JP2763346B2 - Scan line conversion vertical filter for down conversion of the number of scan lines - Google Patents

Scan line conversion vertical filter for down conversion of the number of scan lines

Info

Publication number
JP2763346B2
JP2763346B2 JP1240613A JP24061389A JP2763346B2 JP 2763346 B2 JP2763346 B2 JP 2763346B2 JP 1240613 A JP1240613 A JP 1240613A JP 24061389 A JP24061389 A JP 24061389A JP 2763346 B2 JP2763346 B2 JP 2763346B2
Authority
JP
Japan
Prior art keywords
conversion
image signal
scanning
lines
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1240613A
Other languages
Japanese (ja)
Other versions
JPH03104392A (en
Inventor
▲吉▼則 和泉
佑一 二宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK filed Critical Nippon Hoso Kyokai NHK
Priority to JP1240613A priority Critical patent/JP2763346B2/en
Publication of JPH03104392A publication Critical patent/JPH03104392A/en
Application granted granted Critical
Publication of JP2763346B2 publication Critical patent/JP2763346B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Television Systems (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

(産業上の利用分野) 本発明は、ハイビジョン信号等の走査線数の多い高精
細度画像信号を走査線数の少ない標準方式画像信号に変
換して高精細度画像信号の両立性を確保する走査線数逓
降ダウンコンバータに用いる走査線変換垂直フイルタに
関し、特に、原画面で重要な上下両端縁部の欠損すなわ
ち見切れが生じないが故に好適ないわゆる5本−2本変
換に用いる垂直フイルタの構成を簡易化するとともに、
画像内容に応じた走査線数変換の多様化を容易にしたも
のである。 (発明の概要) 高精細度画像信号の標準方式画像信号への変換には走
査線数の変換とアスペクト比の変換とを行なう必要があ
るが、原画面の要部の欠損が少ない5本−2本変換は、
従来、走査線変換用垂直フイルタの構成が複雑高価であ
ったのに対し、本発明においては、走査線数1125本のハ
イビジョン画像と走査線数525本の標準方式画像とで
は、輝度信号のフイールド毎に、前者の順次の走査線の
3本と2本とが交互に後者の走査線に空間的に順次に対
応する点に着目し、5本−2本変換をフイールド毎に実
質的に3本−1本変換と2本−1本変換とを交互に行な
うことにより、走査線変換垂直フイルタの構成を格段に
簡易化するとともに、使用する垂直フイルタの構成要素
を一部共用して5本−2本変換と2本−1本または3本
−1本変換とを画像内容に応じて選択的に実施し得るよ
うにしたものである。 (従来の技術) わが国における高精細度画像信号として標準視されて
いるいわゆるハイビジョン画像信号は、走査線数が1125
本、アスペクト比が16:9であって、標準方式画像信号の
走査線数525本、アスペクト比4:3と相違しているため
に、ハイビジョンの伝送信号であるMUSE方式画像信号
は、そのままでは標準方式受像機で受像し得ず、主とし
て走査線数およびアスペクト比の変換を行なうためのダ
ウンコンバータをアダプタとして付加し、高精細度画像
信号の両立性を確保する必要がある。 しかして、走査線数の変換とアスペクト比の変換とは
相互に関連を有し、一方を他方とは無関係に独立して変
換することはできず、したがって、その実施には種々の
制約を受け、従来、実際に適用可能とされているこの種
の変換方式はつぎのものに限られている。 例えば、MUSE方式により伝送した走査線1125本の画面
を走査線525本のNTSC方式画面に変換するには、原理的
には、 1125:525=15:7 すなわち、MUSE方式画面の15本の走査線をNTSC方式画
面の7本の走査線に対応させる画像変換を行なう必要が
あり、そのためには、MUSE方式画面の走査線数1125本の
7倍、NTSC方式画面の走査線数525本の15倍となる双方
の最小公倍数7875本の走査線数の画面を想定し、後続の
信号処理におけるサブサンプリングによる折返し歪みの
発生を防止するために帯域を1/15に制限して補間するた
めの低域通過濾波を施したうえで、走査線数を1/15に逓
降するサブサンプリングを施して走査線数525本のNTSC
画像信号を得る。 かかる走査線変換の信号処理は、ほとんどすべてをい
わゆる垂直フイルタによって行なうが、この垂直フイル
タは、1水平走査周期遅延のいわゆる1H遅延線を、例え
ば上述した1/15の走査線数逓降の場合には、14個縦続接
続して順次走査線15本の画像信号に、それら15本の走査
線と対応する変換後の1本の走査線との空間的垂直位置
ずれに応じ、それぞれ係数を乗じた荷重平均の画像信号
を、その変換後の1本の走査線の画像信号として導出す
るものであり、実際の走査線変換にあたっては、1本ず
つずらした順次の15本の走査線の組にそれぞれ対応する
荷重平均画像信号のうち、変換後の画面に実際に存在す
る空間位置の走査線に対するもののみを順次に抽出する
走査線数変換と変換の前後における水平走査周期の相違
を修正する時間軸変換とによるアスペクト比変換の信号
処理を引続いて行なう。 しかして、上述したところから判るように、垂直フイ
ルタは、その構成に用いる1H遅延線の個数が多いほど良
好な変換特性が得られるが、それだけ構成が複雑高価と
なり、上述した原理的な走査線変換を忠実に行なえば、
垂直フイルタの規模が極めて膨大なものになる。しか
も、1H遅延線の個数は、ある程度以上増してもそれほど
変換特性改善の効果が上らなくなる。また、MUSE方式等
の高精細度画像の画質は、本来、NTSC画像に比して格段
に優れているので、上述のような原理的走査線変換を忠
実に施した変換画像の画質もNTSC画像の画質に比して余
裕があり、特に、一般家庭用NTSC方式受像機に対する両
立性を高精細度画像に与えるためのアダプタとしては、
変換画像の画質を多少落としても、変換の前後における
走査線数の対応関係を上述した原理的変換の場合よりも
単純化し、使用する垂直フイルタの構成をなるべく簡易
かつ安価なものにすることが重要である。 しかしながら、前述したように、実施には種々の制約
を受けるために、従来、実際に適用可能とされているの
はつぎの3方式の走査線変換である。 (a) 2本−1本変換方式 走査線数1125本、アスペクト比16:9のMUSE方式画像を
窓信号により制御して走査線数1050本、アスペクト比4:
3の画像に一旦限定したうえで、順次の2本ずつの走査
線から1本を間引き、あるいは、インターレース処理に
関連して3/4:1/4の比の荷重平均を施して1本の走査線
に変換し、以後は時間軸伸長を施すだけの単純な信号処
理を行なう走査線変換方式であり、信号処理が単純なだ
けに、垂直フイルタをはじめ各部回路の構成が極めて簡
単になり、良好な変換画質も得られはするが、最初の窓
信号による信号処理によって生ずる原画像の上下・左右
端縁部分の欠落、すなわち、画像のいわゆる見切れが大
きい欠点があり、原画像の内容によってその適用が制限
される。 (b) 3本−1本変換方式 アスペクト比16:9のMUSE方式画像における1125本の走
査線の順次の3本を荷重平均して1本の走査線に変換
し、走査線375本、アスペクト比16:9の変換画像を形成
する走査線変換方式であり、原画像情報の欠落すなわち
見切れは生ぜず、また、垂直フイルタの構成も、比較的
簡単になり、しかも、本発明変換方式に関連して後述す
るように、かかる走査線変換により自動的にインターレ
ース走査の変換画像が得られる利点もあるが、走査線52
5本のNTSC方式画面中で画像が表示される走査線が375本
と大幅に少ないアスペクト比16:9の区画に限られ、NTSC
方式受像画面の上下端縁に大きい空白部が生ずる欠点が
ある。 (c) 5本−2本変換方式 アスペクト比16:9のMUSE方式画像における1125本の走
査線の順次の5本を荷重平均して2本の走査線に変換
し、走査線450本により16:9に近いアスペクト比の変換
画像を走査線525本、アスペクト比4:3のNTSC方式画面内
に形成する走査線変換方式であり、画面内における走査
線数の不足から、上述の3本−1本変換方式と同様に変
換画像の上下端縁には空白部が生ずるが、その空白部は
垂直帰線部を考慮すれば、3本−1本変換方式に比して
著しく小さく、従来実施可能とされる走査線変換方式の
うちで、原画像に最も近似した良好な画質の変換画像が
得られる。 (発明が解決しようとする課題) 上述したように、変換画像のNTSC方式画面との対応関
係からすれば最も優れていると見られる5本−2本変換
方式ではあるが、変換走査線数の対応関係からすれば最
も複雑であるだけに、変換回路の構成が、前述した原理
的変換方式よりは格段に簡単ではあるが、なお、やや複
雑高価となり、業務用としては兎も角、一般家庭用とし
ては、特に2本−1本変換方式と対比して、簡単化する
必要があり、特に、変換走査線数の対応の如何に依存す
る垂直フイルタの構成を簡単化する必要がある。 すなわち、5本−2本変換方式においては、変換画像
の走査線数450本が偶数であるので、インターレースの
関係を満たすために、奇数フイールドと偶数フイールド
とで荷重係数が異なる二様の垂直フイルタを用いる必要
がある他に、5本−2本の走査線変換を行なうために、
従来は、MUSE方式画像の走査線数1125本を2逓倍した22
50本について、順次の5本を荷重平均して1本の走査線
に変換する走査線変換過程に、縦続接続した7個の1H遅
延線の順次の遅延出力を28タップに組合わせた比較的複
雑な構成の垂直フイルタを用いていたので、MUSE-NTSC
間走査線数逓降ダウンコンバータ、特に、その一般家庭
用としては、回路規模が大き過ぎ、規模縮少を図る必要
があった。 (課題を解決するための手段) 本発明の目的は、上述した従来の課題を解決し、走査
線数の多い高精細度画像信号に標準方式受像機との両立
性を付与するための走査線数逓降ダウンコンバータ、特
に、その主要構成要素をなす垂直フイルタの構成を簡単
化して一般家庭用標準方式受像機のアダプタとするに好
適な走査線数逓降ダウンコンバータ用走査線変換垂直フ
イルタを提供することにある。 すなわち、本発明走査線数逓降ダウンコンバータ用走
査線変換垂直フイルタは、高精細度画像信号を標準方式
画像信号に変換する走査線数逓降ダウンコンバータにお
いて、画像信号の各フイールド毎に、高精細度画像信号
の順次の走査線a(=a1+a2)本を標準方式画像信号の
順次の走査線b(=b1+b2)本へ変換する際に用いる走
査線変換垂直フイルタを、高精細度画像信号の順次の走
査線a1本から標準方式画像信号の順次の走査線b1本への
変換および高精細度画像信号の順次の走査線a2本から標
準方式画像信号の順次の走査線b2本への変換に交互に繰
返し用いるように構成したことを特徴とするものであ
り、 特に、実用性の最も高い本発明垂直フイルタとして
は、高精細度画像信号を標準方式画像信号に変換する走
査線数逓降ダウンコンバータにおいて、画像信号の各フ
イールド毎に、高精細度画像信号の順次の走査線5本を
標準方式画像信号の順次の走査線2本へ変換する際に用
いる走査線変換垂直フイルタを、高精細度画像信号の順
次の走査線3本から標準方式画像信号の順次の走査線1
本への変換および高精細度画像信号の順次の走査線2本
から標準方式画像信号の順次の走査線1本への変換に交
互に繰返し用いるように構成したことを特徴とするもの
である。 (作用) したがって、本発明線数逓降ダウンコンバータ用走査
線変換垂直フイルタは、比較的簡単な回路構成により、
高精細度画像信号を良好な画質で標準方式受像機に表示
し得る優れた両立性と、原画像の内容に応じ、回路構成
を切換えて上述した実施可能な走査線変換方式を選択し
得る多様性とを備えた走査線数逓降ダウンコンバータを
実現することができる。 (実施例) 以下に図面を参照して実施例につき本発明を詳細に説
明する。 まず、走査線数逓降ダウンコンバータの要部をなす走
査線変換垂直フイルタの本発明による簡易化構成の原理
を第1図について説明する。 第1図は、MUSE方式画像を構成する奇数フイールドの
順次の走査線Mo1〜Mo10を実線で左側に示し、偶数フイ
ールドの順次の走査線Me1〜Me10を破線で右側に示し、
この原画像に走査線変換を施した変換画像としてのNTSC
方式画像を構成する奇数フイールドおよび偶数フイール
ドの走査線をそれぞれ実線および破線で中央に順次交互
に示し、本発明による変換の前後における走査線の対応
関係を矢印により模式的に示したものである。 従来の5本−2本変換方式においては、前述のよう
に、縦続接続した7個の1H遅延線の各接続点から取出し
た順次の走査線信号に、変換の前後における走査線相互
間の空間位置の対応関係に応じた係数をそれぞれ乗算し
た荷重平均を施すことにより、奇偶各フイールド毎に、
MUSE方式画像の順次の5本の走査線、例えばMo1〜Mo5を
NTSC方式画像の順次の2本の走査線、例えばNo1およびN
o2に変換していた。したがって、かかる1回の走査線変
換過程に必要な1H遅延線および係数器の個数が多く、垂
直フイルタの構成が複雑とならざるを得なかった。 しかしながら、上述した走査線変換過程における変換の
前後における走査線相互の空間位置の対応を検討する
に、5本−2本変換方式によりMUSE方式画像の1125本を
NTSC方式変換画像の450本に変換する場合には図示のと
おりとなる。例えば、5本のMUSE走査線Mo1〜Mo5を2本
のNTSC走査線No1,No2に変換する場合には、5本のMUSE
走査線Mo1〜Mo5のうち、上側の3本のMUSE走査線Mo1〜M
o3のほぼ中央に、2本のNTSC走査線No1,No2のうち、上
側の1本のNTSC走査線No1が位置し、また、下側の2本
のMUSE走査線Mo4,Mo5のほぼ中央に、下側の1本のNTSC
走査線No2が位置している。 本発明は、5本−2本変換方式における変換の前後に
おける走査線相互間の空間位置関係に着目し、5本−2
本方式の走査線変換を行なうに当り、従来のように7個
の1H遅延線の縦続接続は用いず、2個乃至3個の1H遅延
線の縦続接続を用い、5本−2本の走査線変換を3本−
1本と2本−1本との2回の走査線変換に分解し、かか
る3本−1本と2本−1本との分解走査線変換を交互に
反復することにより、走査線変換用垂直フイルタの構成
を従来に比して格段に簡単化し得るようにしたものであ
る。 本発明による上述した構成原理による垂直フイルタを
用いて5本−2本の走査線変換を行なうに当り、順次の
3本ずつのMUSE走査線をそれぞれ1本のNTSC走査線に変
換すれば、例えば、順次の3本ずつMUSE走査線のうち、
5本−2本方式変換後のNTSC走査線No1,No2にそれぞれ
対応する3本ずつのMUSE走査線Mo1〜Mo3からNTSC走査線
No1への変換およびMUSE走査線Mo3〜Mo5からNTSC走査線N
o2への変換における荷重係数は、図示のとおりに、順次
に5/8,1,3/8および1/8,1,7/8となり、下側の3本のMUSE
走査線Mo3〜Mo5のうち、上側の3本のMUSE走査線Mo1〜M
o3と共通するMUSE走査線Mo3からNTSC走査線No2への変換
荷重係数は1/8に過ぎない。したがって、実際には、順
次の3本ずつのMUSE走査線をそれぞれ1本のNTSC走査線
に変換する信号処理を行なうにも拘らず、荷重係数1/8
の走査線変換の寄与は無視して、下側の3本のMUSE走査
線Mo3〜Mo5から1本のNTSC走査線への変換を、下側の2
本のMUSE走査線Mo4,Mo5から1本のNTSC走査線への変
換、すなわち、上述したとおりの2本−1本の走査線変
換と見做すことができる。 一方、第1図に実線で示す奇数フイールドにおける走
査線変換に対応して破線で示す偶数フイールドにおける
走査線変換についても、奇数フイールドにつき上述した
のと全く同様の構成原理に従って垂直フイルタを構成す
ることができる。すなわち、図の右側に破線で示す偶数
フイールドの5本のMUSE走査線Me2〜Me6を2本のNTSC走
査線Ne1,Ne2に変換するに当っては、上側の2本のMUSE
走査線Me2,Me3を1本のNTSC走査線Ne1に変換し、下側
の3本のMUSE走査線Me4〜Me6を1本のNTSC走査線Ne2に
変換する。なお、上側および下側の3本ずつのMUSE走査
線をそれぞれ1本のNTSC走査線に変換する際の荷重係数
は、奇数フイールドと数値は同じであるが、順番が相違
する。 なお、以上に述べた本発明による走査線変換用垂直フ
イルタの構成原理は、画像構成の基本をなす輝度信号に
対するものであるが、この輝度信号に対応する色信号、
実際には色差信号についても、後述するように、輝度信
号に対するとほぼ同様の構成原理によって走査線変換を
行なうことができる。 また、本発明による走査線数逓降ダウンコンバータ用
走査線変換垂直フイルタの具体的構成については、上述
のような構成原理さえ確立すれば、以後はこの構成原理
に従い、従来周知のこの種ダウンコンバータ乃至垂直フ
イルタの構成の態様を適用して、以下に詳述するように
容易に実現することができる。 第1図につき上述した本発明による5本−2本変換方
式を適用した輝度信号用走査線数逓降ダウンコンバータ
の概略構成を第2図に示す。図示のダウンコンバータに
おいては、MUSE入力信号を1H遅延線1および2の縦続接
続に供給し、その縦続接続2H遅延線の入力および出力を
それぞれ係数器3および4に接続する。それらの係数器
3および4は、第1図につき前述した5本−2本走査線
変換における上側および下側の3本ずつのMUSE走査線、
例えば、奇数フイールドのMo1〜Mo3およびMo3〜Mo5と偶
数フイールドのMe2〜Me4およびMe4〜Me6とに第1図示の
荷重係数1/8,3/8,5/8,7/8を第2図のブロック3および
4内に示すように組合わせて乗算するものである。しか
して、第1図から明らかなとおり、本発明方式による5
本−2本変換における3本ずつのMUSE走査線のうち中央
に位置するMUSE走査線、例えばMo2,Mo4,Me3,Me5に対
する荷重係数はいずれもほぼ1であるから、第2図にお
ける縦続接続2H遅延線1,2の中間接続点からは、係数器
を介さずにMUSE画像信号を取出す。なお、走査線変換な
どの画像信号処理はすべてディジタル処理によって行な
われるが、MUSE画像信号においては、高効率の帯域圧縮
伝送のためのいわゆる五の目形標本化により順次の走査
線毎にサブサンプル位相を反転させており、荷重平均を
求める3走査線のサブサンプル位相が中央と上下両側と
で1/2サンプル周期ずれることになる。したがって、荷
重平均を求める走査線間のかかるサブサンプル位相のず
れを修正するために、上述した縦続接続2H遅延線1,2の
中間接続点からは、係数器の替わりに1/2サンプル周期
遅延の遅延線4を介してMUSE画像信号を取出すように
し、したがって、第2図示の線数逓降ダウンコンバータ
における走査線変換垂直フイルタは、2個の1H遅延線1,
2、2個の係数器3,5および遅延線4のみを用いた極めて
簡単な構成となる。 かかる垂直フイルタの濾波出力信号、すなわち、遅延
線4の出力信号と係数器3および5の出力信号を加算器
6により加算した出力信号とを、それぞれ、時間軸伸張
回路7と8とに供給して、走査線1125本のMUSE走査系の
走査レートをNTSC走査系の走査レートに変換してそれぞ
れ低速化し、ついで、それぞれ走査線数変換回路9と10
とに供給して、3本−1本走査線変換出力のうち、実際
に存在するNTSC走査線に相当する出力のみを取出す。す
なわち、第1図につき前述した走査線変換の例において
1本ずつ順次にずらした3本ずつのMUSE走査線の荷重平
均が上述した垂直フイルタの出力として得られるが、か
かる垂直フイルタ出力のうち、NTSC走査線No1に対応す
る3本のMUSE走査線Mo1〜Mo3およびNTSC走査線No2に対
応する3本のMUSE走査線Mo3〜Mo5の荷重平均は出力とし
て取出すが、NTSC走査線に対応しない3本のMUSE走査線
Mo2〜Mo4あるいはMo4〜Mo6の荷重平均は出力とはしな
い。 なお、時間軸伸張回路7,8および走査線数変換回路9,1
0は、実際には、第5図につき後述するように、例えば4
0ライン分程度のメモリ容量を有する走査線変換用バッ
ファメモリを双方の回路に共通に用い、その走査線変換
メモリに対する垂直フイルタ出力の選択的書込みおよび
書込み・読出し両クロックレートの変換によって一挙に
時間軸伸張および走査線数変換を行ない、かかる時間軸
伸張・走査線数変換出力を、それぞれ、サンプルシフタ
11と12とを介して3次元フイルタ作用によるサンプルの
内挿補間を施したうえで、加算器13に導き、加算平均し
て変換出力NTSC信号を取出す。 つぎに、MUSE画像信号をNTSC画像信号に変換する際の
色信号用走査線数逓降ダウンコンバータの要部をなす走
査線変換垂直フイルタの構成原理を、輝度信号用垂直フ
イルタの第1図示の構成原理に倣って第3図に示し、そ
の原理に従って構成した垂直フイルタを用いる色信号用
走査線数逓降ダウンコンバータの概略構成を第4図に示
す。 MUSE画像信号の色信号、すなわち2色差信号R−Y,B
−Yは、時間軸圧縮・時分割多重(TCI)を施して走査
線毎に輝度信号Yの消去期間に伝送されるので、走査線
変換に当っては、MUSE入力信号を、まず、TCI時間軸伸
張回路14に供給して、線順次交互のMUSE走査レートの色
差信号R−YおよびB−Yに低速化し、ついで、サンプ
ルシフタ15に導いて3次元フイルタ作用により内挿補間
を施したうえで、直接に、および2H遅延線16を介して加
算器17に供給し、1本おきの走査線、例えば奇数フイー
ルド〔O〕におけるMo1,Mo3およびMo2,Mo4上の各色差
信号R−Y=ro1,ro2およびB−Y=bo1,bo2の各平均
r′o1およびb′o1を求め、かかる平均の色差信号r′
およびb′を順次交互に2H遅延線18と係数器19,20とよ
りなる垂直フイルタに導く。かかる垂直フイルタにおい
ては、2H遅延線18の入出力端に同時に現われる1本おき
の走査線上の平均色差信号r′およびb′をそれぞれ係
数器20および19に導いて、奇数フイールドと偶数フイー
ルドとで数値は同一であるが順番の異なる図示のとおり
の荷重係数を乗算し、それぞれの係数乗算出力を加算器
21に導いてNTSC画像の走査線、例えばその奇数フイール
(Industrial application field) The present invention converts a high definition image signal having a large number of scanning lines such as a high definition image signal into a standard image signal having a small number of scanning lines, thereby ensuring compatibility of the high definition image signal. More particularly, the present invention relates to a vertical filter used for so-called five-to-two conversion, which is preferable because the upper and lower end edges, which are important in the original screen, are not cut off. While simplifying the configuration,
This facilitates diversification of scanning line number conversion according to image contents. (Summary of the Invention) Conversion of a high-definition image signal to a standard system image signal requires conversion of the number of scanning lines and conversion of an aspect ratio. The two conversions are
Conventionally, the configuration of a vertical filter for scanning line conversion was complicated and expensive, whereas in the present invention, a high-definition image having 1125 scanning lines and a standard system image having 525 scanning lines were used to generate a luminance signal field. At each time, attention is paid to the point that three and two of the former sequential scanning lines alternately and spatially sequentially correspond to the latter scanning line, and the five-to-two conversion is performed substantially three times for each field. By alternately performing the one-to-one conversion and the two-to-one conversion, the configuration of the scanning line conversion vertical filter is greatly simplified, and the components of the vertical filter to be used are partially shared and the five filters are used. The two-to-two conversion and the two-to-one conversion or the three-to-one conversion can be selectively performed according to the image content. (Prior Art) A so-called high-definition image signal, which is standardized as a high-definition image signal in Japan, has 1125 scanning lines.
Since the aspect ratio is 16: 9, the number of scanning lines of the standard image signal is 525, and the aspect ratio is 4: 3, the MUSE image signal which is the transmission signal of Hi-Vision is It is not possible to receive an image with a standard type receiver, and it is necessary to add a down converter for converting mainly the number of scanning lines and the aspect ratio as an adapter to ensure compatibility of a high definition image signal. Thus, the conversion of the number of scanning lines and the conversion of the aspect ratio are interrelated, and one cannot be converted independently of the other, and therefore its implementation is subject to various restrictions. Conventionally, this type of conversion method that is actually applicable is limited to the following. For example, in order to convert a screen with 1125 scanning lines transmitted by the MUSE method to an NTSC screen with 525 scanning lines, in principle, 1125: 525 = 15: 7. It is necessary to perform an image conversion in which the lines correspond to the seven scanning lines of the NTSC system screen. For this purpose, the number of scanning lines of the MUSE system screen is 7 times as large as 1125, and the number of scanning lines of the NTSC system screen is 525. Assuming a screen with the number of scanning lines with the least common multiple of 7875, both of which are doubled, a low bandwidth for interpolating by limiting the bandwidth to 1/15 to prevent aliasing distortion due to sub-sampling in subsequent signal processing NTSC with 525 scanning lines after sub-sampling that reduces the number of scanning lines to 1/15 after applying pass-pass filtering
Obtain an image signal. Almost all of the signal processing of such scanning line conversion is performed by a so-called vertical filter, but this vertical filter is a so-called 1H delay line with one horizontal scanning cycle delay, for example, when the number of scanning lines is reduced by 1/15 as described above. , The image signals of 15 scanning lines connected in cascade and multiplied by a coefficient in accordance with the spatial vertical displacement between the 15 scanning lines and the corresponding one of the converted scanning lines. The weighted average image signal is derived as an image signal of one scan line after the conversion, and in actual scan line conversion, a set of 15 scan lines sequentially shifted by one is used. Scanning line number conversion for sequentially extracting only the scanning line of the spatial position actually existing on the screen after conversion among the corresponding weighted average image signals, and time for correcting the difference in the horizontal scanning period before and after the conversion. Axis transformation and According carried out subsequently a signal processing aspect ratio conversion. Thus, as can be seen from the above description, the vertical filter can obtain better conversion characteristics as the number of 1H delay lines used in the configuration is larger, but the configuration becomes more complicated and expensive, and the above-described principle scanning line is used. If you do the conversion faithfully,
The size of the vertical filter becomes extremely large. Moreover, even if the number of 1H delay lines is increased to a certain degree or more, the effect of improving the conversion characteristics is not so high. Also, since the image quality of high-definition images such as the MUSE method is inherently much better than NTSC images, the image quality of converted images faithfully subjected to the above-described principle scanning line conversion is also NTSC image quality. In particular, as an adapter for giving high-definition images compatibility with ordinary NTSC receivers for home use,
Even if the image quality of the converted image is slightly lowered, the correspondence between the number of scanning lines before and after the conversion is simplified as compared with the above-described principle conversion, and the configuration of the vertical filter used is made as simple and inexpensive as possible. is important. However, as described above, since the implementation is subject to various restrictions, conventionally, the following three types of scanning line conversion are actually applicable. (A) Two-to-one conversion method The MUSE method image having a scanning line number of 1125 lines and an aspect ratio of 16: 9 is controlled by a window signal to have a scanning line number of 1050 lines and an aspect ratio of 4: 4.
Once limited to three images, one line was thinned out from two scan lines in sequence, or a weighted average of 3/4: 1/4 was applied in connection with the interlacing process to obtain one image. This is a scanning line conversion method that converts the data into scanning lines and then performs simple signal processing that only extends the time axis.Since the signal processing is simple, the configuration of each circuit including the vertical filter becomes extremely simple. Although good conversion image quality can be obtained, there is a defect that the upper and lower, left and right edges of the original image are lost due to signal processing by the first window signal, that is, the so-called cut-off of the image is large. Limited application. (B) Three-to-one conversion method Three successive 1125 scanning lines in a MUSE image with an aspect ratio of 16: 9 are weighted and averaged and converted into one scanning line. This is a scanning line conversion method that forms a converted image with a ratio of 16: 9, does not cause loss of the original image information, that is, does not cut off, and the structure of the vertical filter is relatively simple, and is related to the conversion method of the present invention. As will be described later, there is an advantage that a converted image of the interlaced scanning is automatically obtained by the scanning line conversion.
The number of scanning lines on which images are displayed on the five NTSC screens is limited to 375 lines, which is significantly less than the 16: 9 aspect ratio section.
There is a disadvantage that large blank portions are formed at the upper and lower edges of the image receiving screen. (C) Five-to-two conversion method In the MUSE method image with an aspect ratio of 16: 9, five successive 1125 scanning lines are weighted and averaged and converted into two scanning lines. : 9 This is a scanning line conversion method in which a converted image with an aspect ratio close to 9 is formed in an NTSC screen having a scanning line of 525 lines and an aspect ratio of 4: 3. As in the case of the single conversion method, a blank portion is formed at the upper and lower edges of the converted image, but the blank portion is significantly smaller than the three-to-one conversion method in consideration of the vertical blanking portion. Among the possible scanning line conversion methods, a converted image with good image quality that is closest to the original image can be obtained. (Problems to be Solved by the Invention) As described above, although the five-to-two conversion method is considered to be the best in terms of the correspondence between the converted image and the NTSC screen, the number of conversion scan lines is small. Although the conversion circuit is the most complicated in terms of correspondence, the configuration of the conversion circuit is much simpler than the above-mentioned principle conversion method, but it is still slightly more complicated and expensive, and it is difficult for business use. For use, it is necessary to simplify the method, particularly in comparison with the two-to-one conversion method. In particular, it is necessary to simplify the structure of the vertical filter depending on the correspondence of the number of conversion scanning lines. In other words, in the 5-line to 2-line conversion method, since the number of scanning lines of the converted image is 450, the number of scanning lines is even, and in order to satisfy the interlacing relationship, two vertical filters having different weighting factors are used for odd fields and even fields. In addition to the necessity of using, in order to perform the conversion of five to two scanning lines,
Conventionally, the number of scanning lines of the MUSE system image is 1125, which is doubled.
In the scanning line conversion process of converting 50 successive 5 lines into a single scanning line by averaging the 5 successive lines, a relatively delayed combination of 28 taps with the sequential delay outputs of the 7 cascaded 1H delay lines is used. MUSE-NTSC uses a complicated vertical filter.
The down-converting number of inter-scanning-line down-converters, especially for general household use, has an excessively large circuit scale, and it is necessary to reduce the scale. (Means for Solving the Problems) An object of the present invention is to provide a scanning line for solving the above-mentioned conventional problems and providing high-definition image signals having a large number of scanning lines with compatibility with a standard receiver. Scanning line conversion vertical filter suitable for use as an adapter of a standard down-converter for downscaling down converters, in particular, simplifying the configuration of a vertical filter which is a main component of the down-converting down converter. To provide. In other words, the scanning line conversion vertical filter for the scanning line down-converter according to the present invention is a scanning line down converter that converts a high-definition image signal into a standard image signal. A scanning line conversion vertical filter used when converting the sequential scanning lines a (= a 1 + a 2 ) of the definition image signal into the sequential scanning lines b (= b 1 + b 2 ) of the standard image signal, sequentially from sequential scanning line a 2 pieces of high-definition image signals sequentially conversion and high definition image signal from the scanning line a 1 present to sequentially scan lines b 1 present the standard type image-signal standard type image-signal of the conversion to the scanning line b 2 present which is characterized by being configured to use repeatedly alternately, in particular, as the highest present invention the vertical filter of practicality, the standard type image-high definition image signal Scanning line number down conversion to signal In the converter, for each field of the image signal, a scanning line conversion vertical filter used for converting five sequential scanning lines of a high definition image signal into two sequential scanning lines of a standard system image signal is provided by a high definition. From the three sequential scanning lines of the image signal to the sequential scanning line 1 of the standard image signal
It is characterized in that it is configured to be used alternately and repeatedly for conversion into a book and conversion from two sequential scanning lines of a high-definition image signal to one sequential scanning line of a standard image signal. (Operation) Accordingly, the scanning line conversion vertical filter for the line number down-converter of the present invention has a relatively simple circuit configuration.
Excellent compatibility for displaying high-definition image signals with good image quality on a standard type receiver, and various types for selecting the feasible scanning line conversion method by switching the circuit configuration according to the content of the original image And a scanning line number down-converter having the characteristics described above. (Example) Hereinafter, the present invention will be described in detail with reference to the drawings with reference to examples. First, the principle of a simplified configuration according to the present invention of a scanning line conversion vertical filter, which is a main part of the down conversion of the number of scanning lines, will be described with reference to FIG. Figure 1 is a sequential scan line M o 1 to M o 10 the odd field constituting the MUSE system image indicated by the solid line on the left, right sequential scan lines M e 1 to M e 10 of the even field by a broken line Shown in
NTSC as a converted image obtained by applying scan line conversion to this original image
The scanning lines of the odd field and the even field constituting the system image are alternately shown at the center by solid lines and broken lines, respectively, and the correspondence of the scanning lines before and after the conversion according to the present invention is schematically shown by arrows. In the conventional five-to-two conversion method, as described above, the sequential scanning line signals extracted from each connection point of the seven cascaded 1H delay lines are converted into the space between the scanning lines before and after the conversion. By applying a weighted average multiplied by a coefficient corresponding to the position correspondence, for each odd-even field,
Sequential five scanning lines of the MUSE system image, for example, the M o 1 to M o 5
Sequential two scanning lines of the NTSC system image, for example, N o 1 and N
o had been converted to 2. Therefore, the number of 1H delay lines and coefficient units required for such one scanning line conversion process is large, and the configuration of the vertical filter must be complicated. However, in order to examine the correspondence between the spatial positions of the scanning lines before and after the conversion in the scanning line conversion process described above, 1125 lines of the MUSE system image were obtained by the 5-line to 2-line conversion method.
When converting to 450 NTSC format converted images, the result is as shown in the figure. For example, when converting MUSE scan line M o 1 to M o 5 of five two NTSC scan lines N o 1, the N o 2 is the five MUSE
Of the scan lines M o 1~M o 5, 3 pieces of MUSE scan lines of the upper M o 1 to M
approximately in the center of the o 3, two NTSC scan lines N o 1, of the N o 2, NTSC scanning lines N o 1 of the upper one is located, also, two MUSE scan line of the lower M o 4, M o substantially the center of the 5, one NTSC lower
Scanning lines N o 2 is located. The present invention focuses on the spatial positional relationship between scanning lines before and after conversion in the five-two conversion method, and focuses on the five-two conversion method.
In performing the scanning line conversion of this method, cascade connection of seven 1H delay lines is not used as in the related art, but cascade connection of two to three 1H delay lines is used, and five to two scans are performed. 3 line conversions-
By decomposing into two scan line conversions of one line and two to one line, and alternately repeating such three-to-one and two to one line decomposition scan line conversions, the scanning line conversion is performed. The configuration of the vertical filter can be greatly simplified as compared with the conventional one. In performing the conversion of five to two scanning lines using the vertical filter according to the above-described configuration principle according to the present invention, by sequentially converting three MUSE scanning lines into one NTSC scanning line, for example, , Three MUSE scan lines in sequence,
Five -2 present after transcoding NTSC scan line N o 1, N o 2 to MUSE scanning lines of each corresponding three to M o 1 to M o 3 from the NTSC scan line
N transformation and MUSE scanning lines to o 1 M o 3~M o 5 from NTSC scan line N
o As shown in the figure, the weighting factors for the conversion to 2 are 5/8, 1, 3/8 and 1/8, 1, 7/8, respectively.
Of the scan lines M o 3~M o 5, 3 pieces of MUSE scan lines of the upper M o 1 to M
conversion load coefficient from MUSE scan line M o 3 common to o 3 to NTSC scan line N o 2 is only 1/8. Therefore, in practice, despite performing signal processing for converting three MUSE scan lines in sequence into one NTSC scan line, the weight coefficient is 1/8.
2 of the contribution of the scanning line conversion to ignore, the conversion of three MUSE scan line M o 3~M o 5 of the lower to the one of the NTSC scan lines, the lower
Conversion from MUSE scan line M o 4, M o 5 of the present to one NTSC scan line, i.e., can be regarded as two -1 scanning line conversion as described above. On the other hand, for the scan line conversion in the even field indicated by the dashed line corresponding to the scan line conversion in the odd field indicated by the solid line in FIG. 1, a vertical filter must be constructed in accordance with exactly the same configuration principle as described above for the odd field. Can be. That is, the hitting to convert five MUSE scan lines M e 2~M e 6 of even fields indicated by broken lines on the right side of FIG two NTSC scan line N e 1, the N e 2, the upper 2 Book MUSE
Converts the scanning line M e 2, M e 3 to one NTSC scan line N e 1, the NTSC scan line N e 2 of one of the three MUSE scan lines M e 4~M e 6 of the lower Convert. The load coefficients for converting the upper and lower MUSE scan lines into one NTSC scan line each have the same value as the odd field, but the order is different. Note that the above-described configuration principle of the vertical filter for scanning line conversion according to the present invention is based on a luminance signal which is a basis of an image configuration, but a color signal corresponding to the luminance signal,
Actually, as for the color difference signal, as described later, the scanning line conversion can be performed by substantially the same configuration principle as that for the luminance signal. Further, as for the specific configuration of the scanning line conversion vertical filter for the down converter of the number of scanning lines according to the present invention, if the above-described configuration principle is established, the conventional configuration of the conventional down converter will be followed. In addition, by applying the configuration of the vertical filter, it can be easily realized as described in detail below. FIG. 2 shows a schematic configuration of a luminance signal scanning line number down-converter to which the 5-to-2 conversion method according to the present invention described above with reference to FIG. 1 is applied. In the illustrated downconverter, a MUSE input signal is supplied to a cascade connection of 1H delay lines 1 and 2, and an input and an output of the cascade connection 2H delay line are connected to coefficient units 3 and 4, respectively. The coefficient units 3 and 4 correspond to the three upper and lower MUSE scan lines in the 5-to-2 scan line conversion described above with reference to FIG.
For example, the odd field of M o 1 to M o 3 and M o 3~M o 5 and even fields of M e 2 to M e 4 and M e 4~M e 6 and the load factor of the first illustrated 1/8 , 3/8, 5/8, 7/8 are combined and multiplied as shown in blocks 3 and 4 of FIG. Thus, as is apparent from FIG.
Since the MUSE scanning line positioned at the center of the three MUSE scanning lines in the two-to-two conversion, for example, Mo 2, Mo 4, Me 3, and Me 5, all have a weighting factor of approximately 1. From the intermediate connection point of the cascaded 2H delay lines 1 and 2 in FIG. 2, a MUSE image signal is extracted without passing through a coefficient unit. Note that all image signal processing such as scan line conversion is performed by digital processing, but in the case of MUSE image signals, sub-samples are sequentially provided for each scan line by so-called quincunx sampling for highly efficient band compression transmission. Since the phase is inverted, the sub-sample phases of the three scanning lines for obtaining the load average are shifted by 1/2 sample period between the center and the upper and lower sides. Therefore, in order to correct the shift of the sub-sample phase between the scan lines for which the weighted average is calculated, from the intermediate connection point of the cascaded 2H delay lines 1 and 2 described above, a 1/2 sample period delay is used instead of the coefficient unit. The MUSE image signal is taken out via the delay line 4 of the second embodiment, and therefore, the vertical scanning line conversion filter in the down-converting line number converter shown in FIG.
This is an extremely simple configuration using only the two and two coefficient units 3 and 5 and the delay line 4. The filtered output signal of the vertical filter, that is, the output signal of the delay line 4 and the output signal obtained by adding the output signals of the coefficient units 3 and 5 by the adder 6 are supplied to the time axis expansion circuits 7 and 8, respectively. Then, the scanning rate of the MUSE scanning system of 1125 scanning lines is converted into the scanning rate of the NTSC scanning system to reduce the speed, respectively.
To extract only the output corresponding to the NTSC scanning line that actually exists from the three-to-one scanning line conversion output. That is, in the example of the scan line conversion described above with reference to FIG. 1, the load average of three MUSE scan lines sequentially shifted one by one is obtained as the output of the above-described vertical filter. weighted average of the NTSC scan line N o 3 pieces of MUSE scanning lines corresponding to 1 M o 1~M o 3 and NTSC scan line N o 3 pieces of MUSE scanning lines corresponding to 2 M o 3~M o 5 output 3 MUSE scan lines that do not correspond to NTSC scan lines
Weighted average of M o 2 to M o 4 or M o 4~M o 6 does not the output. The time axis expansion circuits 7, 8 and the number of scanning line conversion circuits 9, 1
0 is actually, for example, 4 as described later with reference to FIG.
A scanning line conversion buffer memory having a memory capacity of about 0 lines is used in common for both circuits, and the time is simultaneously reduced by selectively writing the vertical filter output to the scanning line conversion memory and converting both the write and read clock rates. Axis expansion and scanning line number conversion are performed, and the time axis expansion and scanning line number conversion output are output from the sample shifter, respectively.
Samples are interpolated by a three-dimensional filter via 11 and 12 and then guided to an adder 13 where they are averaged to obtain a converted output NTSC signal. Next, the principle of the configuration of the scanning line conversion vertical filter, which is a main part of the down converter for converting the number of scanning lines for color signals when converting a MUSE image signal into an NTSC image signal, will be described with reference to FIG. FIG. 3 is shown in accordance with the configuration principle, and FIG. 4 shows a schematic configuration of a color signal scanning line number down-converter using a vertical filter configured according to the principle. The color signal of the MUSE image signal, that is, the two color difference signals RY, B
Since -Y is subjected to time axis compression and time division multiplexing (TCI) and transmitted for each scanning line during the erasing period of the luminance signal Y, the MUSE input signal is first converted to the TCI time for scanning line conversion. The signal is supplied to the axis expansion circuit 14 to reduce the speed of the color difference signals RY and BY at the MUSE scanning rate alternately line-sequentially. Then, the signal is guided to the sample shifter 15 and subjected to interpolation by a three-dimensional filter function. in directly, and then supplied to the adder 17 via a 2H delay line 16, every other scanning line, for example, M o 1 in the odd field [O], M o 3 and M o 2, M o 4 above each color difference signals R-Y = r o 1 of, r o 2 and B-Y = seeking b o 1, b each average r of o 2 'o 1 and b' o 1, such mean of the color difference signals r '
And b 'are successively and alternately guided to a vertical filter comprising a 2H delay line 18 and coefficient units 19 and 20. In such a vertical filter, the average color difference signals r 'and b' on every other scanning line simultaneously appearing at the input / output terminals of the 2H delay line 18 are guided to coefficient units 20 and 19, respectively, and are converted into odd and even fields. The numerical values are the same but the order is different, and the weighting factors are multiplied as shown in the figure.
21 leads to the scan line of the NTSC image, for example its odd field

〔0〕における順次の走査線No1およびNo2にそれぞれ
対応した2チヤネルずつの荷重平均色差信号を形成す
る。ついで、加算器21から順次に得られる2チヤネルの
荷重平均色差信号R−YおよびB−Yをそれぞれ走査線
数変換回路22および23に導き、輝度信号用ダウンコンバ
ータにつき前述したと同様に、走査線変換用バッファメ
モリをそれぞれに用い、それら走査線変換用メモリに対
する荷重平均色差信号R−YおよびB−Yの選択的書込
みおよび書込み・読出し両クロックレートの変換によ
り、変換出力NTSC画像の走査レートに時間軸伸張を施し
てNTSC・R−Y出力信号およびNTSC・B−Y出力信号を
取出す。 つぎに、走査線数逓降ダウンコンバータにおいて、垂
直フイルタ出力の選択的書込みおよび書込み・読出し両
クロックレートの変換によって時間軸伸張および走査線
数変換を行なう走査線変換用バッファメモリの構成例を
第5図に示す。図示の構成例においては、垂直濾波出力
信号を走査線変換メモリ24に書込んで変換出力NTSC画像
信号を読出すための書込み・読出しアドレスをアドレス
選択回路25によって行なう。そのアドレス選択回路25に
おいては、垂直(V)書込みアドレス回路26、水平
(H)書込みアドレス回路27、垂直(V)読出しアドレ
ス回路28および水平(H)読出しアドレス回路29からの
各書込みアドレス信号と各読出しアドレス信号とを16.2
/2MHzのクロックで切換えて走査線変換メモリ24に印加
し、例えば約40ライン分の記憶容量を有するバッファメ
モリに対するMUSE画像の荷重平均走査線信号のうち、変
換出力NTSC画像の走査線に対応するもののみの選択的書
込とその対応する変換出力NTSC画像の走査線信号の読出
しとを交互に行なう。 なお、各アドレス回路26〜29には所要のアドレスをプ
リセットしておき、垂直書込みアドレス回路26はMUSE水
平駆動(HD)信号で駆動するとともにMUSE画像の変換区
画を規定する窓信号によって制御し、水平書込みアドレ
ス回路27は16.2/2MHzクロックで駆動するとともにMUSE
水平駆動(HD)信号でクリアし、垂直読出しアドレス回
路28はNTSC水平駆動(HD)信号で駆動するとともにNTSC
垂直駆動(VD)信号でクリアし、水平読出しアドレス回
路29はNTSC系クロックで駆動するとともにNTSC水平駆動
(HD)信号でクリアする。 しかして、各アドレス回路26〜29における各アドレス
のプリセット値を5本−2本変換方式と例えば2本−1
本変換方式との間で切換え可能にしておけば、原画像の
内容、特に画像の端縁部分における画像情報の要否の別
に応じ、5本−2本変換方式と例えば2本−1本変換方
式とを適切に切換えて適用し、画像内容に適合した変換
画像が得られるるようにすることができる。また、この
とき、2本−1本変換方式を3本−1本変換方式に置換
えてもよいこと勿論である。 (発明の効果) 以上の説明から明らかなように、本発明によれば、比
較的簡単な構成の走査線変換垂直フイルタを用いてMUSE
信号を良好な画質で標準方式受像機に表示することがで
きるとともに、原画像の内容に応じ、走査線変換方式を
適切に切換えて適用し得るという格別の効果が得られ
る。
Forming sequential scan lines N o 1 and N o 2 to weighted average color difference signals of each two channels, each of which corresponds at [0]. Next, the two-channel weighted average color difference signals RY and BY sequentially obtained from the adder 21 are led to scanning line number conversion circuits 22 and 23, respectively, and the scanning is performed in the same manner as described above for the luminance signal down converter. The scan rate of the conversion output NTSC image is obtained by selectively using the line conversion buffer memories and selectively writing and writing / reading clock rates of the weighted average color difference signals RY and BY to the scanning line conversion memories. Is subjected to time axis expansion to extract the NTSC / RY output signal and the NTSC / BY output signal. Next, in the downconverter of the number of scanning lines, a configuration example of a buffer memory for scanning line conversion for extending the time axis and converting the number of scanning lines by selectively writing the vertical filter output and converting both the writing and reading clock rates will be described. It is shown in FIG. In the illustrated configuration example, a write / read address for writing the vertical filtered output signal into the scan line conversion memory 24 and reading the converted output NTSC image signal is performed by the address selection circuit 25. In the address selection circuit 25, each write address signal from a vertical (V) write address circuit 26, a horizontal (H) write address circuit 27, a vertical (V) read address circuit 28, and a horizontal (H) read address circuit 29 is output. 16.2 Each read address signal
The clock is switched at a clock of / 2 MHz and is applied to the scan line conversion memory 24. For example, among the load average scan line signals of the MUSE image for a buffer memory having a storage capacity of about 40 lines, it corresponds to the scan line of the conversion output NTSC image. The selective writing of only the data and the reading of the scanning line signal of the corresponding converted output NTSC image are alternately performed. A required address is preset in each of the address circuits 26 to 29, and the vertical write address circuit 26 is driven by a MUSE horizontal drive (HD) signal and controlled by a window signal that defines a conversion section of a MUSE image. The horizontal write address circuit 27 is driven by 16.2 / 2MHz clock and
Clear by horizontal drive (HD) signal, vertical read address circuit 28 is driven by NTSC horizontal drive (HD) signal and NTSC
The signal is cleared by a vertical drive (VD) signal, and the horizontal read address circuit 29 is driven by an NTSC clock and cleared by an NTSC horizontal drive (HD) signal. The preset value of each address in each of the address circuits 26 to 29 is converted into a five-to-two conversion method, for example, two to one.
If it is possible to switch between this conversion method and the original image content, in particular, whether or not image information is necessary at the edge of the image, the 5-line to 2-line conversion method and, for example, the 2-line to 1-line conversion The method can be appropriately switched and applied so that a converted image suitable for the image content can be obtained. At this time, it is a matter of course that the two-to-one conversion method may be replaced with the three-to-one conversion method. (Effects of the Invention) As is clear from the above description, according to the present invention, the MUSE is realized by using a scanning line conversion vertical filter having a relatively simple configuration.
The signal can be displayed with good image quality on the standard type receiver, and the special effect that the scanning line conversion method can be appropriately switched and applied according to the content of the original image is obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明による輝度信号用垂直フイルタの構成原
理を示す線図、 第2図は本発明による輝度信号用ダウンコンバータの概
略構成を示すブロック線図、 第3図は色信号用垂直フイルタの構成原理を示す線図、 第4図は色信号用ダウンコンバータの概略構成を示すブ
ロック線図、 第5図は本発明による5本−2本方式・2本−1本方式
共用走査線変換回路の概略構成を示すブロック線図であ
る。 1,2……1H遅延線 3,5,19,20……係数器 4……遅延線 6,13,17,21……加算器 7,8……時間軸伸張回路 9,10,22,23……走査線数変換回路 11,12,15……サンプルシフタ 14……TCI時間軸伸張回路 16,18……2H遅延線 24……走査線変換メモリ 25……アドレス選択回路 26,27……書込みアドレス回路 28,29……読出しアドレス回路
FIG. 1 is a diagram showing a configuration principle of a luminance signal vertical filter according to the present invention, FIG. 2 is a block diagram showing a schematic configuration of a luminance signal down converter according to the present invention, and FIG. 3 is a color signal vertical filter. FIG. 4 is a block diagram showing a schematic configuration of a color signal downconverter, and FIG. 5 is a 5-line / 2-line / 2-line common scan line conversion according to the present invention. FIG. 2 is a block diagram illustrating a schematic configuration of a circuit. 1,2… 1H delay line 3,5,19,20… Coefficient unit 4… Delay line 6,13,17,21… Adder 7,8… Time axis expansion circuit 9,10,22, 23 Scanning line number conversion circuit 11, 12, 15 Sample shifter 14 TCI time base expansion circuit 16, 18 2H delay line 24 Scanning line conversion memory 25 Address selection circuit 26, 27 … Write address circuit 28,29 …… Read address circuit

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】高精細度画像信号を標準方式画像信号に変
換する走査線数逓降ダウンコンバータにおいて、画像信
号の各フイールド毎に、高精細度画像信号の順次の走査
線a(=a1+a2)本を標準方式画像信号の順次の走査線
b(=b1+b2)本へ変換する際に用いる走査線変換垂直
フイルタを、高精細度画像信号の順次の走査線a1本から
標準方式画像信号の順次の走査線b1本への変換および高
精細度画像信号の順次の走査線a2本から標準方式画像信
号の順次の走査線b2本への変換に交互に繰返し用いるよ
うに構成したことを特徴とする走査線数逓降ダウンコン
バータ用走査線変換垂直フイルタ。
In a down-converter for converting the number of scanning lines into a standard image signal, a scanning line a (= a 1) of a high-definition image signal is sequentially provided for each field of the image signal. + A 2 ) lines are converted to the sequential scanning lines b (= b 1 + b 2 ) of the standard image signal by using the scanning line conversion vertical filter from the sequential scanning line a 1 of the high definition image signal. used repeatedly alternately conversion of sequential scan line a 2 pieces of sequential conversion and high definition image signal to the scanning line b 1 present the standard type image-signal sequentially to the scanning line b 2 pieces of standard type image-signal A scanning line conversion vertical filter for a down converter of the number of scanning lines, wherein the filtering is performed as described above.
【請求項2】高精細度画像信号を標準方式画像信号に変
換する走査線数逓降ダウンコンバータにおいて、画像信
号の各フイールド毎に、高精細度画像信号の順次の走査
線5本を標準方式画像信号の順次の走査線2本へ変換す
る際に用いる走査線変換垂直フイルタを、高精細度画像
信号の順次の走査線3本から標準方式画像信号の順次の
走査線1本への変換および高精細度画像信号の順次の走
査線2本から標準方式画像信号の順次の走査線1本への
変換に交互に繰返し用いるように構成したことを特徴と
する走査線数逓降ダウンコンバータ用走査線変換垂直フ
イルタ。
2. A downconverter for converting the number of scanning lines into a standard image signal, wherein five successive scanning lines of the high-definition image signal are standardized for each field of the image signal. A scanning line conversion vertical filter used when converting an image signal into two sequential scanning lines is used to convert three sequential scanning lines of a high-definition image signal into one sequential scanning line of a standard image signal. Scanning for down-converting the number of scanning lines, characterized in that it is used alternately and repeatedly to convert two successive scanning lines of a high-definition image signal into one successive scanning line of a standard image signal. Line transformation vertical filter.
【請求項3】画像信号の各フイールド毎の、高精細度画
像信号の順次の走査線5本から標準方式画像信号の順次
の走査線2本への変換および高精細度画像信号の順次の
走査線2本または3本から標準方式画像信号の順次の走
査線1本への変換を、画像信号が表わす画像の内容に応
じ、特許請求の範囲第2項記載の走査線変換垂直フイル
タの一部構成要素を共用して選択的に実施することを特
徴とする走査線数逓降ダウンコンバータ。
3. A conversion from five sequential scanning lines of a high-definition image signal to two sequential scanning lines of a standard system image signal and sequential scanning of a high-definition image signal for each field of an image signal. 3. A part of a scanning line conversion vertical filter according to claim 2, wherein the conversion from two or three lines to one sequential scanning line of the standard image signal is performed according to the content of the image represented by the image signal. A downconverter for the number of scanning lines, wherein the downconverter is selectively implemented by sharing constituent elements.
JP1240613A 1989-09-19 1989-09-19 Scan line conversion vertical filter for down conversion of the number of scan lines Expired - Fee Related JP2763346B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1240613A JP2763346B2 (en) 1989-09-19 1989-09-19 Scan line conversion vertical filter for down conversion of the number of scan lines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1240613A JP2763346B2 (en) 1989-09-19 1989-09-19 Scan line conversion vertical filter for down conversion of the number of scan lines

Publications (2)

Publication Number Publication Date
JPH03104392A JPH03104392A (en) 1991-05-01
JP2763346B2 true JP2763346B2 (en) 1998-06-11

Family

ID=17062102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1240613A Expired - Fee Related JP2763346B2 (en) 1989-09-19 1989-09-19 Scan line conversion vertical filter for down conversion of the number of scan lines

Country Status (1)

Country Link
JP (1) JP2763346B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03132185A (en) * 1989-10-17 1991-06-05 Sanyo Electric Co Ltd Television signal converter

Also Published As

Publication number Publication date
JPH03104392A (en) 1991-05-01

Similar Documents

Publication Publication Date Title
JPS63313979A (en) Interpolation method compensated moving of digital television picture
JPH01236877A (en) Method and apparatus for processing video signal
EP0277141B1 (en) Video transmission systems
JPS612482A (en) Sampling filter of sub-nyquist
JP2763346B2 (en) Scan line conversion vertical filter for down conversion of the number of scan lines
US4707737A (en) Band compression apparatus for a video signal
JPH0898154A (en) Television signal processor
JP2605167B2 (en) Video signal format converter
JPH0888838A (en) Television receiver
JPH0225599B2 (en)
JP2619076B2 (en) Television system converter
JP2574486B2 (en) 2 screen TV
JPS6051091A (en) Television signal converter
JP2554080Y2 (en) Television system converter
JP2868783B2 (en) High-definition / standard television converter
WO1993009635A1 (en) Improvements in television systems
JP3097140B2 (en) Television signal receiving and processing device
JPH04275789A (en) High definition television signal processor
JP2720639B2 (en) High Definition Television Receiver
JPH05292424A (en) Television receiver
JPH03132184A (en) Television receiver
JPH06327035A (en) Muse/ntsc converter
JPH0787466A (en) Muse decoder
JPH04238484A (en) Simple muse receiver
JPH0646458A (en) Video signal processor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees