JP2765321B2 - Semiconductor light receiving element - Google Patents

Semiconductor light receiving element

Info

Publication number
JP2765321B2
JP2765321B2 JP3341865A JP34186591A JP2765321B2 JP 2765321 B2 JP2765321 B2 JP 2765321B2 JP 3341865 A JP3341865 A JP 3341865A JP 34186591 A JP34186591 A JP 34186591A JP 2765321 B2 JP2765321 B2 JP 2765321B2
Authority
JP
Japan
Prior art keywords
light
light receiving
receiving element
optical fiber
inp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3341865A
Other languages
Japanese (ja)
Other versions
JPH05152599A (en
Inventor
敦彦 日下部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP3341865A priority Critical patent/JP2765321B2/en
Publication of JPH05152599A publication Critical patent/JPH05152599A/en
Application granted granted Critical
Publication of JP2765321B2 publication Critical patent/JP2765321B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、光通信に用いられる半
導体受光素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light receiving device used for optical communication.

【0002】[0002]

【従来の技術】化合物半導体受光素子は、光通信用の高
感度・長波長受光器として実用化されているが、中でも
InGaAsを用いた波長1.3μmあるいは1.55
μmに対する半導体受光素子は大容量長距離光通信用と
して広く使われている。
2. Description of the Related Art Compound semiconductor photodetectors have been put to practical use as high-sensitivity, long-wavelength photodetectors for optical communication. Among them, 1.3 μm or 1.55 μm wavelengths using InGaAs are particularly preferred.
Semiconductor photodetectors for μm are widely used for large-capacity long-distance optical communication.

【0003】このInGaAsを使ったpinホトダイ
オードの従来例を図5に示す。n+ −InP基板1上
に、キャリア濃度1E15〜2E16cm-3、層厚1〜
3μmのn−InP緩衝層2、キャリア濃度1E14〜
1E16cm-3、層厚1〜5μmのn- −InGaAs
光吸収層3、キャリア濃度1E15〜3E16cm-3
層厚0.5〜2μmのn−InP窓層4を順次気相成長
法により成長させたエピタキシャルウェハに、受光部と
してキャリア濃度1E17〜1E20cm-3のp+ −I
nP領域5をZnの封止拡散により選択的に形成したの
ち、n−InP窓層4の表面に、反射防止膜兼絶縁膜8
として酸化膜または窒化膜を成長させる。この後絶縁膜
8に選択的に穴開けを行いp側電極6を形成し、さらに
基板裏面にn側電極7を形成する。
FIG. 5 shows a conventional example of a pin photodiode using InGaAs. n + -InP on the substrate 1, carrier concentration 1E15~2E16cm -3, thickness 1
3 μm n-InP buffer layer 2, carrier concentration 1E14 ~
N -InGaAs having a thickness of 1E16 cm −3 and a layer thickness of 1 to 5 μm
Light absorption layer 3, carrier concentration of 1E15 to 3E16 cm -3 ,
An n-InP window layer 4 having a layer thickness of 0.5 to 2 μm is sequentially grown on the epitaxial wafer by vapor phase epitaxy, and p + -I having a carrier concentration of 1E17 to 1E20 cm −3 is used as a light receiving portion.
After the nP region 5 is selectively formed by sealing diffusion of Zn, an antireflection film / insulating film 8 is formed on the surface of the n-InP window layer 4.
To grow an oxide film or a nitride film. Thereafter, a hole is selectively formed in the insulating film 8 to form the p-side electrode 6, and an n-side electrode 7 is formed on the back surface of the substrate.

【0004】このようにして作成したInGaAsを用
いたpinホトダイオードは主に光ファイバ通信におけ
る受信器として用いられる。光通信システムにおいて送
信側には半導体レーザ(以下、LDと記す)が用いられ
る。LDから出た信号光はレンズによって集光されて光
ファイバへ導かれる。受光側では光ファイバ内を伝搬し
てきた光は、レンズによって受光部に集光され、受光素
子内部(光吸収層内)で光電変換される。
[0004] The pin photodiode using InGaAs thus produced is mainly used as a receiver in optical fiber communication. In an optical communication system, a semiconductor laser (hereinafter, referred to as an LD) is used on a transmission side. The signal light emitted from the LD is collected by a lens and guided to an optical fiber. On the light receiving side, the light propagating in the optical fiber is condensed on the light receiving portion by the lens, and is photoelectrically converted inside the light receiving element (in the light absorbing layer).

【0005】ここで、LDから出た光が、光ファイバ端
やレンズ表面、受光素子表面によって一部反射され、再
び光ファイバを通してLD側に戻る現象がある。この反
射戻り光がLD内部に戻るとLDの発光状態が不安定に
なるため、可能なかぎりこの反射戻り光を抑えなければ
ならない。そのため、受光素子側の反射戻り光対策とし
て、ファイバ端を5°ないし15°の範囲で斜めカット
をしたり、レンズや受光素子表面に反射防止膜を施した
りしている。
Here, there is a phenomenon that light emitted from the LD is partially reflected by the end of the optical fiber, the surface of the lens, and the surface of the light receiving element, and returns to the LD side through the optical fiber again. When the reflected return light returns to the inside of the LD, the light emitting state of the LD becomes unstable. Therefore, the reflected return light must be suppressed as much as possible. Therefore, as a measure against reflected return light on the light receiving element side, the fiber end is obliquely cut in the range of 5 ° to 15 °, or an antireflection film is applied to the lens or the light receiving element surface.

【0006】[0006]

【発明が解決しようとする課題】上述した従来の受光素
子では、ステムにマウントした際に傾いて固着されるこ
とがありそしてその傾きの方向が一定でないため、その
受光素子と結合される光ファイバの斜めカット方向と整
合しなくなることがある。即ち、受光素子の傾き面と光
ファイバのカット面とが側面からみて「ハ」の字形状に
なるときには、受光素子表面での反射光が光ファイバ内
へ戻されることになるのであるが、上述した従来の受光
素子では、受光素子のステムに対する傾きが一義的に定
まらないため、上記不都合を避けることができなかっ
た。
In the above-mentioned conventional light-receiving element, the light-receiving element may be inclined and fixed when mounted on the stem, and the direction of the inclination is not constant. May not be aligned with the oblique cutting direction. That is, when the inclined surface of the light receiving element and the cut surface of the optical fiber have a “C” shape when viewed from the side, the light reflected on the surface of the light receiving element is returned into the optical fiber. In the conventional light receiving element described above, since the inclination of the light receiving element with respect to the stem cannot be uniquely determined, the above-mentioned inconvenience cannot be avoided.

【0007】[0007]

【課題を解決するための手段】本発明の半導体受光素子
は、光ファイバからの出射光が当該光ファイバへ戻るこ
とのないようにするために、受光領域の光入射面が5°
ないし15°の一様な傾斜角をもってマウント面に対し
傾斜していることを特徴としている。
According to the semiconductor light receiving device of the present invention, light emitted from an optical fiber returns to the optical fiber.
To avoid the bets, the light incident surface of the light-receiving area 5 °
With a uniform angle of inclination of 15 ° to 15 °
It is characterized by being inclined.

【0008】[0008]

【実施例】次に、本発明の実施例について図面を参照し
て説明する。図1は、本発明の第1の実施例の製造工程
を示す断面図である。n+ −InP基板1上に気相成長
法によりキャリア濃度1E15cm-3、層厚2μmのn
−InP緩衝層2、キャリア濃度1E15cm-3、層厚
1.4μmのn- −InGaAs光吸収層3を成長させ
た後、キャリア濃度1E16cm-3、層厚1μmのn−
InP窓層4を成長させる〔図1の(a)〕。
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view showing a manufacturing process of the first embodiment of the present invention. On the n + -InP substrate 1, n having a carrier concentration of 1E15 cm -3 and a layer thickness of 2 μm is formed by a vapor phase growth method.
After growing an n -InGaAs light absorbing layer 3 having a -InP buffer layer 2 and a carrier concentration of 1E15 cm −3 and a layer thickness of 1.4 μm, an n− layer having a carrier concentration of 1E16 cm −3 and a layer thickness of 1 μm is formed.
An InP window layer 4 is grown [FIG.

【0009】上記エピタキシャルウェハに拡散マスクを
CVD法により形成し、受光部分に50μmφの穴開け
を行った後、例えばZnの封止拡散によりキャリア濃度
1E17〜1E20cm-3のp+ −InP領域5を選択
的に形成する〔図1の(b)〕。p+ −InP領域5形
成後、エッチングマスクとして受光領域を囲むようにホ
トレジストマスク10を形成し、6°斜め方向からイオ
ンビーム11を照射してエッチングを行い〔図1の
(c)〕、InP窓層4表面に部分的に6°傾いた傾斜
受光領域9を形成する〔図1の(d)〕。
[0009] The diffusion mask on the epitaxial wafer formed by a CVD method, after the drilling of 50μmφ the light receiving portion, for example, by sealing the diffusion of Zn and p + -InP region 5 of the carrier concentration 1E17~1E20cm -3 It is selectively formed [FIG. 1 (b)]. After the formation of the p + -InP region 5, a photoresist mask 10 is formed as an etching mask so as to surround the light receiving region, and etching is performed by irradiating the ion beam 11 from an oblique direction of 6 ° (FIG. 1 (c)). On the surface of the window layer 4, an inclined light receiving area 9 partially inclined by 6 ° is formed (FIG. 1 (d)).

【0010】ホトレジストマスク10を除去した後、表
面側に通常の方法で反射防止膜兼絶縁膜8を成長させ、
この絶縁膜に窓明けを行ってからp側電極6を形成す
る。次に、n+ −InP基板1の裏面を全体の厚さが1
00〜200μmになるまで研磨し、その面にSn−A
uを蒸着し、アロイ化してn側電極7を形成する。
After removing the photoresist mask 10, an antireflection film / insulating film 8 is grown on the surface side by a usual method.
After opening a window in this insulating film, the p-side electrode 6 is formed. Next, the rear surface of the n + -InP substrate 1 is
Polished to a thickness of 100 to 200 μm, and the surface is Sn-A
u is deposited and alloyed to form an n-side electrode 7.

【0011】上記方法により作成したpinホトダイオ
ードの断面図を図2に、このホトダイオードを搭載した
受光素子モジュールにおける受光部の傾斜と光ファイバ
のカット方向との関係を図3に示す。図3に示すよう
に、光ファイバのカット方向と傾斜受光領域9の方向を
そろえるように両者をステムに固定すれば、受光素子か
らの表面反射が再び光ファイバに戻ることを防止するこ
とができる。仮に、この場合にホトダイオードが傾いて
ステムにマウントされることがあっても、傾斜受光面が
ステム平面に対して水平になる程度であるので、傾斜受
光面と光ファイバのカット面とが「ハ」の字形となるこ
とは防止され、ホトダイオード表面での反射光が光ファ
イバへ再入射することはない。
FIG. 2 is a sectional view of a pin photodiode produced by the above method, and FIG. 3 shows the relationship between the inclination of the light receiving portion and the cutting direction of the optical fiber in a light receiving element module equipped with this photodiode. As shown in FIG. 3, if the two are fixed to the stem so that the cutting direction of the optical fiber and the direction of the inclined light receiving region 9 are aligned, it is possible to prevent surface reflection from the light receiving element from returning to the optical fiber again. . In this case, even if the photodiode is inclined and mounted on the stem in this case, the inclined light receiving surface and the cut surface of the optical fiber are “H” because the inclined light receiving surface is almost horizontal with respect to the stem plane. Is prevented, and the light reflected on the photodiode surface does not re-enter the optical fiber.

【0012】図4は、本発明の第2の実施例を示す断面
図であって、本実施例は、裏面入射型pinホトダイオ
ードに関するものである。本実施例のホトダイオードは
次のように作製される。図1の(b)に示す工程まで
は、第1の実施例の場合と同様である。このようにエピ
タキシャルウェハを形成した後、基板表面にp側電極6
を形成する。
FIG. 4 is a sectional view showing a second embodiment of the present invention. This embodiment relates to a back-illuminated pin photodiode. The photodiode of this embodiment is manufactured as follows. The steps up to the step shown in FIG. 1B are the same as those in the first embodiment. After forming the epitaxial wafer in this manner, the p-side electrode 6 is formed on the substrate surface.
To form

【0013】次に、基板裏面を全体の厚さが100〜1
50μmになるまで鏡面研磨し、然る後、受光領域を囲
むようにホトレジストマスクを形成し、斜め6°方向か
らイオンビームエッチングを行い、裏面に選択的に傾斜
受光領域9を形成する。その後裏面の傾斜領域に反射防
止膜8を、その他の部分にn側電極7を形成する。本実
施例のものにおいても、受光素子モジュールにおいて、
受光素子の傾斜面と光ファイバの傾斜方向とをそろえる
ことによって、先の実施例と同様に、反射戻り光を防止
することができる。
Next, the entire thickness of the back surface of the substrate is set to 100 to 1
Mirror polishing is performed until the thickness reaches 50 μm. Thereafter, a photoresist mask is formed so as to surround the light receiving region, ion beam etching is performed from an oblique direction of 6 °, and the inclined light receiving region 9 is selectively formed on the back surface. Thereafter, an antireflection film 8 is formed on the inclined region on the back surface, and an n-side electrode 7 is formed on the other portions. Also in this embodiment, in the light receiving element module,
By aligning the inclined surface of the light receiving element with the inclined direction of the optical fiber, it is possible to prevent reflected return light as in the previous embodiment.

【0014】以上好ましい実施例について説明したが、
本発明はこれら実施例に限定されるものではなく、例え
ば、pinホトダイオードばかりでなくAPDに対して
適用することができ、またInAsP/InP系以外の
材料を使用したホトダイオードについても同様に実施で
きる。さらにエピタキシャルウェハの形成手段として
は、気相成長法の外、液相法、MOCVD法、MBE
法、ALE法等を採用することができる。また、受光領
域の傾き角度も5°〜15°程度の範囲で任意に設定す
ることができる。
Although the preferred embodiment has been described above,
The present invention is not limited to these embodiments. For example, the present invention can be applied not only to pin photodiodes but also to APDs, and can be similarly applied to photodiodes using materials other than InAsP / InP. In addition, as a means for forming an epitaxial wafer, a vapor phase growth method, a liquid phase method, an MOCVD method, an MBE
Method, ALE method, or the like can be adopted. Further, the inclination angle of the light receiving region can be arbitrarily set in a range of about 5 ° to 15 °.

【0015】なお、本発明の受光素子では支持体へのマ
ウント面と光入射面とが同一の面であってもよい。その
場合、マウント用電極の形成された部分に対し、受光領
域の半導体表面が傾斜をもつことになる。
In the light-receiving element of the present invention, the surface on which the light is incident on the support may be the same as the surface on which the light is incident. In that case, the semiconductor surface of the light receiving region has an inclination with respect to the portion where the mounting electrode is formed.

【0016】[0016]

【発明の効果】以上説明したように、本発明の受光素子
は、マウント面に対して受光領域の表面を傾斜させたも
のであるので、本発明によれば、受光領域の傾きに対す
る光ファイバのカット面を一義的に決めることができ
る。その結果、受光素子表面からLDへの反射戻り光を
防ぐことができ、光ファイバ通信におけるLD側の発振
の不安定化を防止することができる。
As described above, the light-receiving element of the present invention has the light-receiving region inclined with respect to the mounting surface. The cut surface can be uniquely determined. As a result, reflected return light from the light receiving element surface to the LD can be prevented, and instability of oscillation on the LD side in optical fiber communication can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1の実施例の製造工程を説明する
ための断面図。
FIG. 1 is a cross-sectional view illustrating a manufacturing process according to a first embodiment of the present invention.

【図2】 本発明の第1の実施例を示す断面図。FIG. 2 is a sectional view showing the first embodiment of the present invention.

【図3】 受光素子モジュールにおける、本発明の第1
の実施例と斜めカットされた光ファイバとの関係を示す
断面図。
FIG. 3 is a diagram showing a first embodiment of the present invention in a light receiving element module;
Sectional drawing which shows the relationship between the Example of Example and the optical fiber which was obliquely cut.

【図4】 本発明の第2の実施例を示す断面図。FIG. 4 is a sectional view showing a second embodiment of the present invention.

【図5】 従来例を示す断面図。FIG. 5 is a sectional view showing a conventional example.

【符号の説明】[Explanation of symbols]

1 n+ −InP基板 2 n−InP緩衝層 3 n- −InGaAs光吸収層 4 n−InP窓層 5 p+ −InP領域 6 p側電極 7 n側電極 8 反射防止膜兼絶縁膜 9 傾斜受光領域 10 ホトレジストマスク 11 イオンビーム 12 光ファイバReference Signs List 1 n + -InP substrate 2 n-InP buffer layer 3 n -- InGaAs light absorption layer 4 n-InP window layer 5 p + -InP region 6 p-side electrode 7 n-side electrode 8 antireflection film / insulating film 9 inclined light reception Area 10 Photoresist mask 11 Ion beam 12 Optical fiber

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01L 31/02 - 31/0392 H01L 31/08 - 31/119──────────────────────────────────────────────────続 き Continued on the front page (58) Fields surveyed (Int.Cl. 6 , DB name) H01L 31/02-31/0392 H01L 31/08-31/119

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 支持体上にマウントされる第1主面が内
部に形成された光吸収層と平行になされ、光が入射され
第2主面が前記光吸収層と大略平行になされた半導体
受光素子であって光ファイバからの出射光が該光ファイバへ戻ることのな
いようにするために、前記第2主面の少なくとも光入射
領域の面は前記光吸収層に対し一様な傾斜角をもって傾
けられ ていることを特徴とする半導体受光素子。
The first main surface mounted on a support has an inner surface.
Parts were made in parallel with the light-absorbing layer formed, a semiconductor light-receiving element in which the second major surface is made parallel generally with the light absorbing layer which light is incident, the light emitted from the optical fiber is optical fiber Don't go back to
At least light incident on the second main surface
The plane of the region is inclined at a uniform inclination angle with respect to the light absorbing layer.
The semiconductor light receiving device characterized by being eclipsed.
JP3341865A 1991-11-29 1991-11-29 Semiconductor light receiving element Expired - Fee Related JP2765321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3341865A JP2765321B2 (en) 1991-11-29 1991-11-29 Semiconductor light receiving element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3341865A JP2765321B2 (en) 1991-11-29 1991-11-29 Semiconductor light receiving element

Publications (2)

Publication Number Publication Date
JPH05152599A JPH05152599A (en) 1993-06-18
JP2765321B2 true JP2765321B2 (en) 1998-06-11

Family

ID=18349347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3341865A Expired - Fee Related JP2765321B2 (en) 1991-11-29 1991-11-29 Semiconductor light receiving element

Country Status (1)

Country Link
JP (1) JP2765321B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5135192B2 (en) 2008-12-11 2013-01-30 日本オクラロ株式会社 Optical receiver module and method of manufacturing optical receiver module
JP2011253987A (en) * 2010-06-03 2011-12-15 Mitsubishi Electric Corp Semiconductor photodetector and optical module
JP2012129390A (en) * 2010-12-16 2012-07-05 Opnext Japan Inc Semiconductor light-emitting element, and method of manufacturing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5978643U (en) * 1982-11-18 1984-05-28 日本電気株式会社 photodetector
JPS62230065A (en) * 1986-03-31 1987-10-08 Mitsubishi Electric Corp Semiconductor photodetector
JPH02146460U (en) * 1989-05-17 1990-12-12
JP2710070B2 (en) * 1989-09-20 1998-02-10 松下電子工業株式会社 Semiconductor light receiving element and optical semiconductor device using this semiconductor light receiving element
JPH0513788A (en) * 1991-06-28 1993-01-22 Fujitsu Ltd Infrared rays detection device

Also Published As

Publication number Publication date
JPH05152599A (en) 1993-06-18

Similar Documents

Publication Publication Date Title
US4493113A (en) Bidirectional fiber optic transmission systems and photodiodes for use in such systems
US4709413A (en) Bidirectional fiber optic systems
US4577209A (en) Photodiodes having a hole extending therethrough
US5412229A (en) Semiconductor light detecting device making use of a photodiode chip
JPH0653538A (en) Semiconductor light receiving element
US4840916A (en) Process for fabricating an avalanche photodiode
CN106784118B (en) Back-illuminated high-speed photodiode receiving chip and manufacturing method thereof
US4761383A (en) Method of manufacturing avalanche photo diode
US6396117B1 (en) Semiconductor photodetector, method for manufacturing semiconductor photodetector and photodetector module
US5652813A (en) Line bi-directional link
KR100464333B1 (en) Photo detector and method for fabricating thereof
JPH0677518A (en) Semiconductor photodetector
JP2765321B2 (en) Semiconductor light receiving element
JPH1022520A (en) Semiconductor photodetector and its manufacture
EP1976023A2 (en) Optical semiconductor module and light receiving element
JPH04111478A (en) Light-receiving element
US5656831A (en) Semiconductor photo detector
EP0491384A1 (en) Light receiving device with a PIN structure
JP2710070B2 (en) Semiconductor light receiving element and optical semiconductor device using this semiconductor light receiving element
JPH06296007A (en) Formation method for structure of combination of optical waveguide and mirror and structure obtained thereby
JP2995921B2 (en) Semiconductor light receiving element
JPH07118548B2 (en) III-V group compound semiconductor PIN photo diode
JP6981370B2 (en) Light receiving device and its manufacturing method
JPH04342174A (en) Semiconductor photoelectric receiving element
JPH0562472B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees