JP2763071B2 - Eyeglass lenses - Google Patents

Eyeglass lenses

Info

Publication number
JP2763071B2
JP2763071B2 JP62246218A JP24621887A JP2763071B2 JP 2763071 B2 JP2763071 B2 JP 2763071B2 JP 62246218 A JP62246218 A JP 62246218A JP 24621887 A JP24621887 A JP 24621887A JP 2763071 B2 JP2763071 B2 JP 2763071B2
Authority
JP
Japan
Prior art keywords
film layer
film
multilayer
region
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62246218A
Other languages
Japanese (ja)
Other versions
JPS6488517A (en
Inventor
謙一 新出
雅浩 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOOYA KK
Original Assignee
HOOYA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOOYA KK filed Critical HOOYA KK
Priority to JP62246218A priority Critical patent/JP2763071B2/en
Publication of JPS6488517A publication Critical patent/JPS6488517A/en
Application granted granted Critical
Publication of JP2763071B2 publication Critical patent/JP2763071B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Eyeglasses (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、眼鏡レンズに係り、更に詳しくは紫外及び
近紫外域において反射特性を、そして可視域において反
射防止特性を有する眼鏡レンズに関する。 [発明の背景] 紫外線は眼にとって有害光線とされ、例えば白内障の
遠因となることは知られている。 また紫外線による問題は、染色された眼鏡レンズにも
認められる。すなわち、最近プラスチックレンズを分散
染料で染色したり(例えば特公昭55−17156号公報参
照)、染色し難いと言われているガラスレンズの場合に
は、その表面に、水酸基等の官能基を有するラダー型シ
リコンオリゴマー(特開昭62−55621号公報)やポリウ
レタン等の高分子(実開昭60−90422号公報)からなる
硬化塗膜を形成させることにより、ガラスレンズを分散
染料で染色することが行なわれているが、上記の方法で
染色されたレンズは、紫外線により染料が酸化、分解等
の化学変化を受け、変色、退色して耐光性を著しく損な
うことが問題となっている。 そこで眼鏡レンズ表面に低屈折率物質膜と高屈折率物
質膜とを交互積層してなる多層紫外域反射膜を設けるこ
とが行なわれている。この多層反射膜においてはその層
数が増加する程、反射率も増大する(「薄膜光学ハンド
ブック」日本学術振興会薄膜第131委員会編303頁参
照)。しかしながら前記構造の多層紫外域反射膜は、紫
外域に反射領域を設定した場合、紫外域に増反射効果が
現われるが、同時にその波長領域の近傍に広範囲に亘っ
て高反射率を有する二次的ピーク(リップルとも呼ばれ
るので、以下リップルという)が現われる。特にこの反
射膜の設計において、増反射領域を可視域に近接した近
紫外領域に設定すると、リップルがもたらす可視域での
表面反射の増加や、それに伴なう透過率の減少が起り、
この様な反射膜を眼鏡レンズに設けた場合、眼鏡レンズ
における光学性能において大きな障害になる。 [発明の目的] 従って本発明の目的は、多層紫外域反射膜を設けるこ
とにより生ずる光学性能上の障害を解消した新規眼鏡レ
ンズを提供することにある。 [目的を達成するための手段] 本発明の目的は、レンズ基板または表面処理が施され
たレンズ基板上に低屈折率物質膜と高屈折率物質膜を交
互積層してなる多層紫外域反射膜層と、低屈折率物質膜
と高屈折率物質膜を交互積層してなる可視域反射防止膜
層と、を有する眼鏡レンズにおいて; 前記多層紫外域反射膜層の一方の面とレンズ基板また
は表面処理レンズ基板との間及び前記多層紫外域反射膜
層の他方の面上に、高屈折率物質からなり、且つその光
学的膜厚がλ/8以下である、前記多層紫外域反射膜層に
よるリップルを抑えることができる第1の調整膜がそれ
ぞれ設けられ、 さらに前記多層紫外域防止膜層の前記他方の面上に設
けられた第1の調整膜上に、前記可視域反射防止膜層
が、低屈折率物質からなり、且つその光学的膜厚が約λ
/2である、該可視域反射防止膜層と前記多層紫外域反射
膜層との間の分光反射特性を整えることができる第2の
調整膜を介して設けられている ことを特徴とする眼鏡レンズより達成された。 以下、本発明を詳細に説明する。 本発明の眼鏡用レンズにおいて、レンズ基板として
は、ガラスレンズ基板及びプラスチックレンズ基板のい
ずれも用いられる。これらのレンズ基板はその表面が表
面処理されていても良く、該表面処理の具体例として、
レンズ基板上に有機物(例えば有機ケイ素化合物)、無
機物(例えばコロイダルシリカ)又はこれらの混合物か
らなる硬化膜を形成することが挙げられる。 また本発明の眼鏡用レンズは、その前提条件として、
前記レンズ基板上に多層紫外域反射膜層を有するもので
ある。この多層紫外域反射膜層は、例えば低屈折率物質
と高屈折率物質とをそれぞれの層の光学的膜厚がλ/4と
なるように交互積層することにより形成される。低屈折
率物質として弗化マグネシウムおよび酸化珪素の一種ま
たは二種が用いられ、また高屈折率物質として酸化チタ
ン、酸化セリウム、酸化ジルコニウム、酸化インジウ
ム、酸化ネオジウムおよび酸化タンタルの一種または二
種以上が用いられる。 本発明の眼鏡用レンズは、前記多層紫外域反射膜層の
一方の面とレンズ基板又は表面処理レンズ基板との間及
び前記多層紫外域反射膜層の他方の面上に、前記多層紫
外域反射膜厚によるリップルを抑えるための第1の調整
膜が設けられていることを1つの特徴とするものであ
る。この第1の調整膜は、前記の高屈折率物質よりな
り、その光学的膜厚はλ/8以下とするのが好ましい。 また本発明の眼鏡用レンズは、前記多層紫外域反射膜
層の面上に設けられた第1の調整膜上に、可視域反射防
止膜層が、該可視域反射防止膜層と前記多層紫外域反射
膜層との間の分光反射特性を整えるための第2の調整膜
を介して設けられていることをもう1つの特徴とするも
のである。この可視域反射防止膜層の形成法の一例とし
て、上記低屈折率物質と高屈折率物質とを交互に積層し
た混合層(実施例では2層又は3層)を光学的膜厚λ/4
程度蒸着し、次に光学膜厚λ/4又はλ/2程度の高屈折率
物質の層、そして光学的膜厚λ/4程度の低屈折率物質の
層を順次積層する方法が挙げられる。また前記可視域反
射防止膜層と多層紫外域反射膜層との間の分光反射特性
を整えるために、前記第1の調整膜と可視域反射防止膜
層との間に設けられる第2の調整膜は、前記の低屈折率
物質よりなり、その光学的膜厚はλ/2程度とするのが好
ましい。 [実施例] 以下、実施例により本発明を更に説明するが、本発明
はこれらの実施例に限定されるものではない。 [実施例1] 無機ガラスレンズ(ホーヤ(株)製LHI−IIレンズ
屈折率1.6)の表面に有機ケイ素化合物含有の有機物表
面硬化膜を施したものを真空槽内に設置し、レンズ表面
を120℃以下としながら下地層として酸化珪素からなる
無機表面硬化膜を蒸着させた。次に多層紫外域反射膜層
によるリップルを抑えるため、高屈折率物質として酸化
ジルコニウムを用い、これを光学的膜λ/8で蒸着して第
1の調整膜を形成し、その上に多層紫外域反射膜層を蒸
着した。この紫外域反射膜層は基板側から低屈折率層と
して酸化珪素、高屈折率層として酸化ジルコニウムを各
々光学的膜厚λ/4で交互に高、低屈折率物質をそれぞれ
7層づつ蒸着し最後は低屈折率物質を光学的膜厚λ/4で
蒸着した。従って紫外域反射膜層の合計層数は15層とな
る。その上に再びリップルを抑えるための第1の調整膜
を形成させるため、高屈折率物質として酸化ジルコニウ
ムを光学的膜厚λ/8で蒸着した。次いで該紫外域反射膜
層に可視域の反射防止層を蒸着した場合の分光反射率特
性を整えるための第2の調整膜として酸化珪素を光学的
膜厚λ/2で蒸着した。次に可視域反射防止膜層を蒸着し
た。該反射防止膜層の形成は基板側の第一層に高屈折率
物質として酸化ジルコニウム、第二層に低屈折率物質と
して酸化珪素を使用した等価屈折率1.626の2層疑似等
価膜を光学的膜厚λ/4相当分蒸着し、その上に高屈折率
物質として酸化ジルコニウムを使用した光学的膜厚λ/4
の層を蒸着し、最後に低屈折率物質として酸化珪素を使
用した光学的膜厚λ/4の層を蒸着することによって行な
った。 第1図にこの実施例1で得られた、多層蒸着膜層を有
する眼鏡用レンズ(屈折率1.6)の近紫外域における分
光反射率曲線を示す。 第1図より、350〜410nmの近紫外域で反射率は80%以
上となり、380nmにおいて最大反射率95%となることが
明らかである。一方可視域に入り430nmより長波長側で
は反射率が急激に減少して最小反射率は0.1%程度であ
り、可視域全体での反射率を表すY値は0.67%であっ
た。可視域反射防止膜を設けないものの反射率はY値で
9.14であり、また従来技術の反射防止膜(λ/8高屈折率
層を使用)を設けたものは3.40%であり、さらに眼鏡レ
ンズ自体の表面反射率は5.32%であるので、本実施例1
の多層蒸着膜層を有する眼鏡用レンズは可視域反射防止
効果において極めてすぐれていることが明らかである。 [実施例2] 可視域反射防止膜層を変えた以外は、実施例1と同様
にして多層蒸着膜層を有する眼鏡用レンズを得た。 可視域反射防止膜層は以下のようにして形成した。す
なわち、第1の調整膜、多層紫外域反射膜層、第1の調
整膜、第2の調整膜を順次設けたガラス基板上に、高屈
折率物質として酸化ジルコニウム、低屈折率物質として
酸化珪素を用いた対称型三層等価膜で等価屈折率1.65、
等価膜厚λ/4としたもの、および高屈折率物質として酸
化ジルコニウムを用いた光学的膜厚λ/4の層、さらに低
屈折率物質として酸化珪素を用いた光学的膜厚λ/4の層
をこの順番で蒸着することにより可視域反射防止膜層を
形成した。 第1図に、この実施例2で得られた、多層蒸着膜層を
有する眼鏡用レンズの近紫外域における分光反射率曲線
を示す。 第1図より350〜410nmの近紫外域で反射率は80%以上
であり、360nmにおいて最大反射率93%となることが明
らかである。一方可視域に入り430nmより長波長側では
反射率が急激に減少し515nmと580nmにおいて反射率は0.
1%以下となり、可視部全体の反射率を表すY値は0.73
%であって、すぐれた結果が得られた。 実施例1と2を比較すると、反射防止効果は実施例1
の方が優れているが、実施例1の場合は近紫外域におけ
る反射率の高い部分が380nmと可視域に近く実施例2の
場合は360nmと若干可視域より遠くなり紫外線を反射す
る波長帯が短波長側による。このことは当該多層膜を着
色物の紫外線照射による退色防止に使用する場合におい
て反射する波長帯を選択できる利点がある。 [実施例3] レンズ基板として、屈折率1.8のガラスレンズ(ホー
ヤ(株)製THI−II)を使用した以外は実施例1と同様
にして多層蒸着膜層を有する眼鏡用レンズを得た。本実
施例3で得られた眼鏡用レンズの分光反射率曲線を第2
図に示す。 第2図より350〜410nmの近紫外域で反射率は80%以上
であり、380nmにおいて最大反射率96%となることが明
らかである。また可視域の反射率はY値で1.38%であっ
た。従来技術の反射防止膜(λ/8高屈折率膜使用)を設
けた場合の反射率はY値で4.07%であり、本実施例3の
眼鏡用レンズの可視域反射防止効果の方がはるかにすぐ
れていた。 [実施例4] レンズ基板として実施例3で用いたと同一の屈折率1.
8のガラスレンズ(ホーヤ(株)製THI−II)を用い、実
施例2と同一の方法で成膜して多層蒸着膜層を有する眼
鏡用レンズを得た。その近紫外域における分光反射率曲
線は第2図に示すように、350〜410nmの近紫外域におけ
る反射率は80%以上であり、365nmにおいて最大反射率9
4%であった。また可視域の反射率はY値で1.45%であ
り、可視域反射防止効果にすぐれていた。 [実施例5] レンズ基板として屈折率1.7のガラスレンズ(ホーヤ
(株)製LHI)用いた以外は実施例1と同様にして多層
蒸着膜層を有する眼鏡用レンズを得た。得られた多層蒸
着膜層を有する眼鏡用レンズの近紫外域における分光反
射率曲線は図示しないが、350nmから410nmの近紫外領域
において80%以上の反射率を有し380nmに於て最大反射
率95.3%を示した。また可視域の反射率はY値で0.95%
であった。従来技術の反射防止膜(λ/8高屈折率膜使
用)を設けたものの反射率はY値で3.67%であり本実施
例5の多層蒸着膜層を有する眼鏡用レンズの可視域反射
防止効果の方がはるかにすぐれていた。 [実施例6] レンズ基板として実施例5で用いたと同一屈折率1.7
のガラスレンズ(ホーヤ(株)製LHI)を用い実施例2
と同一の方法で成膜して多層蒸着膜を有する眼鏡用レン
ズを得た。得られた多層蒸着膜層を有する眼鏡用レンズ
の近紫外域における分光反射率曲線は図示しないが、34
5nmから415nmの近紫外領域において80%以上の反射率を
有し365nmに於いて最大反射率93.5%を示した。また可
視域の反射率はY値で1.01%であり、可視域反射防止効
果にすぐれていた。 [発明の効果] 以上詳述したように、本発明によれば、レンズ基板上
に多層紫外域反射膜層を設けた眼鏡用レンズにおいて、
前記多層紫外域反射膜層によるリップルを抑えるための
第1の調整膜、可視域反射防止膜層、及び該可視域反射
防止膜層と前記多層紫外域反射膜層との間の分光反射特
性を整えるため第2の調整膜を所定の配列で設けること
により、近紫外域においてすぐれた反射特性を、そして
可視域においてすぐれた反射防止特性を有する眼鏡用レ
ンズが得られた。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spectacle lens, and more particularly to a spectacle lens having a reflection characteristic in an ultraviolet and near-ultraviolet region and an antireflection characteristic in a visible region. BACKGROUND OF THE INVENTION Ultraviolet radiation is considered harmful to the eye and is known to cause cataracts, for example. Problems caused by ultraviolet light are also observed in stained spectacle lenses. That is, recently, a plastic lens is dyed with a disperse dye (for example, see Japanese Patent Publication No. 55-17156), and a glass lens which is said to be difficult to dye has a functional group such as a hydroxyl group on the surface. A glass lens is dyed with a disperse dye by forming a cured coating composed of a ladder-type silicone oligomer (Japanese Patent Application Laid-Open No. 62-55621) or a polymer such as polyurethane (Japanese Utility Model Application Laid-Open No. 60-90422). However, in the lenses dyed by the above method, there is a problem that the dye undergoes a chemical change such as oxidation or decomposition due to ultraviolet rays, discoloring or fading, and light resistance is remarkably impaired. Therefore, a multi-layer ultraviolet reflection film formed by alternately laminating a low refractive index material film and a high refractive index material film on the surface of an eyeglass lens has been provided. In this multilayer reflective film, the reflectance increases as the number of layers increases (see “Thin Film Optical Handbook”, pp. 303 of the 131st committee of the Japan Society for the Promotion of Science, thin film). However, the multilayer ultraviolet reflection film having the above structure has an enhanced reflection effect in the ultraviolet region when a reflection region is set in the ultraviolet region, but at the same time, has a high reflectivity over a wide range in the vicinity of the wavelength region. A peak (also referred to as ripple, hereinafter referred to as ripple) appears. In particular, in the design of this reflective film, if the enhanced reflection region is set to a near ultraviolet region close to the visible region, an increase in surface reflection in the visible region caused by the ripple and a decrease in the transmittance accompanying it occur.
When such a reflective film is provided on a spectacle lens, the optical performance of the spectacle lens becomes a major obstacle. [Object of the Invention] Accordingly, an object of the present invention is to provide a novel spectacle lens which eliminates the obstacle in optical performance caused by providing a multilayer ultraviolet region reflection film. [Means for Achieving the Object] An object of the present invention is to provide a multilayer ultraviolet reflection film in which a low-refractive-index material film and a high-refractive-index material film are alternately laminated on a lens substrate or a surface-treated lens substrate. A spectacle lens having a layer and a visible-region antireflection film layer formed by alternately laminating a low-refractive-index material film and a high-refractive-index material film; one surface of the multilayer ultraviolet-reflective film layer and a lens substrate or surface Between the treated lens substrate and on the other surface of the multilayer ultraviolet reflection film layer, the multilayer ultraviolet reflection film layer is made of a high refractive index material, and has an optical thickness of λ / 8 or less. First adjusting films capable of suppressing ripples are provided, respectively, and further, the visible region antireflection film layer is formed on the first adjusting film provided on the other surface of the multilayer ultraviolet region preventing film layer. , Made of a low refractive index material, and having an optical thickness of about λ
/ 2, wherein the spectacles are provided via a second adjustment film capable of adjusting spectral reflection characteristics between the visible region antireflection film layer and the multilayer ultraviolet region reflection film layer. Achieved by lens. Hereinafter, the present invention will be described in detail. In the spectacle lens of the present invention, both a glass lens substrate and a plastic lens substrate are used as the lens substrate. These lens substrates may be surface-treated, and as a specific example of the surface treatment,
Forming a cured film made of an organic substance (for example, an organic silicon compound), an inorganic substance (for example, colloidal silica), or a mixture thereof on a lens substrate. Also, the spectacle lens of the present invention, as its precondition,
The lens substrate has a multilayer ultraviolet reflection film layer. The multilayer ultraviolet reflection film layer is formed, for example, by alternately laminating a low-refractive-index substance and a high-refractive-index substance such that the optical thickness of each layer is λ / 4. One or more of magnesium fluoride and silicon oxide are used as low refractive index substances, and one or more of titanium oxide, cerium oxide, zirconium oxide, indium oxide, neodymium oxide and tantalum oxide are used as high refractive index substances. Used. The spectacle lens of the present invention is characterized in that the multilayer ultraviolet reflection film layer is formed between one surface of the multilayer ultraviolet reflection film layer and a lens substrate or a surface-treated lens substrate and on the other surface of the multilayer ultraviolet reflection film layer. One feature is that a first adjustment film for suppressing a ripple due to a film thickness is provided. This first adjustment film is made of the above-mentioned high refractive index substance, and its optical thickness is preferably λ / 8 or less. Further, in the spectacle lens of the present invention, a visible region antireflection film layer is provided on the first adjustment film provided on the surface of the multilayer ultraviolet region reflection film layer, and the visible region antireflection film layer and the multilayer ultraviolet region. Another feature is that it is provided via a second adjustment film for adjusting the spectral reflection characteristics between itself and the area reflection film layer. As an example of the method of forming the visible region antireflection film layer, a mixed layer (two or three layers in the embodiment) in which the above-described low-refractive-index substances and high-refractive-index substances are alternately laminated is formed with an optical film thickness of λ / 4.
Then, a layer of a high refractive index substance having an optical thickness of about λ / 4 or λ / 2 and a layer of a low refractive index substance having an optical thickness of about λ / 4 are sequentially laminated. Further, a second adjustment provided between the first adjustment film and the visible region antireflection film layer in order to adjust spectral reflection characteristics between the visible region antireflection film layer and the multilayer ultraviolet region reflection film layer. The film is made of the above-mentioned low refractive index substance, and its optical thickness is preferably about λ / 2. [Examples] Hereinafter, the present invention will be further described with reference to Examples, but the present invention is not limited to these Examples. [Example 1] Inorganic glass lens (LHI-II lens manufactured by Hoya Corporation)
An organic surface-cured film containing an organosilicon compound is applied to the surface with a refractive index of 1.6), placed in a vacuum chamber, and an inorganic surface-cured film made of silicon oxide is deposited as a base layer while keeping the lens surface at 120 ° C or lower. Was. Next, in order to suppress ripples caused by the multilayer ultraviolet reflection film layer, zirconium oxide is used as a high refractive index substance, which is deposited as an optical film λ / 8 to form a first adjustment film, and a multilayer ultraviolet light is formed thereon. An area reflective film layer was deposited. This ultraviolet region reflection film layer is formed by depositing silicon oxide as a low refractive index layer and zirconium oxide as a high refractive index layer alternately with an optical film thickness of λ / 4 from the substrate side. Finally, a low-refractive-index substance was deposited with an optical film thickness of λ / 4. Therefore, the total number of the ultraviolet reflection film layers is 15 layers. Zirconium oxide as a high-refractive-index substance was vapor-deposited with an optical film thickness of λ / 8 to form a first adjustment film for suppressing a ripple again thereon. Next, silicon oxide was vapor-deposited with an optical film thickness of λ / 2 as a second adjustment film for adjusting spectral reflectance characteristics when a visible antireflection layer was vapor-deposited on the ultraviolet reflection film layer. Next, a visible region antireflection film layer was deposited. The antireflection film layer is formed by optically forming a two-layer pseudo-equivalent film having an equivalent refractive index of 1.626 using zirconium oxide as a high refractive index material as a first layer on the substrate side and silicon oxide as a low refractive index material as a second layer. Optical film thickness λ / 4 equivalent to film thickness λ / 4, and using zirconium oxide as a high refractive index material
And finally, a layer having an optical film thickness of λ / 4 using silicon oxide as a low refractive index material. FIG. 1 shows a spectral reflectance curve in the near ultraviolet region of a spectacle lens (refractive index: 1.6) having a multilayer vapor-deposited film layer obtained in Example 1. From FIG. 1, it is clear that the reflectance is 80% or more in the near ultraviolet region of 350 to 410 nm, and the maximum reflectance is 95% at 380 nm. On the other hand, on the longer wavelength side than 430 nm, the reflectance sharply decreased, and the minimum reflectance was about 0.1%, and the Y value representing the reflectance over the entire visible range was 0.67%. The reflectance of the device without the visible region anti-reflection coating
9.14 and 3.40% with a conventional anti-reflection coating (using a λ / 8 high refractive index layer), and the surface reflectance of the spectacle lens itself was 5.32%. 1
It is clear that the spectacle lens having the multilayer vapor-deposited film layer is extremely excellent in the antireflection effect in the visible region. Example 2 An eyeglass lens having a multilayer vapor-deposited film layer was obtained in the same manner as in Example 1 except that the visible region antireflection film layer was changed. The visible region antireflection film layer was formed as follows. That is, on a glass substrate on which a first adjustment film, a multilayer ultraviolet reflection film layer, a first adjustment film, and a second adjustment film are sequentially provided, zirconium oxide as a high refractive index material and silicon oxide as a low refractive index material Equivalent refractive index of 1.65 with symmetrical three-layer equivalent film using
An equivalent film thickness of λ / 4, an optical film thickness of λ / 4 using zirconium oxide as a high refractive index material, and an optical film thickness of λ / 4 using silicon oxide as a low refractive index material The layers were deposited in this order to form an antireflective coating layer in the visible region. FIG. 1 shows a spectral reflectance curve in the near ultraviolet region of a spectacle lens having a multilayer vapor-deposited film layer obtained in Example 2. From FIG. 1, it is clear that the reflectance is more than 80% in the near ultraviolet region of 350 to 410 nm, and the maximum reflectance is 93% at 360 nm. On the other hand, in the visible region, the reflectance sharply decreases at wavelengths longer than 430 nm, and the reflectance is 0 at 515 nm and 580 nm.
It becomes 1% or less, and the Y value representing the reflectance of the entire visible portion is 0.73.
%, With excellent results. When the first and second embodiments are compared, the anti-reflection effect is the same as in the first embodiment.
In the case of Example 1, the portion having a high reflectance in the near ultraviolet region is 380 nm, which is close to the visible region, and in the case of Example 2, the wavelength region is slightly longer than the visible region, 360 nm, and reflects ultraviolet light. Depends on the short wavelength side. This has the advantage that the wavelength band to be reflected can be selected when the multilayer film is used to prevent fading of a colored substance due to ultraviolet irradiation. Example 3 A spectacle lens having a multilayer vapor-deposited film layer was obtained in the same manner as in Example 1, except that a glass lens having a refractive index of 1.8 (THI-II manufactured by Hoya Corporation) was used as a lens substrate. The spectral reflectance curve of the spectacle lens obtained in Example 3
Shown in the figure. From FIG. 2, it is clear that the reflectance is 80% or more in the near ultraviolet region of 350 to 410 nm and the maximum reflectance is 96% at 380 nm. The reflectance in the visible region was 1.38% in Y value. The reflectance in the case where the antireflection film of the prior art (using a λ / 8 high refractive index film) is provided is 4.07% in the Y value, and the spectacle lens of the third embodiment has a far greater effect of preventing reflection in the visible region. Was excellent. Example 4 The same refractive index as that used in Example 3 as a lens substrate 1.
Using a glass lens of No. 8 (THI-II manufactured by Hoya Co., Ltd.), a film was formed in the same manner as in Example 2 to obtain a spectacle lens having a multilayer vapor-deposited film layer. As shown in FIG. 2, the spectral reflectance curve in the near ultraviolet region has a reflectance of 80% or more in the near ultraviolet region of 350 to 410 nm, and the maximum reflectance at 365 nm is 9%.
4%. In addition, the reflectance in the visible region was 1.45% in Y value, and was excellent in the visible region antireflection effect. Example 5 A spectacle lens having a multilayer vapor-deposited film layer was obtained in the same manner as in Example 1 except that a glass lens having a refractive index of 1.7 (LHI manufactured by Hoya Corporation) was used as a lens substrate. Although the spectral reflectance curve in the near-ultraviolet region of the spectacle lens having the obtained multilayer vapor-deposited film layer is not shown, it has a reflectance of 80% or more in the near-ultraviolet region from 350 nm to 410 nm and has a maximum reflectance at 380 nm. 95.3%. The reflectance in the visible region is 0.95% in Y value.
Met. The reflectivity of the conventional anti-reflection film (using a λ / 8 high refractive index film) is 3.67% in Y value, and the anti-reflection effect of the spectacle lens having the multilayer vapor-deposited film layer of the fifth embodiment in the visible region. Was much better. Example 6 The same refractive index as the lens substrate used in Example 5 was 1.7.
Example 2 using a glass lens (LHI manufactured by Hoya Corporation)
A spectacle lens having a multilayer vapor-deposited film was obtained by the same method as in Example 1. The spectral reflectance curve in the near ultraviolet region of the spectacle lens having the obtained multilayer vapor-deposited film layer is not shown, but is not shown.
It had a reflectance of 80% or more in the near ultraviolet region from 5 nm to 415 nm, and showed a maximum reflectance of 93.5% at 365 nm. Further, the reflectance in the visible region was 1.01% in Y value, indicating that the visible region had an excellent antireflection effect. [Effects of the Invention] As described in detail above, according to the present invention, in a spectacle lens provided with a multilayer ultraviolet reflection film layer on a lens substrate,
A first adjusting film for suppressing a ripple caused by the multilayer ultraviolet reflection film layer, a visible reflection prevention film layer, and a spectral reflection characteristic between the visible reflection prevention film layer and the multilayer ultraviolet reflection film layer. By arranging the second adjusting film in a predetermined arrangement for adjustment, a spectacle lens having excellent reflection characteristics in the near ultraviolet region and excellent antireflection characteristics in the visible region was obtained.

【図面の簡単な説明】 第1図は、本発明の実施例1,2で得られた眼鏡用レンズ
の分光反射率曲線図、第2図は本発明の実施例3,4で得
られた眼鏡用レンズの分光反射率曲線図を示す。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing the spectral reflectance curve of the spectacle lens obtained in Examples 1 and 2 of the present invention, and FIG. 2 is obtained in Examples 3 and 4 of the present invention. FIG. 3 shows a spectral reflectance curve diagram of a spectacle lens.

Claims (1)

(57)【特許請求の範囲】 1.レンズ基板または表面処理が施されたレンズ基板上
に低屈折率物質膜と高屈折率物質膜を交互積層してなる
多層紫外域反射膜層と、低屈折率物質膜と高屈折率物質
膜を交互積層してなる可視域反射防止膜層と、を有する
眼鏡レンズにおいて; 前記多層紫外域反射膜層の一方の面とレンズ基板または
表面処理レンズ基板との間及び前記多層紫外域反射膜層
の他方の面上に、高屈折率物質からなり、且つその光学
的膜厚がλ/8以下である、前記多層紫外域反射膜層によ
るリップルを抑えることができる第1の調整膜がそれぞ
れ設けられ、 さらに前記多層紫外域防止膜層の前記他方の面上に設け
られた第1の調整膜上に、前記可視域反射防止膜層が、
低屈折率物質からなり、且つその光学的膜厚が約λ/2で
ある、該可視域反射防止膜層と前記多層紫外域反射膜層
との間の分光反射特性を整えることができる第2の調整
膜を介して設けられていることを特徴とする眼鏡レン
ズ。
(57) [Claims] A multilayer UV-reflective film layer consisting of a low-refractive-index material film and a high-refractive-index material film alternately laminated on a lens substrate or a surface-treated lens substrate, and a low-refractive-index material film and a high-refractive-index material film. A spectacle lens having a visible region antireflection film layer alternately laminated; between one surface of the multilayer ultraviolet region reflection film layer and a lens substrate or a surface-treated lens substrate; and of the multilayer ultraviolet region reflection film layer. On the other surface, first adjusting films each made of a high-refractive index material and having an optical thickness of λ / 8 or less and capable of suppressing ripple due to the multilayer ultraviolet reflecting film layer are provided. Further, on the first adjustment film provided on the other surface of the multilayer ultraviolet region prevention film layer, the visible region antireflection film layer,
A second layer made of a low-refractive-index substance and having an optical thickness of about λ / 2, capable of adjusting spectral reflection characteristics between the visible-range antireflection film layer and the multilayer ultraviolet-region reflection film layer; A spectacle lens provided through the adjustment film of (1).
JP62246218A 1987-09-30 1987-09-30 Eyeglass lenses Expired - Lifetime JP2763071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62246218A JP2763071B2 (en) 1987-09-30 1987-09-30 Eyeglass lenses

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62246218A JP2763071B2 (en) 1987-09-30 1987-09-30 Eyeglass lenses

Publications (2)

Publication Number Publication Date
JPS6488517A JPS6488517A (en) 1989-04-03
JP2763071B2 true JP2763071B2 (en) 1998-06-11

Family

ID=17145268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62246218A Expired - Lifetime JP2763071B2 (en) 1987-09-30 1987-09-30 Eyeglass lenses

Country Status (1)

Country Link
JP (1) JP2763071B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016186661A (en) * 2016-07-19 2016-10-27 Hoya株式会社 Optical member

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6059220U (en) * 1983-09-28 1985-04-24 ホーヤ株式会社 eyeglass lenses

Also Published As

Publication number Publication date
JPS6488517A (en) 1989-04-03

Similar Documents

Publication Publication Date Title
JP7279112B2 (en) ophthalmic lens
JP2561946B2 (en) Multilayer back mirror
JP6510412B2 (en) Photochromic spectacle lens
US5694240A (en) Multilayer anti-reflective and ultraviolet blocking coating for sunglasses
US5332618A (en) Antireflection layer system with integral UV blocking properties
US7633681B2 (en) Multilayer interference filter for photochromic lenses
CN111727401B (en) Ophthalmic colored lens
CN107111000B (en) Including the optical article in ultraviolet region interference coatings with high reflectivity
KR20180100726A (en) Mirror-coated lens
JP2019515352A (en) Optical article comprising an antireflective film having high reflectivity in the near infrared region (NIR)
JP3211797U (en) Optical lens
JP2005215038A (en) Spectacle lens
JP2000066149A (en) Sunglass provided with mirror coat
JP7350837B2 (en) Ophthalmic lenses with anti-reflection and electrochromic functions
CN110832388A (en) Glasses lens
JPH0679092B2 (en) Colored mirror
JP2763071B2 (en) Eyeglass lenses
CN112596271B (en) Anti-ultraviolet photochromic spectacle lens and preparation method thereof
JPH0532828Y2 (en)
JPH0511101A (en) Optical member having antireflection film
JPH0534502A (en) Optical member with antireflection film
JP2561947B2 (en) Multilayer back mirror
JP2001290112A (en) Mirror coated lens made of plastic
KR100430024B1 (en) An ophthalmic lens with multi-layer thin film forming photo-selective color and its controlling method
CN221079113U (en) Film for improving photochromic performance of photochromic sheet

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080327

Year of fee payment: 10