JP2762522B2 - Angiogenesis inhibitor - Google Patents

Angiogenesis inhibitor

Info

Publication number
JP2762522B2
JP2762522B2 JP5336889A JP5336889A JP2762522B2 JP 2762522 B2 JP2762522 B2 JP 2762522B2 JP 5336889 A JP5336889 A JP 5336889A JP 5336889 A JP5336889 A JP 5336889A JP 2762522 B2 JP2762522 B2 JP 2762522B2
Authority
JP
Japan
Prior art keywords
wf2015a
column
methanol
angiogenesis inhibitor
angiogenesis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5336889A
Other languages
Japanese (ja)
Other versions
JPH02233610A (en
Inventor
隆尚 大塚
敏裕 柴田
紘 寺野
泰久 鶴海
正国 奥原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujisawa Pharmaceutical Co Ltd
Original Assignee
Fujisawa Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujisawa Pharmaceutical Co Ltd filed Critical Fujisawa Pharmaceutical Co Ltd
Priority to JP5336889A priority Critical patent/JP2762522B2/en
Publication of JPH02233610A publication Critical patent/JPH02233610A/en
Application granted granted Critical
Publication of JP2762522B2 publication Critical patent/JP2762522B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 この発明は新規な血管新生阻害剤に関するものであ
る。さらに詳細には、この発明はWF2015Aおよび/また
はWF2015Bを有効成分として含有する血管新生阻害剤に
関するものである。
The present invention relates to a novel angiogenesis inhibitor. More specifically, the present invention relates to an angiogenesis inhibitor containing WF2015A and / or WF2015B as an active ingredient.

従来の技術及び発明が解決しようとする問題点 従来、血管新生阻害剤としては種々のものが知られて
いるが、これらのものは医薬品として必ずしも満足され
る性質を備えているものではなかった。そこで、この発
明者等は新しいタイプの血管新生阻害剤の開発を企図し
た。
2. Description of the Related Art Problems to be solved by the prior art and the invention Conventionally, various angiogenesis inhibitors have been known, but these do not always have properties that are satisfactory as pharmaceuticals. Thus, the present inventors have attempted to develop a new type of angiogenesis inhibitor.

発明の構成および効果 この発明の血管新生阻害剤の有効成分であるWF2015A
およびWF2015Bは下記一般式により示される (式中、Xが式 で示される基である化合物がWF2015Aを意味し、Xが式 で示される基である化合物がWF2015Bを意味する) 上記一般式(I)で示される化合物は例えば特願昭63
-262044号(特開平1-132390号)記載の方法、より具体
的には後記製造例で示す方法により製造することができ
る。
Configuration and Effect of the Invention WF2015A which is an active ingredient of the angiogenesis inhibitor of the present invention
And WF2015B are represented by the following general formula (Where X is the formula The compound represented by the formula means WF2015A, and X is a group represented by the formula The compound represented by the formula represents WF2015B.) The compound represented by the above general formula (I) is described in, for example,
-262044 (Japanese Patent Application Laid-Open No. 1-132390), and more specifically, it can be produced by the method described in the following Production Examples.

後記製造例で得られるWF2015AおよびBは下記の理化
学的性質を有する: (1)WF2015A a)分子量 410[FAB-MS:m/z411(M+H)] b)元素分析 C 64.55:H 8.06;O 27.39(差として算出) c)比旋光度 ▲[α]23 D▼=−52°(C=1.0,CH3OH) d)UV吸収スペクトル 末端吸収(CHCl3中) e)IR吸収スペクトル f)1H NMR吸収スペクトル(CDCl3) δ:6.95(1H,dd,J=15.5および4.5Hz), 6.20(1H,dd,J=15.5および2Hz), 5.70(1H,広いs), 5.20(1H,広いt,J=7Hz), 4.31(1H,m), 3.90(1H,m), 3.68(1H,dd,J=11および3Hz), 3.44(3H,s), 2.98(1H,d,J=4.2Hz), 2.62(1H,dd,J=6.5および6Hz), 2.56(1H,d,J=4.2Hz), 2.36(1H,m), 2.16(1H,m), 2.10(1H,m), 2.00(1H,m), 1.98(1H,d,J=11Hz), 1.87(1H,m), 1.74(3H,d,J=1Hz), 1.66(3H,d,J=1Hz), 1.21(3H,s), 1.14(3H,d,J=6.5Hz), 1.07(1H,m), g)13C NMR吸収スペクトル(CDCl3) δ:165.8(s), 146.6(d), 135.0(s), 121.8(d), 118.3(d), 79.4(d), 74.5(d), 69.9(d), 66.3(d), 61.1(d), 59.4(s), 58.9(s), 56.7(q), 50.7(t), 48.2(d), 29.2(t), 27.2(t), 25.6(q), 25.6(t), 17.9(q), 17.1(q), 13.7(q), h)溶解性 可溶:クロロホルム、メタノール、アセトン、エタノー
ル 不溶:n−ヘキサン、水 i)呈色反応 陽性:沃素蒸気との反応 陰性:ニンヒドリン反応、モリッシュ反応、塩化第二鉄
反応 j)物質の性質 中性物質 (2)WF2015B a)分子量 447[FAB-MS:m/z469(m+Na)] b)元素分析 C 58.03;H 7.94;Cl 7.31;O 26.72(差として算出) c)比旋光度 ▲[α]23 D▼=−248°(C=2.0,CHCl3) d)UV吸収スペクトル 末端吸収(CHCl3中) e)IR吸収スペクトル f)1H NMR(400MHz,CDCl3) δ:6.99(1H,dd,J=5および15.5Hz), 6.20(1H,dd,J=2および15.5Hz), 5.55(1H,m), 5.18(1H,m), 4.36(1H,m), 3.98(1H,dq,J=4および6Hz), 3.87(1H,d,J=11Hz), 3.49(1H,d,J=11Hz), 3.31(1H,m), 3.30(3H,s), 2.97(1H,t,J=6.5H,z), 2.50-2.40(2H,m), 2.17(1H,m), 2.05(1H,m), 1.90-1.75(2H,m), 1.73(3H,s), 1.66(3H,s), 1.49(3H,s), 1.40(1H,広いd,J=14Hz), 1.20(3H,d,J=6Hz) g)13C NMR(100MHz,CDCl3) δ:165.7(s), 146.3(d), 134.8(s), 122.4(d), 118.2(d), 78.7(d), 76.2(s), 74.5(d), 70.0(d), 66.1(d), 64.0(s), 62.3(d), 56.7(d), 50.5(t), 43.3(d), 29.1(t), 27.5(t), 25.8(q), 23.5(t), 22.2(q), 17.9(q), 17.6(q) h)溶解性 可溶:クロロホルム、メタノール、アセトン、エタノー
ル 不溶:n−ヘキサン、水 i)呈色反応 陽性:沃素蒸気との反応 陰性:ニンヒドリン反応、モリッシュ反応、塩化第二鉄
反応 j)物質の性質 中性物質 以上の理化学的性質および別途研究の結果から、WF20
15AおよびBの化学構造は前記のように決定された。
WF2015A and B obtained in Preparation Examples described below have the following physicochemical properties: (1) WF2015A a) Molecular weight 410 [FAB-MS: m / z411 (M + H)] b) Elemental analysis C 64.55: H 8.06; O 27.39 (Calculated as the difference) c) Specific rotation ▲ [α] 23 D ▼ = -52 ° (C = 1.0, CH 3 OH) d) UV absorption spectrum Terminal absorption (in CHCl 3 ) e) IR absorption spectrum f) 1 H NMR absorption spectrum (CDCl 3 ) δ: 6.95 (1H, dd, J = 15.5 and 4.5 Hz), 6.20 (1H, dd, J = 15.5 and 2 Hz), 5.70 (1H, wide s), 5.20 ( 1H, wide t, J = 7Hz), 4.31 (1H, m), 3.90 (1H, m), 3.68 (1H, dd, J = 11 and 3Hz), 3.44 (3H, s), 2.98 (1H, d, J = 4.2Hz), 2.62 (1H, dd, J = 6.5 and 6Hz), 2.56 (1H, d, J = 4.2Hz), 2.36 (1H, m), 2.16 (1H, m), 2.10 (1H, m ), 2.00 (1H, m), 1.98 (1H, d, J = 11 Hz), 1.87 (1H, m), 1.74 (3H, d, J = 1 Hz), 1.66 (3H, d, J = 1 Hz), 1.21 (3H, s), 1.14 (3H, d, J = 6.5 Hz), 1.07 (1H, m), g) 13 C NMR absorption spectrum (CDCl 3 ) δ: 165.8 (s), 146.6 (d), 135.0 ( s), 121.8 (d), 118.3 (d), 79.4 (d), 74.5 (d), 69.9 (d), 66.3 (d), 61.1 (d), 59.4 (s), 58.9 (s), 56.7 ( q), 50.7 (t), 48.2 (d), 29.2 (t), 27.2 (t), 25.6 (q), 25.6 (t), 17.9 ( q), 17.1 (q), 13.7 (q), h) Solubility Soluble: chloroform, methanol, acetone, ethanol Insoluble: n-hexane, water i) Color reaction Positive: reaction with iodine vapor Negative: ninhydrin reaction , Morish reaction, ferric chloride reaction j) Properties of substances Neutral substances (2) WF2015B a) Molecular weight 447 [FAB-MS: m / z469 (m + Na)] b) Elemental analysis C 58.03; H 7.94; Cl 7.31; O 26.72 (calculated as the difference) c) Specific rotation ▲ [α] 23 D ▼ = -248 ° (C = 2.0, CHCl 3 ) d) UV absorption spectrum Terminal absorption (in CHCl 3 ) e) IR absorption spectrum f) 1 H NMR (400 MHz, CDCl 3 ) δ: 6.99 (1 H, dd, J = 5 and 15.5 Hz), 6.20 (1 H, dd, J = 2 and 15.5 Hz), 5.55 (1 H, m), 5.18 ( 1H, m), 4.36 (1H, m), 3.98 (1H, dq, J = 4 and 6Hz), 3.87 (1H, d, J = 11Hz), 3.49 (1H, d, J = 11Hz), 3.31 (1H , m), 3.30 (3H, s), 2.97 (1H, t, J = 6.5H, z), 2.50-2.40 (2H, m), 2.17 (1H, m), 2.05 (1H, m), 1.90- 1.75 (2H, m), 1.73 (3H, s), 1.66 (3H, s), 1.49 (3H, s), 1.40 (1H, wide d, J = 14Hz), 1.20 (3H, d, J = 6Hz) g) 13 C NMR (100 MHz, CDCl 3 ) δ: 165.7 (s), 146.3 (d), 134.8 (s), 122.4 (d), 118.2 (d), 78.7 (d), 76.2 (s), 74.5 ( d), 70.0 (d), 66.1 (d), 64.0 (s), 62.3 (d), 56.7 (d), 50.5 (t), 43.3 (d), 29.1 (t), 27.5 (t), 25.8 ( q), 23.5 (t), 22.2 (q), 17.9 (q), 17.6 (q) h) Solubility Soluble: chloroform, methanol , Acetone, ethanol Insoluble: n-hexane, water i) Color reaction Positive: reaction with iodine vapor Negative: ninhydrin reaction, Morish reaction, ferric chloride reaction j) Properties of substances Neutral substances The above physicochemical properties and According to the results of a separate study, WF20
The chemical structures of 15A and B were determined as described above.

次に、W2015AおよびBの生物学的な性質を下記試験例
により説明する。
Next, the biological properties of W2015A and B are described by the following test examples.

試験例1 人臍帯静脈内皮細胞に対するWF2015AおよびBの作用 フィブロネクチンで被覆した96穴マイクロタイタープ
レートに、15%牛胎児血清100μg/ml ECGS(Endothelia
l cell growth supplement)および10μg/mlヘパリンを
含むMCDB151培地を加えた後、一定濃度のWF2015Aまたは
WF2015Bのメタノール溶液を加え種々の濃度の希釈液を
作製した。さらに、上記成分を含むMCDB151培地を用い
て人臍帯静脈内皮細胞液を調製し、2×103個の割合で
各穴(final volume200μl)に接種し、CO2インキュベ
ーター中で37℃,5日間培養した。培養後MTT法T.Mosman;
J.Immunol.Methods 65,55,1983)により細胞増殖度合を
測定し、WF2015AまたはWF2015Bに対する血管内皮細胞の
増殖抑制率を算出した。
Test Example 1 Effect of WF2015A and B on human umbilical vein endothelial cells A 96-well microtiter plate coated with fibronectin was loaded with 15% fetal calf serum 100 μg / ml ECGS (Endothelia).
l cell growth supplement) and MCDB151 medium containing 10μg / ml heparin, and then add a certain concentration of WF2015A or
Methanol solutions of WF2015B were added to prepare dilute solutions of various concentrations. Furthermore, a human umbilical vein endothelial cell solution was prepared using the MCDB151 medium containing the above components, inoculated into each well (final volume 200 μl) at a rate of 2 × 10 3 cells, and cultured at 37 ° C. for 5 days in a CO 2 incubator. did. After culture MTT method T. Mosman;
J. Immunol. Methods 65 , 55, 1983), the degree of cell proliferation was measured, and the growth inhibition rate of vascular endothelial cells against WF2015A or WF2015B was calculated.

その結果、WF2015AおよびWF2015Bは血管内皮細胞の増
殖に対して強い抑制効果を示し、それらのIC50値は共に
2×102pg/mlであった。
As a result, WF2015A and WF2015B showed a strong inhibitory effect on the proliferation of vascular endothelial cells, and their IC 50 values were both 2 × 10 2 pg / ml.

試験例2 鶏受精卵の漿尿膜法によるWF2015Aの血管新生に対する
阻害作用: 3日令の鶏受精卵から無菌的に注射針で卵白を約1ml
抜き取り、歯科用ドリルで漿尿膜を傷つけないように卵
殻に傷をつけ、ピンセットで殻を破って約1cm2の窓を
開け、スキンクロージャーで窓をふさいで37℃で孵卵し
た。24時間後に、あらかじめ一定濃度のWF2015Aメタノ
ール溶液2.5μlと0.1%メチルセルロース水溶液2.5μ
lを混合し、乾燥させて作製したサンプルデイスクを漿
尿膜上に置き、再び窓をスキンクロージャでふさいで37
℃で孵卵を続けた。さらに、3日後に漿尿膜に新生され
る血管の発達状態からWF2015Aの血管新生に対する阻害
作用を観察した。
Test Example 2 Inhibitory effect of WF2015A on angiogenesis of chicken fertilized egg by chorioallantoic membrane method: Approximately 1 ml of egg white from a 3 day old chicken fertilized egg aseptically with a syringe needle
Sampling, scratching the eggshell so as not to damage the chorioallantoic membrane with a dental drill, open the windows of about 1cm 2 to beat the shell with a pair of tweezers, and incubation at 37 ℃ blocking the window in the skin closure. Twenty-four hours later, a fixed concentration of WF2015A methanol solution 2.5 μl and a 0.1% methylcellulose aqueous solution 2.5 μl
The sample disk prepared by mixing and drying was placed on the chorioallantoic membrane, and the window was closed again with a skin closure.
Incubation was continued at ℃. Further, after 3 days, the inhibitory effect of WF2015A on angiogenesis was observed from the state of development of the blood vessels that are formed in the chorioallantoic membrane.

その結果、WF2015Aの10μg投与群では、ほぼ完全な
(約100%)血管新生阻害作用が観察された。
As a result, in the 10 μg administration group of WF2015A, almost complete (about 100%) angiogenesis inhibitory action was observed.

試験例3 家兎角膜内でのWF2015Aの血管新生に対する阻害作用: 兎角膜内での血管新生作用は、M.A,Gimbroneらの方法
(Journal National Cancer Institute 52,413,1974)
により検討した。すなわち、兎(ニュージーランドホワ
イト種、雌9週令)を用いてネンブタール麻酔下、角膜
中央部にメスで約2mmの切れ目を入れ、その切れ目から
眼科用虹彩スパテルで角膜間質部にポケット状構造を作
った。そのポケット底に、あらかじめ作製しておいた一
定量のWF2015Aを含むElvax(ethylenevinyl acetate)
ペレット(1mm角)を挿入し、さらにFGF(Fibroblast G
rowth Factor,ウシ脳由来)1μgを含有するElvaxペレ
ットを続いて挿入し、角膜輪部からFGFペレットに向か
って延びてくる新生血管を経日的に(2週間)観察し
た。その結果、WF2015AはFGFによって新生される血管を
200μg投与群では完全に(約100%)阻害した。
Test Example 3 Inhibitory effect of WF2015A on angiogenesis in rabbit cornea: Angiogenic effect on rabbit cornea was determined by the method of MA, Gimbrone et al. (Journal National Cancer Institute 52 , 413, 1974).
It was examined by. That is, a rabbit (New Zealand White, female, 9 weeks old) underwent anesthesia with Nembutal to make a cut of about 2 mm in the center of the cornea with a scalpel, and from that cut, a pocket-like structure was formed in the corneal interstitium with an ophthalmic iris spatula. Had made. Elvax (ethylenevinyl acetate) containing a certain amount of WF2015A prepared in advance in the bottom of the pocket
Insert a pellet (1mm square) and add FGF (Fibroblast G
An Elvax pellet containing 1 μg of rowth Factor (from bovine brain) was subsequently inserted, and new blood vessels extending from the limbus toward the FGF pellet were observed daily (two weeks). As a result, WF2015A is able to
In the 200 μg administration group, the inhibition was complete (about 100%).

試験例4 WF2015AおよびBの急性毒性 WF2015AまたはBの生理食塩水溶液を、1日1回5日
間、ICR系マウス5匹(雌性、5週令)の腹腔内に投与
(1回投与量100mg/kg)した。その結果、マウスに異常
な症状は認められなかった。
Test Example 4 Acute toxicity of WF2015A and B A physiological saline solution of WF2015A or B was intraperitoneally administered to 5 ICR mice (female, 5 weeks old) once a day for 5 days (single dose: 100 mg / kg) )did. As a result, no abnormal symptoms were observed in the mice.

以上の試験例から明らかなように、この発明の血管新
生阻害剤は顕著な血管新生阻害作用を有し、血管の異常
増殖によって引き起こされる疾患、例えば、糖尿病性網
膜症、リュウマチ性関節炎、未熟児網膜症、老人性黄班
部変性等の予防または治療に使用される。
As is clear from the above test examples, the angiogenesis inhibitor of the present invention has a remarkable angiogenesis inhibitory action, and is caused by abnormal growth of blood vessels, for example, diabetic retinopathy, rheumatoid arthritis, premature infant It is used for prevention or treatment of retinopathy, senile macular degeneration and the like.

この発明の血管新生阻害剤の有効成分は医薬として許
容しうる担体と混合して、例えば、カプセル、錠剤、顆
粒剤、粉剤、口内錠、舌下錠、液剤などの製剤の形でヒ
トを含む哺乳動物に経口または非経口的に投与できる。
The active ingredient of the angiogenesis inhibitor of the present invention is mixed with a pharmaceutically acceptable carrier and includes humans in the form of, for example, capsules, tablets, granules, powders, buccal tablets, sublingual tablets, liquid preparations and the like. It can be administered orally or parenterally to a mammal.

医薬として許容しうる担体としては、製薬の目的に慣
用される種々の有機または無機担体、たとえば賦形剤
(たとえば、スクロース、でん粉、マンニット、ソルビ
ット、ラクトース、グルコース、セルロース、タルク、
りん酸カルシウム、炭酸カルシウ等)、結合剤(セルロ
ース、メチルセルロース、ヒドロキシプロピルセルロー
ス、ポリプロピルピロリドン、ゼラチン、アラビアゴ
ム、ポリエチレングリコール、スクロース、でん粉
等)、崩壊剤(たとえば、でん粉、カルボキシメチルセ
ルロース、カルボキシメチルセルロースカルシウム、ヒ
ドロキシプロピルでん粉、グリコールでん粉ナトリウ
ム、重炭酸ナトリウム、りん酸カルシウム、くえん酸カ
ルシウム等)、滑沢剤(たとえば、ステアリン酸マグネ
シウム、エーロジル、タルク、ラウリル硫酸ナトリウム
等)、矯味剤(たとえば、くえん酸、メントール、グリ
シン、オレンジ粉末等)、保存剤(安息香酸ナトリウ
ム、重亜硫酸ナトリウム、メチルパラベン、プロピルバ
ラベン等)、安定剤(くえん酸、くえん酸ナトリウム、
酢酸等)、懸濁化剤(たとえば、メチルセルロース、ポ
リビニルピロリドン、ステアリン酸アルミニウム等)、
分散剤(たとえば、界面活性剤等)、水性希釈剤(たと
えば、水)、油類(たとえば、ごま油等)、基剤ワック
ス(たとえば、カカオ脂、ポリエチレングリコール、白
色ワセリン等)等が包含されうる。
Pharmaceutically acceptable carriers include various organic or inorganic carriers commonly used for pharmaceutical purposes, such as excipients (eg, sucrose, starch, mannitol, sorbitol, lactose, glucose, cellulose, talc,
Calcium phosphate, calcium carbonate, etc.), binders (cellulose, methylcellulose, hydroxypropylcellulose, polypropylpyrrolidone, gelatin, gum arabic, polyethylene glycol, sucrose, starch, etc.), disintegrants (eg, starch, carboxymethylcellulose, carboxymethylcellulose) Calcium, hydroxypropyl starch, glycol starch sodium, sodium bicarbonate, calcium phosphate, calcium citrate, etc., lubricants (eg, magnesium stearate, aerosil, talc, sodium lauryl sulfate, etc.), and flavoring agents (eg, kuen) Acid, menthol, glycine, orange powder, etc.), preservative (sodium benzoate, sodium bisulfite, methylparaben, propylparaben, etc.), stabilizer (kuen) , Sodium citrate,
Acetic acid, etc.), suspending agents (eg, methyl cellulose, polyvinylpyrrolidone, aluminum stearate, etc.),
Dispersants (eg, surfactants, etc.), aqueous diluents (eg, water), oils (eg, sesame oil, etc.), base waxes (eg, cocoa butter, polyethylene glycol, white petrolatum, etc.) and the like can be included. .

有効成分の用量は、疾患の種類、患者の体重および/
または年令、さらには投与経路等の種々の因子に応じて
変更すべきである。
The dose of the active ingredient depends on the type of disease, the weight of the patient and / or
Alternatively, they should be changed according to various factors such as age, and furthermore, administration route.

WF2015AまたはBの好ましい用量は、通常、注射の場
合には0.01〜10mg/kg/日、また経口投与の場合には0.5
〜50mg/kg/日の用量範囲から適宜選択される。
The preferred dose of WF2015A or B is usually 0.01-10 mg / kg / day for injection and 0.5 for oral administration.
The dose is appropriately selected from a dose range of 5050 mg / kg / day.

以下の製造例は、この発明の血管新生阻害剤の有効成
分の具体的な製造法を説明するためのものである。
The following production examples are for describing specific production methods of the active ingredient of the angiogenesis inhibitor of the present invention.

製造例1 可溶性でん粉2%、とうもろこしでん粉1%、グルコ
ース1%、綿実粉1%、乾燥酵母1%、ペプトン0.5
%、コーンスチープリカー0.5%および炭酸カルシウム
0.2%を含有する水性培地(pH6.0)(160ml)を、500ml
容三角フラスコ19本に分注し、120℃で20分間滅菌し
た。スコレコバシデイウム・アレナリウムScolecobasid
ium arenarium)F-2015微工研条寄第1520号の斜面培養
物1白金耳を各培地に接種し、25℃で3日間振盪培養し
た。得られた培養物を、あらかじめ120℃で20分間滅菌
した200l容ジャーフアーメンター中の可溶性でん粉3
%、グルコース1%、小麦の胚芽1%、綿実粉0.5%お
よび炭酸カルシウム0.2%を含有する水性培地(120l)
に接種し、25℃で3日間培養した。
Production Example 1 Soluble starch 2%, corn starch 1%, glucose 1%, cottonseed flour 1%, dry yeast 1%, peptone 0.5
%, Corn steep liquor 0.5% and calcium carbonate
500 ml of an aqueous medium (pH 6.0) (160 ml) containing 0.2%
The solution was dispensed into 19 Erlenmeyer flasks and sterilized at 120 ° C. for 20 minutes. Scolecobasidium arenalium
ium arenarium) One loopful of the slant culture of F-2015, Microtechnological Laboratory, No. 1520, was inoculated into each medium and cultured at 25 ° C. for 3 days with shaking. The resulting culture was washed with soluble starch 3 in a 200-liter jar arm mentor previously sterilized at 120 ° C. for 20 minutes.
%, Glucose 1%, wheat germ 1%, cottonseed powder 0.5% and calcium carbonate 0.2%
And cultured at 25 ° C. for 3 days.

こうして得た培養液を、珪藻土(20kg)を用いて濾過
した。濾液(95l)を酢酸エチル(95l)で抽出した。こ
の抽出操作を2回行い、抽出液を合せた。無水硫酸マグ
ネシウムで脱水後、酢酸エチル層を減圧下に濃縮した。
濃縮物をシリカゲルクロマトグラフィーカラム(1)
に付した。カラムをn−ヘキサン(3l)およびn−ヘキ
サン−酢酸エチル混液(1:1、3l)で洗った。活性画分
を酢酸エチル(4l)で溶出し、ついで減圧下に濃縮し
た。これをさらにシリカゲルカラム(400ml)に付し
た。クロロホルム(1.2l)およびクロロホルム−メタノ
ール混液(100:1、12l)でカラムを洗浄したのち、クロ
ロホルム−メタノール混液(75:1、50:1、および25:1)
で段階的に溶出した。活性画分を減圧下に濃縮し、残渣
を逆相シリカゲルODS逆カラムクロマトグラフィーに付
した。カラムをメタノール−水混液(1:1、300ml)で洗
浄したのち、メタノール−水混液(3:2および7:3、各30
0ml)で段階的に展開した。活性画分を減圧下に蒸発乾
固して、精製された無色油状のWF2015A(92mg)を得
た。
The culture solution thus obtained was filtered using diatomaceous earth (20 kg). The filtrate (95l) was extracted with ethyl acetate (95l). This extraction operation was performed twice, and the extracts were combined. After dehydration with anhydrous magnesium sulfate, the ethyl acetate layer was concentrated under reduced pressure.
The concentrate is applied to a silica gel chromatography column (1)
Attached. The column was washed with n-hexane (3 l) and a mixture of n-hexane-ethyl acetate (1: 1, 3 l). The active fraction was eluted with ethyl acetate (4 l) and then concentrated under reduced pressure. This was further applied to a silica gel column (400 ml). After washing the column with chloroform (1.2 l) and a chloroform-methanol mixture (100: 1, 12 l), a chloroform-methanol mixture (75: 1, 50: 1, and 25: 1)
Eluted step by step. The active fraction was concentrated under reduced pressure, and the residue was subjected to reverse phase silica gel ODS reverse column chromatography. The column was washed with a methanol-water mixture (1: 1, 300 ml), and then methanol-water mixture (3: 2 and 7: 3, 30
0 ml). The active fraction was evaporated to dryness under reduced pressure to obtain purified colorless oily WF2015A (92 mg).

製造例2 スコレコバシディウム・アレナリウムF-2015(微工研
条寄第1520号)の斜面培養物の1白金耳を、可溶性でん
粉2%、とうもろこしでん粉1%、グリコース1%、綿
実粉1%、乾燥酵母1%、ペプトン0.5%、コーンスチ
ープリカー0.5%、NaCl 3%およびCaCO3 0.2%を含有す
る種培地(pH6.0)(160ml)を20本の500ml容三角フラ
スコの各々へ分注し常法通り滅菌したものに接種し、回
転振盪機を用いて250rpmにて25℃で72時間培養した。
Production Example 2 One platinum loop of a slope culture of Scolecobacidium arenalium F-2015 (Jiko No. 1520) was added with 2% of soluble starch, 1% of corn starch, 1% of glucose and 1% of cottonseed powder. %, Dried yeast 1%, peptone 0.5%, corn steep liquor 0.5%, NaCl 3% and CaCO 3 0.2% (160 ml) were divided into each of 20 500 ml Erlenmeyer flasks. The mixture was poured and sterilized as usual, inoculated, and cultured at 25 ° C. for 72 hours at 250 rpm using a rotary shaker.

得られた種培養液を、ステンレス製200lジャーファー
メンター中に上記と同じ滅菌培地160l中へ接種し、ファ
ーメンターを200rpm、25℃で48時間攪拌した。こうして
得た種培養90lを、さらに、可溶性でん粉3%、グルコ
ース1%、綿実粉0.5%、小麦の胚芽1% NaCl 3%およ
びCaCO3 0.2%を含有する4000l容鋼製ファーメンター中
の滅菌生産培地3000lに接種した。3000l/分の通気およ
び130rpmの攪拌のもとに、25℃で72時間培養を行なっ
た。
The obtained seed culture was inoculated into 160 l of the same sterilized medium as above in a 200 l jar fermenter made of stainless steel, and the fermenter was stirred at 200 rpm at 25 ° C for 48 hours. 90 l of the seed culture thus obtained are further sterilized in a 4000 l steel fermenter containing 3% soluble starch, 1% glucose, 0.5% cottonseed flour, 1% wheat germ 3% NaCl and 0.2% CaCO 3. 3000 l of production medium were inoculated. The culture was performed at 25 ° C for 72 hours under aeration at 3000 l / min and stirring at 130 rpm.

培養液(2850l)を珪藻土(65kg)を用いて濾過し
た。濾液を、活性炭(600l)のカラムに通した。カラム
を脱イオン水180lで洗い、80%アセトン水(180l)で溶
出した。溶出液を減圧下に体積17lまで濃縮した。濃縮
物を酢酸エチル18lで抽出した。酢酸エチル層を分離
し、減圧乾固して、粉末(61.3g)を得た。この粗製粉
末をシリカゲル0.3lと混合した。混合物をシリカゲル
(3l)を用いるカラムクロマトグラフィーに付した。カ
ラムをヘキサン10lで、ついでヘキサン−酢酸エチル
(1:1)10lで洗浄し、酢酸エチル10lで溶出した。活性
画分を集め、蒸発乾固して粉末を得、この粉末をシリカ
ゲルと混合した。混合物を、シリカゲル(1)を用い
るカラムクロマトグラフィーに付した。カラムをクロロ
ホルム3l、ついでクロロホルム−メタノール(100:1)3
lで展開し、クロロホルム−メタノール(75:1)3lで溶
出した。溶出液を減圧乾固して粉末(16.4g)を得、こ
の粉末を逆相シリカゲルODS30mlと混合した。混合物を
逆相シリカゲルODS(600ml)カラムにかけ、メタノール
−水(1:1)2.4lで洗浄した。カラムをメタノール−水
(3:2)で溶出した。活性画分を集め、減圧下に濃縮し
て、油状のWF2015B(305mg)を得た。
The culture solution (2850 l) was filtered using diatomaceous earth (65 kg). The filtrate was passed through a column of activated carbon (600 l). The column was washed with 180 l of deionized water and eluted with 80% aqueous acetone (180 l). The eluate was concentrated under reduced pressure to a volume of 17 l. The concentrate was extracted with 18 l of ethyl acetate. The ethyl acetate layer was separated and dried under reduced pressure to obtain a powder (61.3 g). This crude powder was mixed with 0.3 l of silica gel. The mixture was subjected to column chromatography on silica gel (3 l). The column was washed with 10 l of hexane and then with 10 l of hexane-ethyl acetate (1: 1) and eluted with 10 l of ethyl acetate. The active fractions were collected and evaporated to dryness to give a powder, which was mixed with silica gel. The mixture was subjected to column chromatography using silica gel (1). The column is made up of 3 l of chloroform, then chloroform-methanol (100: 1) 3
and eluted with 3 l of chloroform-methanol (75: 1). The eluate was dried under reduced pressure to obtain a powder (16.4 g), which was mixed with 30 ml of reverse-phase silica gel ODS. The mixture was applied to a reverse phase silica gel ODS (600 ml) column and washed with 2.4 l of methanol-water (1: 1). The column was eluted with methanol-water (3: 2). The active fraction was collected and concentrated under reduced pressure to obtain WF2015B (305 mg) as an oil.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C12R 1:645) (C12P 17/16 C12R 1:645) ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C12R 1: 645) (C12P 17/16 C12R 1: 645)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】WF2015Aおよび/またはWF2015Bを有効成分
として含有する血管新生阻害剤。
1. An angiogenesis inhibitor comprising WF2015A and / or WF2015B as an active ingredient.
JP5336889A 1989-03-06 1989-03-06 Angiogenesis inhibitor Expired - Lifetime JP2762522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5336889A JP2762522B2 (en) 1989-03-06 1989-03-06 Angiogenesis inhibitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5336889A JP2762522B2 (en) 1989-03-06 1989-03-06 Angiogenesis inhibitor

Publications (2)

Publication Number Publication Date
JPH02233610A JPH02233610A (en) 1990-09-17
JP2762522B2 true JP2762522B2 (en) 1998-06-04

Family

ID=12940874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5336889A Expired - Lifetime JP2762522B2 (en) 1989-03-06 1989-03-06 Angiogenesis inhibitor

Country Status (1)

Country Link
JP (1) JP2762522B2 (en)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA06000508A (en) 2003-07-18 2006-04-05 Amgen Inc Specific binding agents to hepatocyte growth factor.
US20080108664A1 (en) 2005-12-23 2008-05-08 Liu Belle B Solid-state form of AMG 706 and pharmaceutical compositions thereof
WO2007092178A1 (en) 2006-02-10 2007-08-16 Amgen Inc. Hydrate forms of amg706
US8217177B2 (en) 2006-07-14 2012-07-10 Amgen Inc. Fused heterocyclic derivatives and methods of use
PE20121506A1 (en) 2006-07-14 2012-11-26 Amgen Inc TRIAZOLOPYRIDINE COMPOUNDS AS C-MET INHIBITORS
JP2010519204A (en) 2007-02-16 2010-06-03 アムジエン・インコーポレーテツド Nitrogen-containing heterocyclic ketones and their use as c-Met inhibitors
BRPI0815368A2 (en) 2007-08-21 2015-02-10 Amgen Inc "HUMAN ANTIGEN C-FMS PROTEINS"
MY161199A (en) 2011-03-23 2017-04-14 Amgen Inc Fused tricyclic dual inhibitors of cdk 4/6 and flt3
AR090263A1 (en) 2012-03-08 2014-10-29 Hoffmann La Roche COMBINED ANTIBODY THERAPY AGAINST HUMAN CSF-1R AND USES OF THE SAME
SG11201906223TA (en) 2016-12-22 2019-08-27 Amgen Inc Benzisothiazole, isothiazolo[3,4-b]pyridine, quinazoline, phthalazine, pyrido[2,3-d]pyridazine and pyrido[2,3-d]pyrimidine derivatives as kras g12c inhibitors for treating lung, pancreatic or colorectal cancer
JOP20190272A1 (en) 2017-05-22 2019-11-21 Amgen Inc Kras g12c inhibitors and methods of using the same
EP3679040B1 (en) 2017-09-08 2022-08-03 Amgen Inc. Inhibitors of kras g12c and methods of using the same
MA52501A (en) 2018-05-04 2021-03-10 Amgen Inc KRAS G12C INHIBITORS AND THEIR PROCEDURES FOR USE
JP7361722B2 (en) 2018-05-04 2023-10-16 アムジエン・インコーポレーテツド KRAS G12C inhibitors and methods of using the same
WO2019217691A1 (en) 2018-05-10 2019-11-14 Amgen Inc. Kras g12c inhibitors for the treatment of cancer
AU2019278998B2 (en) 2018-06-01 2023-11-09 Amgen Inc. KRAS G12C inhibitors and methods of using the same
US20190375749A1 (en) 2018-06-11 2019-12-12 Amgen Inc. Kras g12c inhibitors and methods of using the same
MX2020012261A (en) 2018-06-12 2021-03-31 Amgen Inc Kras g12c inhibitors encompassing a piperazine ring and use thereof in the treatment of cancer.
JP2020090482A (en) 2018-11-16 2020-06-11 アムジエン・インコーポレーテツド Improved synthesis of key intermediate of kras g12c inhibitor compound
JP7377679B2 (en) 2018-11-19 2023-11-10 アムジエン・インコーポレーテツド Combination therapy comprising a KRASG12C inhibitor and one or more additional pharmaceutically active agents for the treatment of cancer
US11053226B2 (en) 2018-11-19 2021-07-06 Amgen Inc. KRAS G12C inhibitors and methods of using the same
EP3898592A1 (en) 2018-12-20 2021-10-27 Amgen Inc. Heteroaryl amides useful as kif18a inhibitors
CA3123871A1 (en) 2018-12-20 2020-06-25 Amgen Inc. Kif18a inhibitors
MA54546A (en) 2018-12-20 2022-03-30 Amgen Inc HETEROARYL AMIDES USEFUL AS KIF18A INHIBITORS
US20230148450A9 (en) 2019-03-01 2023-05-11 Revolution Medicines, Inc. Bicyclic heteroaryl compounds and uses thereof
CN113727758A (en) 2019-03-01 2021-11-30 锐新医药公司 Bicyclic heterocyclic compounds and use thereof
EP3738593A1 (en) 2019-05-14 2020-11-18 Amgen, Inc Dosing of kras inhibitor for treatment of cancers
US11236091B2 (en) 2019-05-21 2022-02-01 Amgen Inc. Solid state forms
JP2022542394A (en) 2019-08-02 2022-10-03 アムジエン・インコーポレーテツド Heteroarylamides useful as KIF18A inhibitors
CN114391012A (en) 2019-08-02 2022-04-22 美国安进公司 Pyridine derivatives as KIF18A inhibitors
JP2022542967A (en) 2019-08-02 2022-10-07 アムジエン・インコーポレーテツド KIF18A inhibitor
WO2021081212A1 (en) 2019-10-24 2021-04-29 Amgen Inc. Pyridopyrimidine derivatives useful as kras g12c and kras g12d inhibitors in the treatment of cancer
KR20220109407A (en) 2019-11-04 2022-08-04 레볼루션 메디슨즈, 인크. RAS inhibitors
BR112022008534A2 (en) 2019-11-04 2022-08-09 Revolution Medicines Inc COMPOUNDS, PHARMACEUTICAL COMPOSITION, CONJUGATE AND METHODS TO TREAT CANCER AND TO TREAT A RAS PROTEIN-RELATED DISORDER
CR20220200A (en) 2019-11-08 2022-07-28 Revolution Medicines Inc Bicyclic heteroaryl compounds and uses thereof
BR112022009390A2 (en) 2019-11-14 2022-08-09 Amgen Inc IMPROVED SYNTHESIS OF KRAS INHIBITOR COMPOUND G12C
WO2021097207A1 (en) 2019-11-14 2021-05-20 Amgen Inc. Improved synthesis of kras g12c inhibitor compound
CN114980976A (en) 2019-11-27 2022-08-30 锐新医药公司 Covalent RAS inhibitors and uses thereof
CA3163703A1 (en) 2020-01-07 2021-07-15 Steve Kelsey Shp2 inhibitor dosing and methods of treating cancer
EP4208261A1 (en) 2020-09-03 2023-07-12 Revolution Medicines, Inc. Use of sos1 inhibitors to treat malignancies with shp2 mutations
US11690915B2 (en) 2020-09-15 2023-07-04 Revolution Medicines, Inc. Ras inhibitors
CN117616031A (en) 2021-05-05 2024-02-27 锐新医药公司 RAS inhibitors for the treatment of cancer
AU2022270116A1 (en) 2021-05-05 2023-12-21 Revolution Medicines, Inc. Ras inhibitors
EP4334324A1 (en) 2021-05-05 2024-03-13 Revolution Medicines, Inc. Covalent ras inhibitors and uses thereof
AR127308A1 (en) 2021-10-08 2024-01-10 Revolution Medicines Inc RAS INHIBITORS
WO2023114954A1 (en) 2021-12-17 2023-06-22 Genzyme Corporation Pyrazolopyrazine compounds as shp2 inhibitors
EP4227307A1 (en) 2022-02-11 2023-08-16 Genzyme Corporation Pyrazolopyrazine compounds as shp2 inhibitors
WO2023172940A1 (en) 2022-03-08 2023-09-14 Revolution Medicines, Inc. Methods for treating immune refractory lung cancer
WO2023240263A1 (en) 2022-06-10 2023-12-14 Revolution Medicines, Inc. Macrocyclic ras inhibitors

Also Published As

Publication number Publication date
JPH02233610A (en) 1990-09-17

Similar Documents

Publication Publication Date Title
JP2762522B2 (en) Angiogenesis inhibitor
EP0491708B1 (en) Isolating aminoarginine and use to block nitric oxide formation in body
US5158883A (en) Method of using aminoarginine to block nitric oxide formation in vitro
JPH09176019A (en) Carbohydrate-degradative/digestive enzyme inhibitor and medicine and food/beverage formulated therewith
JPH06234637A (en) Use of leflunomide for inhibiting tumor necrosis factor alpha
EP0069380B1 (en) 11-deoxoglycyrrhetinic acid hydrogen maleate, process for its production, and its use as a medicine
JP2006515276A (en) Furan derivative having preventive and therapeutic effects on osteoporosis and pharmaceutical composition containing the same
JP3455783B2 (en) Intimal thickening inhibitor
CN111647036B (en) Ocotillol esterified derivatives, preparation method thereof and application thereof in preparing anti-inflammatory drugs
DE69916571T2 (en) INHIBITORS OF ANGIOGENESIS AND UROKINASE PRODUCTION AND ITS MEDICAL APPLICATION
JP2000239164A (en) Glycosidase inhibitor
KR100625222B1 (en) Novel gymnemic acid derivatives, process for the preparation thereof and use thereof as medicine
CN112111545B (en) Biological method-derived 6' -O-succinyl soybean glycoside and application thereof in preparing neuroprotective drugs and health care products
KR101973907B1 (en) Phamaceutical composition for preventing or treating of specific cancers containing extracts, fractions or sargachromenol from Sargassum serratifolium
KR100344099B1 (en) Novel biphenyldicarboxylate derivative and method for manufacturing the same
KR101923769B1 (en) Phamaceutical composition for preventing or treating of specific cancers containing extracts, fractions or sargachromenol from Sargassum serratifolium
EP0449722B1 (en) New complexes of tiaprofenic acid or its insoluble or partially soluble esters with cyclodextrines or their derivates
JPH10203976A (en) Medicine comprising isoflavones or xanthones
RU2203656C1 (en) Pharmaceutical composition with antidiabetic effect based on oxovanadium derivative and method for it preparing
KR100202757B1 (en) Anti-diabetic composition
JPH06321778A (en) Infusion pharmaceutical containing 3-hydroxybutyric acid or its salt
JP3723023B2 (en) Compound having reverse transcriptase inhibitory activity and reverse transcriptase inhibitor
JPH02289532A (en) Physiologically active substance tan-1085, aglycone, preparation and use thereof
WO2018232805A1 (en) Puerarin derivative, preparation method therefor, and use thereof for prevention and treatment of cardiovascular and cerebrovascular diseases or diabetes and complications thereof
KR19980071836A (en) Drug treatment for diseases caused by Helicobacter infection