JP2750902B2 - Rare earth metal-transition metal alloy plating method - Google Patents

Rare earth metal-transition metal alloy plating method

Info

Publication number
JP2750902B2
JP2750902B2 JP1156858A JP15685889A JP2750902B2 JP 2750902 B2 JP2750902 B2 JP 2750902B2 JP 1156858 A JP1156858 A JP 1156858A JP 15685889 A JP15685889 A JP 15685889A JP 2750902 B2 JP2750902 B2 JP 2750902B2
Authority
JP
Japan
Prior art keywords
rare earth
transition metal
earth metal
metal
plating method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1156858A
Other languages
Japanese (ja)
Other versions
JPH0324292A (en
Inventor
浩 百谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOOKIN KK
Original Assignee
TOOKIN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOOKIN KK filed Critical TOOKIN KK
Priority to JP1156858A priority Critical patent/JP2750902B2/en
Publication of JPH0324292A publication Critical patent/JPH0324292A/en
Application granted granted Critical
Publication of JP2750902B2 publication Critical patent/JP2750902B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/012Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials adapted for magnetic entropy change by magnetocaloric effect, e.g. used as magnetic refrigerating material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/24Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates from liquids
    • H01F41/26Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates from liquids using electric currents, e.g. electroplating

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Thin Magnetic Films (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は,機能材料の1つとして有用な希土類金属−
遷移金属合金を得ることのできる湿式めっき法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial application field) The present invention relates to a rare earth metal useful as one of functional materials.
The present invention relates to a wet plating method capable of obtaining a transition metal alloy.

(従来の技術) 近年,希土類金属−遷移金属系の化合物合金が強磁性
体(SmCo5,Sm2Co17,Nd2Fe14B),水素吸蔵材(LaN
i5),磁気冷凍材(PrNi5),光磁気記録材(GdCo,GdF
e)などの機能性物質として着目されており,それらの
用途は益々発展している一方である。また,この希土類
化合物合金材料の用途開発と並び,高コスト,エネルギ
ー消費型である合金製造法を大幅に改善し,新プロセス
を開発することも重要な課題となっている。
(Prior art) In recent years, rare earth metal-transition metal based compound alloys are made of ferromagnetic materials (SmCo 5 , Sm 2 Co 17 , Nd 2 Fe 14 B), hydrogen storage materials (LaN
i 5), magnetic refrigeration materials (PrNi 5), a magneto-optical recording medium (GdCo, GdF
Attention has been paid to functional substances such as e), and their uses are being developed more and more. Along with the development of applications for these rare earth compound alloy materials, it is also important to significantly improve the high-cost, energy-consuming alloy manufacturing method and to develop new processes.

現在,この種の薄膜は電子ビーム蒸着法やスパッタリ
ング法により製造されているが生産性に乏しく,コスト
高である。
At present, this type of thin film is manufactured by an electron beam evaporation method or a sputtering method, but has low productivity and is expensive.

また湿気式めっき法においても,希土類合金の還元電
位がかなり卑であるため,水溶液中からの析出が不可能
(H+の放電が優先的に起る)であった (発明が解決しようとする課題) これら従来法による希土類金属−遷移金属系合金薄膜
の製造法においては,生産性に乏しく,コスト高である
欠点を有している。更に,容易かつ簡便な方法で高品質
の希土類金属−遷移金属系合金薄膜を得ることは難易で
あった。
Also, in the wet plating method, the reduction potential of the rare earth alloy was quite low, so that precipitation from an aqueous solution was impossible (H + discharge occurred preferentially). Problems) These methods for producing rare earth metal-transition metal based alloy thin films by conventional methods have the disadvantages of poor productivity and high cost. Furthermore, it has been difficult to obtain a high quality rare earth metal-transition metal alloy thin film by an easy and simple method.

そこで,本発明の技術的課題は,生産性に乏しくコス
ト高である欠点を解消し,簡便な方法で高品質の希土類
金属−遷移金属系合金薄膜の製造方法を提供することに
ある。
Accordingly, it is an object of the present invention to provide a method for producing a high-quality rare earth metal-transition metal alloy thin film by a simple method, which eliminates the disadvantages of low productivity and high cost.

(課題を解決するための手段) そこで本発明者は,めっき液の溶媒に有機溶媒を使用
した有機電解めっき法を用いた希土類金属−遷移金属系
合金のめっき法を提案するものである。
(Means for Solving the Problems) Therefore, the present inventors propose a plating method of a rare earth metal-transition metal based alloy using an organic electrolytic plating method using an organic solvent as a solvent of a plating solution.

本発明によれば,金属塩と有機溶媒とを含む有機電解
めっき液から前記金属の被膜を電着させる方法におい
て,前記金属塩は,希土類塩化物と遷移金属とを含むこ
とを特徴とする希土類金属−遷移金属系合金めっき方法
が得られる。
According to the present invention, in the method for electrodepositing the metal film from an organic electrolytic plating solution containing a metal salt and an organic solvent, the metal salt contains a rare earth chloride and a transition metal. A metal-transition metal alloy plating method is obtained.

本発明によれば,前記希土類金属−遷移金属系合金め
っき方法において,前記有機溶媒は,誘電率が10以上の
値を有することを特徴とする希土類金属−遷移金属系合
金めっき方法が得られる。
According to the present invention, there is provided the rare earth metal-transition metal based alloy plating method, wherein the organic solvent has a dielectric constant of 10 or more in the rare earth metal / transition metal based alloy plating method.

本発明によれば,前記希土類金属−遷移金属系合金め
っき方法において,前記有機電解めっき液は,支持塩と
して過塩素酸塩類を含むことを特徴とする第1の請求項
記載の希土類金属−遷移金属系合金めっき方法が得られ
る。
According to the present invention, in the rare earth metal-transition metal based alloy plating method, the organic electrolytic plating solution contains perchlorates as a supporting salt. A metal alloy plating method is obtained.

ここで本発明において使用される金属塩としては,希
土類金属塩化物(R−Clで表す。但し,RはYを含む希土
類金属),遷移金属塩(T−Xで表す。但しTは遷移金
属,Xは塩基)はそれぞれの金属の塩酸塩,硫酸塩,硝酸
塩等各種使用できる。
Here, the metal salt used in the present invention is a rare earth metal chloride (R-Cl; R is a rare earth metal containing Y) or a transition metal salt (TX), where T is a transition metal. , X is a base), and various kinds of metals such as hydrochloride, sulfate and nitrate can be used.

しかし,一般に,卑な金属を非水溶媒系のめっき浴か
ら電析させる場合には,水分の混入は好ましくないこと
から,水分を含んだめっき浴からは良質のめっき膜を得
ることができない。
However, generally, when a base metal is electrodeposited from a non-aqueous solvent-based plating bath, it is not preferable to mix water, so that a high-quality plating film cannot be obtained from a plating bath containing water.

ここで,希土類金属塩を希土類金属塩化物R−Clに限
定した理由としては, 1)希土類金属の塩化物が,比較的無水塩を得やすいこ
と, 2)有機溶媒への溶解性が,他の塩に比べ優れているこ
と,があげられる。
Here, the reasons for limiting the rare earth metal salt to the rare earth metal chloride R-Cl are as follows: 1) the chloride of the rare earth metal is relatively easy to obtain an anhydrous salt; 2) the solubility in an organic solvent is It is superior to salt.

これらの希土類金属塩化物,遷移金属塩を溶解する有
機溶媒としては,ホルムアミド,ジメチルホルムアミ
ド,アセトアミドを含むグループから選択された少くと
も1種を用いることが好ましい。
As an organic solvent for dissolving these rare earth metal chlorides and transition metal salts, it is preferable to use at least one selected from the group including formamide, dimethylformamide, and acetamide.

これらの有機溶媒はいずれも非プロトン性溶媒であ
り,溶媒自身(溶媒中の不純物として水が全く含まれて
いない場合)からは理論上H+の放電は生じない溶媒であ
る。更に,有機溶媒の誘電率が10以上であるためには,
各種金属塩の溶解性も高いからである。
Each of these organic solvents is an aprotic solvent, and is a solvent that does not theoretically generate H + discharge from the solvent itself (when water is not contained at all as an impurity in the solvent). Furthermore, for the dielectric constant of the organic solvent to be 10 or more,
This is because the solubility of various metal salts is high.

また,過塩素酸テトラブチルアンモニウム,過塩素酸
ナトリウムの支持塩は,めっき浴の導電性を上昇させる
ために添加される。
A supporting salt of tetrabutylammonium perchlorate and sodium perchlorate is added to increase the conductivity of the plating bath.

このようなめっき法によれば,湿式めっき法という簡
便な方法で良質な希土類金属−遷移金属系合金膜を得る
ことができる。また,めっき浴中に水分がほとんど含有
しない状態でめっきを行うことができるので,得られる
めっき膜の純度がよく,高品質の合金膜を得ることがで
きる。
According to such a plating method, a high quality rare earth metal-transition metal based alloy film can be obtained by a simple method such as a wet plating method. In addition, since plating can be performed in a state where the plating bath contains almost no water, the plating film obtained has a high purity and a high quality alloy film can be obtained.

更に、めっき時の電流密度を高くすることにより得ら
れる合金膜中の希土類金属含有率を高くすることができ
るので,電流密度の調節により合金膜の組成を変化させ
ることができる。
Furthermore, since the rare earth metal content in the alloy film obtained by increasing the current density during plating can be increased, the composition of the alloy film can be changed by adjusting the current density.

また,従来法に比べ,容易,かつ簡便な方法で高品質
の希土類金属−遷移金属系合金膜を得ることができ,生
産性にも優れ,低コストでの生産を可能にすることがで
きる。
In addition, a high-quality rare earth metal-transition metal alloy film can be obtained by an easy and simple method as compared with the conventional method, and the productivity is excellent and the production at low cost is possible.

(実施例) 本発明の実施例について説明する。(Example) An example of the present invention will be described.

希土類金属塩として,希土類金属の塩化物RCl3(但
し,RはNd,Dy,Gd,Sm,Tb),遷移金属塩として遷移金属の
塩化物TCl2(但し,TはFe,Co)のいずれも無水物を用
い、非水溶媒としてホルムアミド、ジメチルホルムアミ
ドを窒素下減圧蒸留して精製したものを用いた。
Rare earth metal chloride RCl 3 (where R is Nd, Dy, Gd, Sm, Tb) as a rare earth metal salt, transition metal chloride TCl 2 (where T is Fe, Co) as a transition metal salt As the non-aqueous solvent, formamide and dimethylformamide were purified by distillation under reduced pressure under nitrogen.

これらの化合物を第1表記載の所定量混合し、めっき
浴とした。電解容器は密閉式のものを用いた。
These compounds were mixed in predetermined amounts shown in Table 1 to prepare a plating bath. The electrolytic vessel used was a closed type.

陽極には白金板,陰極には導電処理ガラス板(10×10
×1mm)を用い,マグネチックスターラーで攪拌しなが
ら直流電流で浴温30℃,電解時間30min電解した。
Platinum plate for anode, conductive treated glass plate for cathode (10 × 10
× 1mm), and the mixture was electrolyzed with a DC current at a bath temperature of 30 ° C and an electrolysis time of 30 minutes while stirring with a magnetic stirrer.

陰極上に得られためっき膜は,金属光沢のある平滑な
もので電流密度が高くなると,めっき膜は金属光沢を示
さなくなり、粉末状の析出物となった。
The plating film obtained on the cathode was smooth with a metallic luster, and when the current density was high, the plating film did not show the metallic luster and became a powdery precipitate.

また,電流密度の増加に伴い合金皮膜中の希土類金属
の含有量が増加した。例としてGdCo合金めっき膜の生成
に関し、得られためっき膜の電流密度とGdの含有量との
関係が第1表の実施例1〜5よりわかる。
In addition, the content of rare earth metals in the alloy film increased with the increase in current density. As an example, regarding the formation of a GdCo alloy plating film, the relationship between the current density of the obtained plating film and the Gd content can be understood from Examples 1 to 5 in Table 1.

(発明の効果) 以上説明したように,本発明の希土類金属塩化物R−
Cl(但し,RはYを含む希土類金属),遷移金属塩T−X
(但し,Tは遷移金属,Xは塩基)のそれぞれ1種以上を,
これら溶質が可溶な有機溶媒の1種,または2種以上の
混合溶媒中に溶解させた溶液を用いた有機電解めっき法
により,希土類金属−遷移金属系合金膜を容易に,かつ
簡便に得ることができる。
(Effect of the Invention) As described above, the rare earth metal chloride R-
Cl (where R is a rare earth metal containing Y), transition metal salt TX
(Where T is a transition metal and X is a base)
A rare earth metal-transition metal alloy film can be easily and easily obtained by an organic electroplating method using a solution in which one of these solutes is soluble in one or a mixture of two or more organic solvents. be able to.

また,めっき液を完全に非水系とすることができるの
で,商品質の合金膜を得ることができる。更に,生産性
にも優れ,低コストでの生産を可能にすることができ
る。
Further, since the plating solution can be completely non-aqueous, a commercially available alloy film can be obtained. Furthermore, it is excellent in productivity and can be produced at low cost.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】金属塩と有機溶媒とを含む有機電解めっき
液から前記金属の被膜を電着させる方法において, 前記金属塩は,希土類塩化物と遷移金属とを含むことを
特徴とする希土類金属−遷移金属系合金めっき方法。
1. A method for electrodepositing a coating of a metal from an organic electrolytic plating solution containing a metal salt and an organic solvent, wherein the metal salt contains a rare earth chloride and a transition metal. -Transition metal alloy plating method.
【請求項2】第1の請求項記載の希土類金属−遷移金属
系合金めっき方法において,前記有機溶媒は,誘電率が
10以上の値を有することを特徴とする希土類金属−遷移
金属系合金めっき方法。
2. The rare earth metal-transition metal based alloy plating method according to claim 1, wherein said organic solvent has a dielectric constant.
A rare earth metal-transition metal based alloy plating method having a value of 10 or more.
【請求項3】第1又は第2の請求項記載の希土類金属−
遷移金属系合金めっき方法において,前記有機電解めっ
き液は,支持塩として過塩素酸塩類を含むことを特徴と
する第1の請求項記載の希土類金属−遷移金属系合金め
っき方法。
3. The rare earth metal according to claim 1 or 2,
The rare earth metal-transition metal based alloy plating method according to claim 1, wherein in the transition metal based alloy plating method, the organic electrolytic plating solution contains perchlorates as a supporting salt.
JP1156858A 1989-06-21 1989-06-21 Rare earth metal-transition metal alloy plating method Expired - Fee Related JP2750902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1156858A JP2750902B2 (en) 1989-06-21 1989-06-21 Rare earth metal-transition metal alloy plating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1156858A JP2750902B2 (en) 1989-06-21 1989-06-21 Rare earth metal-transition metal alloy plating method

Publications (2)

Publication Number Publication Date
JPH0324292A JPH0324292A (en) 1991-02-01
JP2750902B2 true JP2750902B2 (en) 1998-05-18

Family

ID=15636920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1156858A Expired - Fee Related JP2750902B2 (en) 1989-06-21 1989-06-21 Rare earth metal-transition metal alloy plating method

Country Status (1)

Country Link
JP (1) JP2750902B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0910008A3 (en) * 1997-10-14 2005-01-26 Canon Kabushiki Kaisha Apparatus and method for changing, adding and deleting a job, and a storage medium for such a program
WO2001077418A1 (en) * 2000-04-07 2001-10-18 Hui Gao The method for electrodepositing rare-earth and transition metal alloys
JP4765747B2 (en) * 2006-04-19 2011-09-07 日立金属株式会社 Method for producing R-Fe-B rare earth sintered magnet
CN105839152A (en) * 2015-10-21 2016-08-10 北京中科三环高技术股份有限公司 Electrodeposition method, electrodeposition solution and method for preparation of rare earth permanent magnetic material by electrodeposition

Also Published As

Publication number Publication date
JPH0324292A (en) 1991-02-01

Similar Documents

Publication Publication Date Title
Iida et al. Electrochemical formation of Sm–Co alloys by codeposition of Sm and Co in a molten LiCl–KCl–SmCl3–CoCl2 system
JPS6362595B2 (en)
Sides et al. Electrodeposition of ferromagnetic FeCo and FeCoMn alloy from choline chloride based deep eutectic solvent
JP2750902B2 (en) Rare earth metal-transition metal alloy plating method
US4075065A (en) Gold plating bath and process
JPH05217744A (en) Plated magnetic film and manufacture thereof
US3929611A (en) Electrodepositing of aluminum
Vértes et al. A comparative study of Mössbauer spectroscopy and X-ray diffraction for the elucidation of the microstructure of electrodeposited Fe Cr Ni alloys
CN114059116A (en) Method for preparing FeCoNiCuSn high-entropy alloy through electrodeposition
CN110184631B (en) Cyanide-free gold plating electroplating solution and preparation method and electroplating process thereof
JP2860916B2 (en) Zinc-iron group metal alloy plating solution and zinc-iron group metal alloy plating method using the same
US4846942A (en) Process for producing a film of Sm-Co alloy
US3772170A (en) Electrodeposition of chromium
JPH0244911B2 (en) DENKIMETSUKIHOHO
JP2000272922A (en) Composition for electrolytic formation of manganese oxide film
JPH0681188A (en) Iron electroplating solution
JPS62161982A (en) Manufacture of electrolytic iron
JPH0261087A (en) Method for electrodepositing niobium and niobium alloy and electrodeposition bath
JPH02190493A (en) Method for electrodepositing alloy
JP2928426B2 (en) Manufacturing method of electrolytic iron
JP3101715B2 (en) M lower 0 O lower 3 method of manufacturing thin film
Bernasconi et al. Electrodeposition of Equiatomic FePt Permanent Magnets from Non-Aqueous Electrolytes Based on Ethylene Glycol
JPH03260084A (en) Cobalt-samarium binary alloy plating liquid
JPS60170920A (en) Surface processing method of hard magnetic film
JPH01316487A (en) Iron-terbium alloy plating solution

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees