritium enrichment by thermal diffusion

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS632208A (en) * 1986-06-20 1988-01-07 田中貴金属工業株式会社 Holed revet type contact

Also Published As

Publication number Publication date
JPH02273516A (en) 1990-11-08

Similar Documents

Publication Publication Date Title
US3099534A (en) Method for production of high-purity semiconductor materials for electrical purposes
Kassel The thermal decomposition of methane1
ES8702432A1 (en) Method for purifying antihemophilic factor.
MY113742A (en) Process for continuous purification of crude caprolactam prepared from 6-aminocapronitrile
DK450785D0 (en) PROCEDURE FOR PREPARING A HIGH PURITY ANTIHAEMOPHILIC FACTOR CONCENTRATE
KR930016433A (en) Process for preparing α-glycosyl-L-ascorbic acid high content and separation system for the preparation thereof
JP2765722B2 (en) Separation and concentration method of hydrogen isotope by thermal diffusion method
Richey Jr et al. Alkynyl Cations
US2837469A (en) Distilling apparatus for the production of pure water
Grosse Metallic element 91
US3230693A (en) Apparatus for mass separation of reactive gases
Schluckebier et al. Investigations on Separation and Crystallization Behaviour of Metallic Glasses of the System Palladium--Nickel--Phosphorus
US4919699A (en) Process of removing platinum inclusions from laser glass
ATE250015T1 (en) METHOD FOR PRODUCING GLASS
Birch et al. Organometallic compounds in organic synthesis: XVIII. Removal of OMe from some substituted tricarbonylcylohexadieneirons to form substituted tricarbonylcyclohexadienyliron salts
US1873154A (en) Process for the preparation of cyclic non-saturated ketones with more than nine ringmembers
Woolsey et al. Note on the positive column in mixtures of iodine and argonf
Tylyaganov et al. Development and Application of Anorthite Diopside Containing Glass-Ceramics
JP2820792B2 (en) Method for producing dimethylnaphthalene
Benedict et al. X-Ray Diffraction Analysis of Vaccenic Acid
Mueller Microstructure of binary B sub 2 O sub 3-SiO sub 2 system glasses
JPS632208B2 (en)
Reed [13] The resolvase protein of the transposon γδ
JPS60166022A (en) Thermal diffusion tower for removing and/or concentrating gaseous mixture or for separating isotope and apparatus therefor
Perschke Tritium enrichment by gas chromatography

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees