JP2763942B2 - Manufacturing method of silicon carbide sheet - Google Patents

Manufacturing method of silicon carbide sheet

Info

Publication number
JP2763942B2
JP2763942B2 JP1319980A JP31998089A JP2763942B2 JP 2763942 B2 JP2763942 B2 JP 2763942B2 JP 1319980 A JP1319980 A JP 1319980A JP 31998089 A JP31998089 A JP 31998089A JP 2763942 B2 JP2763942 B2 JP 2763942B2
Authority
JP
Japan
Prior art keywords
sheet
silicon carbide
graphite
cutting
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1319980A
Other languages
Japanese (ja)
Other versions
JPH03183612A (en
Inventor
雅司 繁戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP1319980A priority Critical patent/JP2763942B2/en
Publication of JPH03183612A publication Critical patent/JPH03183612A/en
Application granted granted Critical
Publication of JP2763942B2 publication Critical patent/JP2763942B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体ウエハーの切断や、その他の超精密
切断に使用される炭化珪素ブレード及び、耐酸化性を有
した面状発熱体などに用いられる炭化珪素シート及びそ
の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a silicon carbide blade used for cutting a semiconductor wafer and other ultra-precision cutting, and a sheet heating element having oxidation resistance. The present invention relates to a silicon carbide sheet used and a method for producing the same.

〔従来の技術〕[Conventional technology]

従来、切断用のブレードは、金属製あるいは、繊維強
化プラスチック複合材を支持材とし、切断部分には通
常、ダイヤモンドの砥粒を金属に埋め込んだり、樹脂で
固めたものが使用されている。
Conventionally, a cutting blade has been made of a metal or a fiber-reinforced plastic composite material as a support material, and the cutting portion is usually formed by embedding diamond abrasive grains in metal or hardening with resin.

薄い切断ブレードにはダイヤモンドの外、炭化珪素製
のものがあるが、研削して薄くすることは難しいので、
一般的には厚さ200μm程度のものが蒸着法でつくられ
ている。蒸着法は黒鉛基材に酸化珪素と炭素とを高温、
減圧下で反応させ、発生するガス(主としてSiO)を基
材に導き、そこで膜状炭化珪素として析出させる方法で
ある。その他有機珪素ポリマーのシートを焼成して炭化
珪素を主成分とするシートも提案されている(特開平1
−249660)。
Thin cutting blades are made of silicon carbide in addition to diamond, but it is difficult to grind and make thinner,
Generally, those having a thickness of about 200 μm are formed by a vapor deposition method. The vapor deposition method is to heat silicon oxide and carbon to high temperature on a graphite substrate.
This is a method in which a gas (mainly SiO) generated by reacting under reduced pressure is led to a base material, where it is deposited as silicon carbide film. In addition, there has been proposed a sheet containing silicon carbide as a main component by firing a sheet of an organic silicon polymer (Japanese Patent Application Laid-Open No. HEI 1-1990).
−249660).

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

ダイヤモンド砥粒を用いるブレードでは厚さは50μm
程度が限度であり、半導体ウエハーの切断や超精密切断
には不向きであり、また高価でもある。
50μm thickness for blades using diamond abrasive
The degree is limited, and it is not suitable for cutting semiconductor wafers or ultra-precision cutting, and is expensive.

蒸着法による炭化珪素ブレードは厚さ200μm程度の
ものは製造可能であるが、それよりも薄く、特に100μ
m以下のようにすると、炭化珪素と黒鉛との熱膨張率の
差異から、炭化珪素に生じた残留歪のため、黒鉛除去後
に炭化珪素シートに反りが生じるなどの問題があって、
そのような薄いシートは従来つくられていない。またこ
の蒸着法によるものは極めて緻密となり、かえって切断
性能には都合が悪く、さらに結晶が独立し、粒界がはっ
きりしているので、引張り強度は弱い。
Silicon carbide blades by the vapor deposition method can be manufactured with a thickness of about 200 μm, but thinner, especially 100 μm.
m or less, due to the difference in thermal expansion coefficient between silicon carbide and graphite, there is a problem that, due to residual strain generated in silicon carbide, the silicon carbide sheet is warped after graphite removal.
Such thin sheets have not been previously made. In addition, the one obtained by this vapor deposition method is extremely dense, and is rather inconvenient in cutting performance. Further, since the crystals are independent and the grain boundaries are clear, the tensile strength is low.

前記特開平1−249660の方法では厚さ50μm程度まで
薄くすることが可能であるが、かなりの量の炭素と二酸
化珪素がシート中に残り、用途が限定される。
According to the method disclosed in JP-A-1-249660, it is possible to reduce the thickness to about 50 μm, but a considerable amount of carbon and silicon dioxide remains in the sheet, which limits the application.

本発明の目的は実用的に炭化珪素からなり、反りがな
く、切断性能に優れた極めて薄い炭化珪素シートを提供
することにある。
An object of the present invention is to provide an extremely thin silicon carbide sheet which is practically made of silicon carbide, has no warpage, and has excellent cutting performance.

〔課題を解決するための手段〕[Means for solving the problem]

蒸着法による炭化珪素は反りの問題や切断性能の問題
があることに鑑み、極めて薄く、かつ気孔のある炭素質
(黒鉛を含む)シートを用い、これを蒸着法により全体
を炭化珪素化することにより、これらの問題が解決でき
ることを見出し、本発明に至ったものである。
In consideration of the problem of warpage and the problem of cutting performance, silicon carbide produced by vapor deposition uses an extremely thin and porous carbonaceous (including graphite) sheet, which is entirely converted to silicon carbide by vapor deposition. As a result, the inventors have found that these problems can be solved, and have arrived at the present invention.

即ち、本発明は有機質シートを焼成した炭素質あるい
は黒鉛質シートを基材とし、これを蒸着法で炭化珪素化
してシートにする方法である。
That is, the present invention is a method in which a carbonaceous or graphitic sheet obtained by firing an organic sheet is used as a base material and siliconized by a vapor deposition method to form a sheet.

炭化珪素シートは5μm未満だと強度が弱く、実用化
が難しく、また100μmを超えるものは切断ブレードと
しては価値が低い。このシートの密度は理論値の50〜95
%であり、適度な気孔があるので切断の性能がよく、引
張り強度も15kgf/mm2以上あるので問題はない。
If the silicon carbide sheet is less than 5 μm, the strength is weak and it is difficult to put it to practical use, and if it exceeds 100 μm, the value as a cutting blade is low. The density of this sheet is theoretically 50-95
%, Which has no problem because it has appropriate pores and has good cutting performance, and has a tensile strength of 15 kgf / mm 2 or more.

このシートの製造法は先ず有機質シートを焼成して炭
素質あるいは黒鉛質のシートをつくる。このシートは適
度な気孔をもったものとなる。有機質シートは紙、ある
いはポリカプトン、ポリキノリン、POD(ポリオキサジ
アゾール)などの比較的炭化率の高い樹脂のシート、フ
ィルムなどが使用でき、その厚さは7〜150μmが適当
である。この焼成はArガスやN2ガス、あるいは真空中な
どの非酸化性雰囲気中で800℃以上で行なう。この温度
が黒鉛化以上であれば黒鉛質シートとなる。シートは焼
成中収縮しやすいので(面積で約50%収縮)、反りやう
ねりがないように焼成する必要がある。このためには、
あらかじめ表面を仕上げた黒鉛材や平滑な黒鉛シート等
で有機質シートを挟み、焼成するのがよい。昇温速度は
特に限定されないが、800℃位までは10℃/分より遅い
速度で焼成すれば目的にあった気孔をもつ炭素質あるい
は黒鉛質のシートが得られる。このシートの厚みはほぼ
5〜100μmである。
In the method of manufacturing this sheet, first, an organic sheet is fired to produce a carbonaceous or graphite sheet. This sheet has appropriate pores. As the organic sheet, paper or a sheet or film of a resin having a relatively high carbonization rate such as polycapton, polyquinoline, and POD (polyoxadiazole) can be used, and the appropriate thickness is 7 to 150 μm. This firing is performed at 800 ° C. or more in a non-oxidizing atmosphere such as Ar gas, N 2 gas, or vacuum. If this temperature is equal to or higher than graphitization, a graphite sheet is obtained. Since the sheet easily shrinks during firing (about 50% shrinkage in area), it is necessary to fire the sheet so that it does not warp or undulate. To do this,
It is preferable to sandwich the organic sheet with a graphite material whose surface has been finished in advance or a smooth graphite sheet and bake it. The rate of temperature rise is not particularly limited, but calcining at a rate of less than 10 ° C./min up to about 800 ° C. provides a carbon or graphite sheet having a desired pore. The thickness of this sheet is approximately 5 to 100 μm.

このようにして得られた炭素質あるいは黒鉛質シート
を基材とし、炭化珪素化すれば所望の炭化珪素シートが
得られる。その方法は、従来から行なわれている炭素と
SiOガスとの反応による炭化珪素方法で実現可能であ
る。
By using the carbonaceous or graphitic sheet thus obtained as a base material and converting it to silicon carbide, a desired silicon carbide sheet can be obtained. The method is based on conventional carbon
It can be realized by a silicon carbide method by reaction with SiO gas.

具体的には炭素または黒鉛と二酸化珪素(SiO2)の混
合物、あるいは珪素と二酸化珪素を加熱して発生するSi
Oガスを用いればよい。その他Siを蒸発させ、その蒸気
を炭素あるいは黒鉛シートと反応させてSiCとすること
も可能である。
Specifically, a mixture of carbon or graphite and silicon dioxide (SiO 2 ), or Si generated by heating silicon and silicon dioxide
O gas may be used. In addition, it is also possible to evaporate Si and react the vapor with a carbon or graphite sheet to form SiC.

本発明の場合、基材となる炭素あるいは黒鉛シート全
体を炭化珪素化する必要がある。その方法は、例えば図
1に示したような反応容器1の底部に二酸化珪素と黒鉛
の粉末を1:1に混合した原料2を収納した黒鉛容器3を
置き、これより間隔を置いて、炭素質あるいは黒鉛質シ
ート4を目皿状の支持台5上に置く。次いで上記反応容
器内を100Torr程度に減圧し、ヒーター6で1700から190
0℃程度に加熱し、SiOガスと反応させると、炭化珪素シ
ートが得られる。
In the case of the present invention, it is necessary to convert the carbon or graphite sheet as the base material into silicon carbide. In the method, for example, a graphite container 3 containing a raw material 2 obtained by mixing silicon dioxide and graphite powder at a ratio of 1: 1 is placed at the bottom of a reaction container 1 as shown in FIG. The quality or graphite sheet 4 is placed on a support 5 having a plate shape. Then, the pressure inside the reaction vessel was reduced to about 100 Torr, and
When heated to about 0 ° C. and reacted with SiO gas, a silicon carbide sheet is obtained.

このような方法を用いることで、5から100μmの厚
みを持つ炭化珪素よりなるシートの作製が可能になっ
た。この方法で作製したシートの密度は理論値の50〜95
%、引張り強度が15kgf/mm2以上であり、25kgf/mm2程度
まで可能なので周速度6000m/分の高速回転に耐えるブレ
ードとすることができる。
By using such a method, a sheet made of silicon carbide having a thickness of 5 to 100 μm can be manufactured. The density of the sheet produced by this method is the theoretical value of 50 to 95.
%, The tensile strength is at 15 kgf / mm 2 or more, can be so until about 25 kgf / mm 2 and the blade to withstand high-speed rotation of the peripheral speed of 6000 m / min.

なお、本発明で得られた、炭化珪素シートは、その比
抵抗は0.1〜10Ω・cmであり、放電加工も可能であり、
放電加工用の電極としての使用も可能である。
Incidentally, the silicon carbide sheet obtained in the present invention has a specific resistance of 0.1 to 10 Ωcm, and electric discharge machining is also possible,
Use as an electrode for electric discharge machining is also possible.

〔実施例〕〔Example〕

実施例1 厚み約35μmのポリ2,6−(4−フェニルキノリン)
フィルムを、平面仕上げした黒鉛板にはさみ、真空下で
5℃/分の昇温速度で1000℃に加熱し、炭素質シートを
得た。厚みは、約30μmであった。この炭素質シートを
二酸化珪素粉末と黒鉛粉末からなるSiO発生部から約50m
m離したところに置き、100Torr、1850℃で1時間加熱
し、SiOガスと接触させ厚み30μmの炭化珪素シートを
得た。
Example 1 Poly 2,6- (4-phenylquinoline) about 35 μm thick
The film was sandwiched between flat-plated graphite plates and heated to 1000 ° C. under a vacuum at a rate of 5 ° C./min to obtain a carbonaceous sheet. The thickness was about 30 μm. Approximately 50m from the SiO generating part composed of silicon dioxide powder and graphite powder
m and heated at 1850 ° C. for 1 hour at 100 Torr and brought into contact with SiO gas to obtain a silicon carbide sheet having a thickness of 30 μm.

実施例2 ポリ2,6−(4−フェニルキノリン)を蟻酸に溶か
し、石英ガラスに塗布し、乾燥させた。乾燥後そのまま
上に石英ガラスをのせ、真空下で5℃/分の昇温速度で
800℃に加熱し、炭素質シートを得た。厚みは、約8μ
mであった。この炭素質シートを、実施例1と同様にSi
Oガスと接触させ厚み7μmの炭化珪素シートを得た。
Example 2 Poly 2,6- (4-phenylquinoline) was dissolved in formic acid, applied to quartz glass, and dried. After drying, place the quartz glass on it and heat it at a rate of 5 ° C / min under vacuum.
It was heated to 800 ° C to obtain a carbonaceous sheet. The thickness is about 8μ
m. This carbonaceous sheet was treated with Si as in Example 1.
It was brought into contact with O gas to obtain a silicon carbide sheet having a thickness of 7 μm.

実施例3 厚み25μmのポリカプトンフィルムを50mmに切断し平
面仕上げした黒鉛板にはさみ、実施例1と同様に炭素
化、炭化珪素化して21μmの炭化珪素シートを得た。
Example 3 A 25 μm-thick polykapton film was cut into 50 mm, sandwiched between graphite plates having a flat surface, and carbonized and siliconized in the same manner as in Example 1 to obtain a 21 μm silicon carbide sheet.

実施例4 厚み45μm及び90μmの市販のリンター紙をそれぞ
れ、平面仕上げした黒鉛板にはさみ、真空下で10℃/分
の昇温速度で1000℃に加熱し炭素質シートを得た。この
シートを実施例1と同様に炭化珪素化して35μmと71μ
mの炭化珪素シートを得た。
Example 4 Commercially available linter papers having a thickness of 45 μm and 90 μm were sandwiched between graphite plates having a flat surface finish, respectively, and heated to 1000 ° C. under a vacuum at a rate of 10 ° C./min to obtain a carbonaceous sheet. This sheet was converted to silicon carbide in the same manner as in Example 1, and 35 μm and 71 μm
m of silicon carbide sheet was obtained.

〔比較例〕 黒鉛成形体上に実施例1と同様の方法で炭化珪素膜を
50μm蒸着し、黒鉛を酸化除去し炭化珪素膜を得た。
[Comparative Example] A silicon carbide film was formed on a graphite compact in the same manner as in Example 1.
Deposited by 50 μm, and the graphite was oxidized and removed to obtain a silicon carbide film.

これらのシートについて、強度と、密度及び反りを調
べた結果を表1に示す。表より従来の化学気相蒸着法で
得られた物と同程度の強度を持ち、反りのない炭化珪素
シートが得られた。なお、比較例のものは密度がほぼ理
論値であるのに拘らず引張り強度が弱いのは結晶が独立
し、粒界がはっきりしているためと思われる。
Table 1 shows the results of examining the strength, density, and warpage of these sheets. From the table, a silicon carbide sheet having the same strength as that obtained by the conventional chemical vapor deposition method and having no warpage was obtained. In the comparative example, the reason why the tensile strength was weak irrespective of the fact that the density was almost the theoretical value is considered that the crystal was independent and the grain boundary was clear.

(切断試験) 30mmφブレードを用い周速度3000m/分(約30,000rp
m)、切断速度1m/分で、シリコンウエハーに深さ200μ
mの溝切を行なった。この時、シリコンウエハーの溝が
180μmの深さ(ブレードが20μm摩耗)になったとこ
ろで、切断距離の比較を行なった。結果を表2に示す。
(Cutting test) Using a 30mmφ blade, the peripheral speed is 3000m / min (about 30,000rp)
m), cutting speed 1m / min, 200μ depth on silicon wafer
m was cut. At this time, the grooves on the silicon wafer
When the depth reached 180 μm (the blade was worn by 20 μm), the cutting distances were compared. Table 2 shows the results.

以上のように、比較例に記した密度の高い炭化珪素に
比べ、密度の低い炭化珪素を用いることで、切断能力が
向上することを確認した。
As described above, it was confirmed that cutting performance was improved by using silicon carbide having a lower density than silicon carbide having a high density described in the comparative example.

〔発明の効果〕〔The invention's effect〕

以上説明したように、比較的入手しやすい材料で、今
まで得られていない厚みの薄い炭化珪素シートの作製が
可能になった。このシートは、半導体回路切断用や超精
密切断用のブレード、面状発熱体等に利用できる。な
お、使用形状への加工は、放電加工またはレーザー加工
が可能である。
As described above, it is possible to produce a silicon carbide sheet having a relatively small thickness, which has not been obtained until now, using a material which is relatively easily available. This sheet can be used as a blade for semiconductor circuit cutting or ultra-precision cutting, a sheet heating element, or the like. In addition, electric discharge machining or laser machining is possible for machining to a use shape.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、炭素質シートを炭化珪素化するための反応装
置の概略断面図である。 1……反応容器、2……炭素と二酸化珪素の混合粉末、
3……容器、4……炭素質シート、5……支持台、6…
…シート。
FIG. 1 is a schematic sectional view of a reactor for converting a carbonaceous sheet into silicon carbide. 1 ... reaction vessel, 2 ... mixed powder of carbon and silicon dioxide,
3 ... container, 4 ... carbonaceous sheet, 5 ... support base, 6 ...
... sheets.

フロントページの続き (51)Int.Cl.6 識別記号 FI B24D 11/00 B24D 11/00 Q B28D 1/24 B28D 1/24 H05B 3/20 301 H05B 3/20 301 Continued on the front page (51) Int.Cl. 6 Identification symbol FI B24D 11/00 B24D 11/00 Q B28D 1/24 B28D 1/24 H05B 3/20 301 H05B 3/20 301

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】有機質シートを焼成した炭素質あるいは黒
鉛質のシートを基材とし、これを炭化珪素化することを
特徴とする炭化珪素シートの製造法。
1. A method for producing a silicon carbide sheet, comprising: using a carbonaceous or graphite sheet obtained by firing an organic sheet as a base material and converting the sheet into silicon carbide.
JP1319980A 1989-12-08 1989-12-08 Manufacturing method of silicon carbide sheet Expired - Fee Related JP2763942B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1319980A JP2763942B2 (en) 1989-12-08 1989-12-08 Manufacturing method of silicon carbide sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1319980A JP2763942B2 (en) 1989-12-08 1989-12-08 Manufacturing method of silicon carbide sheet

Publications (2)

Publication Number Publication Date
JPH03183612A JPH03183612A (en) 1991-08-09
JP2763942B2 true JP2763942B2 (en) 1998-06-11

Family

ID=18116400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1319980A Expired - Fee Related JP2763942B2 (en) 1989-12-08 1989-12-08 Manufacturing method of silicon carbide sheet

Country Status (1)

Country Link
JP (1) JP2763942B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW572802B (en) * 1999-08-25 2004-01-21 Sulzer Chemtech Ag Method for separating profiled foils
CN1152422C (en) * 2002-04-25 2004-06-02 张彩根 Cutting making process of silicon carbide boat for chip manufacture
CN108658077B (en) * 2018-05-08 2021-08-17 浙江工业大学之江学院 Method for preparing nano SiC particles by laser irradiation and sol-gel compounding
US11665786B2 (en) * 2019-12-05 2023-05-30 Applied Materials, Inc. Solid state heater and method of manufacture

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01131061A (en) * 1987-11-18 1989-05-23 Teijin Ltd Production of silicon carbide sheet
JPH01249660A (en) * 1988-03-31 1989-10-04 Teijin Ltd Silicon carbide-based sheet and its production

Also Published As

Publication number Publication date
JPH03183612A (en) 1991-08-09

Similar Documents

Publication Publication Date Title
JP2763942B2 (en) Manufacturing method of silicon carbide sheet
EP1284251A1 (en) Silicon carbide-based, porous, lightweight, heat-resistant structural material and manufacturing method therefor
US4702869A (en) Process for the production of ceramics
JP4490304B2 (en) Susceptor
EP0188270B1 (en) Fibre-reinforced ceramic and process therefor
GB2206572A (en) Surface coated silicon carbide whiskers
JP2660346B2 (en) Ceramic composite materials
JP2797372B2 (en) Manufacturing method of aluminum nitride substrate
JP4803877B2 (en) Silicon carbide sintered body and method for producing the same
Ahmad et al. Microwave-assisted pyrolysis of SiC and its application to joining
JPH05306180A (en) Production of carbon fiber reinforced carbon-inorganic compound composite material
JP3938218B2 (en) Porous silicon carbide molded body
JPH06190962A (en) Molded heat insulating material
JP4373560B2 (en) Boron carbide joined body and method for producing the same
JP2000288916A (en) Jig for polishing treatment
JPH0251868B2 (en)
JPH08109069A (en) Aluminum nitride sintered compact
Colombo et al. Joining SiC-based ceramics and composites with preceramic polymers
JP4002325B2 (en) Method for producing sintered silicon carbide
JP2573305B2 (en) Annealing method for SiC ceramics
JPH10182232A (en) Production of silicon carbide formed body
JPS60255672A (en) Manufacture of silicon carbide sintered body
JPH046166A (en) Produciton of high-toughness ceramics
JPS6344713B2 (en)
JPH0732532A (en) Carbon fiber molded heat insulating material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees