JP2748830B2 - Multilayer electrostrictive effect element - Google Patents

Multilayer electrostrictive effect element

Info

Publication number
JP2748830B2
JP2748830B2 JP5243423A JP24342393A JP2748830B2 JP 2748830 B2 JP2748830 B2 JP 2748830B2 JP 5243423 A JP5243423 A JP 5243423A JP 24342393 A JP24342393 A JP 24342393A JP 2748830 B2 JP2748830 B2 JP 2748830B2
Authority
JP
Japan
Prior art keywords
layer
insulator layer
internal electrode
electrode layer
insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5243423A
Other languages
Japanese (ja)
Other versions
JPH07106652A (en
Inventor
隆之 猪井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP5243423A priority Critical patent/JP2748830B2/en
Publication of JPH07106652A publication Critical patent/JPH07106652A/en
Application granted granted Critical
Publication of JP2748830B2 publication Critical patent/JP2748830B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は積層型電歪効果素子に関
し、特に、電歪効果を示すセラミック層の平面形状と内
部電極層の平面形状とが同一の、全面電極型の積層型電
歪効果素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated electrostrictive element, and more particularly, to a full-electrode laminated electrostrictive element in which the planar shape of a ceramic layer exhibiting an electrostrictive effect and the planar shape of an internal electrode layer are the same. It relates to an effect element.

【0002】[0002]

【従来の技術】積層型の電歪効果素子は、図3にその斜
視図を示すように、電歪効果によってひずみを発生する
セラミックの薄層と、外部の電源回路(図示せず)から
加えられる駆動電圧に応じた電界をこのセラミック層1
に与えるための内部電極の薄層とが、互いに上下になる
ように交互に繰り返し積層された構造をもっている。内
部電極層2は一層置きに同電位になるように二つのグル
ープに分けられ、それぞれのグループごとに、素子の対
向する側面のそれぞれに一つずつ設けられた外部電極層
3A,3B(左側面上の外部電極層3Bは、隠れて見え
ない)に接続される。このような構造で、二つの外部電
極層3A,3Bの間に外部に置かれた電源回路から駆動
電圧を加えると、それぞれのセラミック層1を挟む内部
電極層2どうしの間に駆動電圧が掛かりセラミック層1
に電界が加わるので、各セラミック層1に駆動電圧に応
じたひずみが発生する。
2. Description of the Related Art As shown in a perspective view of FIG. 3, a laminated electrostrictive element has a thin ceramic layer which generates distortion due to an electrostrictive effect and an external power supply circuit (not shown). An electric field corresponding to the applied driving voltage is applied to the ceramic layer 1.
And a thin layer of an internal electrode to be applied alternately to the upper and lower sides. The internal electrode layers 2 are divided into two groups so as to have the same potential every other layer. For each group, external electrode layers 3A and 3B (left side surface) are provided on each of the opposing side surfaces of the element. (The upper external electrode layer 3B is hidden and cannot be seen.) In such a structure, when a driving voltage is applied from a power supply circuit provided outside between the two external electrode layers 3A and 3B, the driving voltage is applied between the internal electrode layers 2 sandwiching the respective ceramic layers 1. Ceramic layer 1
, An electric field is applied to each of the ceramic layers 1, so that a distortion is generated in each ceramic layer 1 in accordance with the drive voltage.

【0003】尚、外部から加えられる電界に応じてひず
みを生じる現象としては、電歪効果の他に圧電効果が知
られている。以下の説明は電歪効果を利用した電歪効果
素子について行うが、圧電効果と電歪効果との違いは、
発生するひずみの大きさが電界に比例する(圧電効果)
か、又は電界の二乗に比例する(電歪効果)かの違いだ
けであるので、以下の説明中、「電歪」は全て「圧電」
に読み替えることができる。本発明において電歪効果素
子とは、外部から加えられた電界に応じてひずみを生じ
る素子をいい、電歪効果を用いた素子及び圧電効果を用
いた素子の両方を含むものと定義する。
[0003] As a phenomenon that causes distortion in response to an externally applied electric field, a piezoelectric effect is known in addition to the electrostrictive effect. The following description is made for an electrostrictive effect element using the electrostrictive effect, but the difference between the piezoelectric effect and the electrostrictive effect is as follows.
The magnitude of the generated strain is proportional to the electric field (piezoelectric effect)
In the following description, “electrostriction” is all “piezoelectric” because there is only a difference of whether it is proportional to the square of the electric field (electrostrictive effect).
Can be read as In the present invention, the electrostrictive effect element refers to an element that generates a strain in response to an externally applied electric field, and is defined to include both an element using the electrostrictive effect and an element using the piezoelectric effect.

【0004】上記の構造の電歪効果素子では、それぞれ
ひずみを発生するセラミック層1の厚さが例えば100
μm程度と薄く、しかもこれらセラミック層1をその発
生するひずみが直列になるように積層しているので、素
子全体としては、低い駆動電圧もその両端面間に矢印で
示す方向に大きな変位を発生することができるという特
徴をもつ。なかでも、本発明の対象となる全面電極型の
積層型電歪効果素子は、セラミック層1の平面形状と内
部電極層2の平面形状とを同一形状にして、各セラミッ
ク層1の全域に亘って均一な電界が加わるようにしてい
ることから、発生変位の大きさ及び繰返し使用したとき
の信頼性の点で優れている。
In the electrostrictive effect element having the above-described structure, the thickness of the ceramic layer 1 that generates strain is, for example, 100%.
Since these ceramic layers 1 are laminated as thin as about μm and their generated strains are connected in series, a large displacement in the direction indicated by an arrow is generated between both end surfaces of the element as a whole even with a low driving voltage. It has the feature that it can be done. In particular, in the full-electrode multilayer electrostrictive effect element to which the present invention is applied, the planar shape of the ceramic layer 1 and the planar shape of the internal electrode layer 2 are made the same, and the entire area of each ceramic layer 1 is formed. Since a uniform electric field is applied, the magnitude of the generated displacement and the reliability when used repeatedly are excellent.

【0005】上述の構造から明かなように、一般に積層
型電歪効果素子では、内部電極層を一層置きに電気的に
接続する技術が必須となる。このような技術として、例
えば多層印刷配線板などで用いられているスルーホール
或いはビアホールの技術を応用することができる。この
方法によれば、図4に積層体の断面図を示すように、セ
ラミック層1に貫通孔を開けてこの貫通孔に接続導体4
を形成し、上下の内部電極層を順次一層置きに接続する
ことができる。しかしこの場合、例えば奇数番目の内部
電極層接続用の貫通孔に対して、偶数番目の内部電極層
には、接続導体4との接触を避けるためにその貫通孔の
周囲に絶縁用の空間を設けなければならない。このた
め、各セラミック層1の貫通孔周辺部分には電界が掛か
らないことになって、ひずみが生じなくなる。その結
果、駆動電圧を印加したときに、一つのセラミック層内
にひずみが発生する部分と発生しない部分とが生じそれ
らの境界部分に大きな応力が発生してしまうので、素子
の発生変位が減少すると共に信頼性が損なわれることに
なる。従って、全面電極型の電歪効果素子においては、
このようなスルーホール(又は、ビアホール)の技術、
換言すれば、積層体内部で内部電極層どうしを接続する
技術は適用困難であり、どうしても、一例として図3に
示すように積層体外部で内部電極層どうしを一層置きに
接続しなくてはならない。
As is apparent from the above-described structure, generally, in a laminated electrostrictive element, a technique of electrically connecting the internal electrode layers every other layer is essential. As such a technique, for example, a technique of a through hole or a via hole used in a multilayer printed wiring board or the like can be applied. According to this method, as shown in the sectional view of the laminate in FIG. 4, a through-hole is formed in the ceramic layer 1 and the connection conductor 4 is formed in the through-hole.
And the upper and lower internal electrode layers can be sequentially connected alternately. However, in this case, for example, for the through holes for connecting the odd-numbered internal electrode layers, an insulating space is provided around the through holes in the even-numbered internal electrode layers in order to avoid contact with the connection conductor 4. Must be provided. For this reason, no electric field is applied to the peripheral portion of the through hole of each ceramic layer 1, and no distortion occurs. As a result, when a drive voltage is applied, a portion where one strain is generated and a portion where no strain is generated occur in one ceramic layer, and a large stress is generated at a boundary portion thereof, so that the generated displacement of the element is reduced. At the same time, reliability is impaired. Therefore, in the full-electrode type electrostrictive effect element,
Such through-hole (or via-hole) technology,
In other words, it is difficult to apply the technique of connecting the internal electrode layers inside the laminate, and it is absolutely necessary to connect every other internal electrode layer outside the laminate as shown in FIG. 3 as an example. .

【0006】再び図3を参照すると、この図に示す全面
電極型の積層型電歪効果素子では、積層体の右側面上
に、奇数番目(紙面上側から)の内部電極層の露出部を
それぞれ個別に絶縁する複数の絶縁体層5Aが形成され
ている。更にその上に、外部電極層3Aが帯状に形成さ
れている。従って、内部電極層2のうち偶数番目(同)
の内部電極層はそれぞれ、積層体の右側面に露出した部
分で外部電極層3Aに電気的に接続し、全て同電位とな
る。一方、これら絶縁体層5A及び外部電極層3Aが形
成されている側面に対向する左側面上には、偶数番目の
内部電極層の露出部をそれぞれ個別に絶縁する絶縁体層
5Bと、奇数番目の内部電極層の露出部を接続する外部
電極層3B(隠れて見えない)とが形成されている。
Referring again to FIG. 3, in the multilayered electrostrictive effect element of the full-electrode type shown in FIG. 3, odd-numbered (from the upper side of the paper) exposed portions of the internal electrode layer are formed on the right side of the laminate.
A plurality of insulator layers 5A that are individually insulated are formed. Furthermore, the external electrode layer 3A is formed in a belt shape thereon. Accordingly, even-numbered (same) internal electrode layers 2
Are electrically connected to the external electrode layer 3A at the portions exposed on the right side of the laminate, and all have the same potential. On the other hand, on the left side surface opposite to the side surface on which the insulator layer 5A and the external electrode layer 3A are formed, an insulator layer 5B for individually insulating exposed portions of the even-numbered internal electrode layers, and an odd-numbered And an external electrode layer 3B (hidden and invisible) connecting the exposed portions of the internal electrode layer.

【0007】図3に示す従来の電歪効果素子に特徴的な
のは、内部電極層2の積層体側面への露出部を覆って内
部電極層2と外部電極層3A、3Bとを絶縁する絶縁体
層5A,5Bが、それぞれの内部電極層ごとに独立、分
して形成されていることである。このようにそれぞれ
独立、分離した複数の絶縁体層を形成するには、所定部
分に選択的に形成する方法と、全体的に絶縁体層を形成
したのち所定部分上の絶縁体層だけを残して選択的に除
去する方法とがある。
A characteristic feature of the conventional electrostrictive element shown in FIG .
The insulator layers 5A and 5B that cover the exposed portions of the internal electrode layers 2 on the side surfaces of the laminate and insulate the internal electrode layers 2 and the external electrode layers 3A and 3B are independent for each internal electrode layer . Minute
Is that formed by the release. In order to form a plurality of independent and separated insulator layers as described above, a method of selectively forming a plurality of insulator layers on a predetermined portion and a method of forming an insulator layer as a whole and leaving only the insulator layer on a predetermined portion are left. And selective removal.

【0008】選択的形成方法としては、特公昭63ー1
7354号公報(以下、第1の公報と記す)に開示され
ているように、スクリーン印刷法を用いる方法がある。
又、特開昭59ー115579号公報(以下、第2の公
報と記す)には、選択的絶縁体層形成の他の方法とし
て、電気泳動法により絶縁体層を形成したのち焼成する
技術が開示されている。
[0008] The selective formation method is described in JP-B-63-1.
As disclosed in Japanese Patent No. 7354 (hereinafter, referred to as a first publication), there is a method using a screen printing method.
Japanese Patent Application Laid-Open No. 59-115579 (hereinafter referred to as "second publication") discloses a technique for forming an insulator layer by electrophoresis followed by baking as another method for selectively forming an insulator layer. It has been disclosed.

【0009】一方、選択的除去による絶縁体層形成方法
としては、特開昭63ー84174号公報(以下、第3
の公報と記す)に開示された方法がある。この方法で
は、先ず積層体の側面の全面にスクリーン印刷や刷毛塗
りで絶縁材料を塗布し焼成した後、例えばレーザ加工や
ウォータジェット加工などの精密加工により不用部分の
絶縁材料を除去して、内部電極層を一層置きに露出させ
る。
On the other hand, as a method of forming an insulator layer by selective removal, Japanese Patent Laid-Open Publication No.
The publication discloses a method disclosed in US Pat. In this method, first, an insulating material is applied to the entire side surface of the laminate by screen printing or brush coating, and then baked. Then, unnecessary portions of the insulating material are removed by precision processing such as laser processing or water jet processing, and the inside is removed. The electrode layers are exposed every other layer.

【0010】前述したように、積層型電歪効果素子の大
きな特徴の一つは、セラミック層1の厚さが例えば数1
00μm程度以下と薄いことである。これに伴って絶縁
体層5A,5Bの積層方向(図3中に矢印で示す、素子
の変位方向)の幅も100μm前後と非常に狭い。従っ
て、特に全面電極型の積層型電歪効果素子では、内部電
極層と外部電極層とを確実に接続し又絶縁するために、
厚さ50μm程度、幅100μm程度の良質な絶縁体層
5A,5Bを、寸法精度良くしかも正確な位置に形成す
る技術が不可欠である。上記公報はいずれも、このよう
な技術的課題を解決しようとするものである。
As described above, one of the major characteristics of the laminated electrostrictive effect element is that the thickness of the ceramic layer 1 is, for example,
This is as thin as about 00 μm or less. Accordingly, the width of the insulator layers 5A and 5B in the laminating direction (the direction of element displacement indicated by an arrow in FIG. 3) is also very narrow, about 100 μm. Therefore, in particular, in a full-electrode type laminated electrostrictive effect element, in order to reliably connect and insulate the internal electrode layer and the external electrode layer,
It is indispensable to form a high-quality insulator layer 5A, 5B having a thickness of about 50 μm and a width of about 100 μm at a precise position with high dimensional accuracy. The above publications all attempt to solve such technical problems.

【0011】上述したように、従来の内部電極が全面電
極構造の積層型電歪効果素子ではいずれも、素子側面に
形成される絶縁体層が、各内部電極層の露出部ごとに独
、分離した複数の部分からなる。上記第1の公報及び
第2の公報では、このような絶縁体層をスクリーン印刷
や或いは電気泳動により選択的に形成している。又、第
3の公報では、全面的に形成した後選択的に除去するこ
とによって形成している。
As described above, in each of the conventional laminated electrostrictive elements having the entire internal electrode structure, the insulator layer formed on the side surface of the element is independent and separated for each exposed portion of each internal electrode layer. It consists of multiple parts. In the first and second publications, such an insulator layer is selectively formed by screen printing or electrophoresis. Further, in the third publication, it is formed by selectively removing after forming the entire surface.

【0012】しかしながら、この種の積層型電歪効果素
子の特徴、すなわち、セラミック層を薄くして上下から
内部電極層で挟む構造とすることによって、低駆動電圧
でも高い電界をセラミック層に与えることができるとい
う特徴を十分に発揮させようとすると、従来の技術によ
る素子では低コスト化が困難となり、また場合によって
は素子の信頼性が犠牲になるなどの悪影響が生じること
がある。以下にその説明を行う。
However, the feature of this type of laminated electrostrictive element is that a high electric field is applied to the ceramic layer even at a low driving voltage by making the ceramic layer thin and sandwiching the internal electrode layers from above and below. In order to sufficiently exhibit the feature of the conventional technology, it is difficult to reduce the cost of the device using the conventional technology, and in some cases, adverse effects such as sacrificing the reliability of the device may occur. The description is given below.

【0013】先ず、上記第3の公報記載の電歪効果素子
においては、積層体の長手方向(積層方向)に連続する
絶縁体層を形成した後、この絶縁層体を一層置きにレー
ザ加工のような熱的加工法やウオータジェット加工など
の機械的加工法で選択的に除去するが、熱的加工法を用
いる場合は、加工時の発熱によるサーマルクラックの発
生など、熱的悪影響がセラミック層や絶縁体層に誘起さ
れ、素子の機械的強度や電気的信頼性が低下する可能性
がある。更には、絶縁体層が有機材料である場合は、そ
の絶縁材料の燃焼に伴って発生するカーボンの付着によ
り、素子の電気的特性劣化が起ることがある。一方、機
械的加工法は、加工時にマイクロクラックのようなメカ
ニカルクラックを発生させ、熱的加工法の場合と同様
に、素子駆動時の機械的強度劣化や信頼性低下を引き起
すことがある。更には、このような選択的除去による絶
縁体層の形成は、絶縁体層を形成する工程に加えてこれ
を部分的に除去するという工程が余計に必要である上
に、その除去工程では、絶縁体層の全不用部分を一度で
除去することは困難で不用部分を順次個別に除去して行
かなければならないことから、加工に多大の時間を要し
コストの面で非常に不利である。これらのような影響
は、素子の特性向上のために積層数を多くするほど顕著
になってくる。
First, in the electrostrictive effect element described in the third publication, after forming an insulating layer continuous in the longitudinal direction (laminating direction) of the laminated body, this insulating layer body is subjected to laser processing with every other layer. It is selectively removed by a mechanical processing method such as thermal processing or water jet processing.However, when the thermal processing method is used, adverse effects such as generation of thermal cracks due to heat generation during processing are caused by the ceramic layer. And the insulating layer may induce the mechanical strength and electrical reliability of the device. Further, when the insulator layer is made of an organic material, the electrical characteristics of the element may be degraded due to the adhesion of carbon generated by the burning of the insulating material. On the other hand, the mechanical processing method generates a mechanical crack such as a micro crack at the time of processing, and similarly to the case of the thermal processing method, may cause a decrease in mechanical strength and a reduction in reliability during element driving. Furthermore, the formation of the insulator layer by such selective removal requires an additional step of partially removing the insulator layer in addition to the step of forming the insulator layer. It is difficult to remove all unnecessary portions of the insulator layer at once, and unnecessary portions must be removed one by one. Therefore, it takes a lot of processing time and is very disadvantageous in terms of cost. These effects become more remarkable as the number of layers is increased to improve the characteristics of the device.

【0014】これに対して、第1の公報や第2の公報に
記載されている、絶縁体層を選択的に形成する方法で
は、第3の公報記載の素子におけるような熱的・機械的
ストレスに起因する機械的・電気的性能の劣化や信頼性
の低下などの問題はない。しかしながら一方で、狭い領
域に選択的に絶縁体層を形成しなければならないことか
ら、絶縁体層に十分な絶縁耐力を持たせようとすると、
セラミック層の薄膜化に制限が加わったり、又、コスト
低減が困難になるなどの問題が起る。
On the other hand, in the method of selectively forming an insulator layer described in the first and second publications, a thermal and mechanical method as in the element described in the third publication is used. There is no problem such as deterioration of mechanical / electrical performance or deterioration of reliability due to stress. However, on the other hand, since it is necessary to selectively form the insulator layer in a narrow region, if an attempt is made to give the insulator layer a sufficient dielectric strength,
There are problems such as restrictions on thinning the ceramic layer and difficulty in reducing the cost.

【0015】例えば、セラミック層に加える実用的な電
界強度として、約1.5kV/mm程度を想定する。
又、絶縁体層としてガラス(絶縁破壊の強さ:約50k
V/mm程度以下)を用いるものとし、駆動電圧の過渡
現象や素子の長期信頼性を考慮して、ガラスの絶縁破壊
の強さを上記値の1/10と見積るものとする。このと
き、理論的には、ガラス絶縁体層の厚さが30μm程度
で必要な絶縁耐力が得られることになる。
For example, it is assumed that a practical electric field intensity applied to the ceramic layer is about 1.5 kV / mm.
In addition, glass (strength of dielectric breakdown: about 50 k)
V / mm or less), and in consideration of the transient phenomenon of the driving voltage and the long-term reliability of the element, the strength of the dielectric breakdown of the glass is estimated to be 1/10 of the above value. At this time, theoretically, the required dielectric strength is obtained when the thickness of the glass insulator layer is about 30 μm.

【0016】ここで、第1の公報のように、絶縁体層形
成にスクリーン印刷を用いた場合には、形成された実際
の絶縁体層にはどうしても欠陥部分の発生が避けられな
いので、絶縁体層として実用に供するには最低50μm
程度の厚さが必要である。この絶縁体層の厚さ50μm
が内部電極層と内部電極層との間の最小距離、すなわち
セラミック層の最低の厚さになる。この程度の厚さのセ
ラミック層は、積層セラミックコンデンサの積層技術の
発展により、現状でも安定して量産することが可能であ
り、もっと薄膜化することも十分できる。しかしながら
一方で、現状のスクリーン印刷における位置合せの精度
やパターンの寸法精度を考慮すると、各絶縁体層の両側
にそれぞれ50μm程度の空間が必要で、セラミック層
の厚さを最低100μm程度にしなくてはならない。こ
のようにして、各セラミック層の厚さ100μm、各絶
縁体層の厚さ50μm、積層方向の幅100μmで、駆
動電圧が150Vの素子が得られる。これを要するに、
ガラス絶縁体層の形成にスクリーン印刷を用いる素子の
場合、セラミック層の厚さはガラス絶縁体層の形成技術
の限界に制限されて十分に薄膜化できず、駆動電界はこ
れ以上強くできないと言える。
Here, as described in the first publication, when screen printing is used to form an insulator layer, the formation of a defective portion is inevitably avoided in the actual insulator layer formed. 50 μm minimum for practical use as body layer
A certain thickness is required. The thickness of this insulator layer is 50 μm
Is the minimum distance between the internal electrode layers, that is, the minimum thickness of the ceramic layer. The ceramic layer having such a thickness can be stably mass-produced even under the present circumstances due to the development of the lamination technology of the multilayer ceramic capacitor, and can be sufficiently thinned. However, on the other hand, considering the positioning accuracy and pattern dimensional accuracy in the current screen printing, a space of about 50 μm is required on both sides of each insulator layer, and the thickness of the ceramic layer does not need to be at least about 100 μm. Not be. In this way, an element having a thickness of each ceramic layer of 100 μm, a thickness of each insulator layer of 50 μm, a width in the stacking direction of 100 μm, and a driving voltage of 150 V is obtained. In short,
In the case of an element using screen printing for forming the glass insulator layer, the thickness of the ceramic layer is limited by the limit of the technology for forming the glass insulator layer and cannot be made sufficiently thin, and it can be said that the driving electric field cannot be further increased. .

【0017】一方、第2の公報に開示された電気泳動法
による絶縁体層形成技術は、その形成原理からして絶縁
体層が内部電極層に対して位置ずれを起さないので、ス
クリーン印刷による絶縁体層形成に比べて細密で良質な
ガラス絶縁体層を形成するのに適している。しかしこの
技術を適用した電歪効果素子では、電気泳動のためだけ
に、仮電極を形成する工程と、内部電極層の露出部をマ
スクする工程と、電着する工程とが、それぞれ積層体の
一面ずつ計二回ずつ必要である。しかも、形成される絶
縁体層の電気的特性は絶縁体層の電着状態に影響され、
この電着状態は電泳浴の温度、濃度に敏感で、その厚さ
や形状などが電着の際の電圧や時間に左右されやすいの
で、実際の製造工程においては、これら電着条件の管理
を非常に厳密に行なわないと良品率が低下してしまう。
このように、電気泳動により絶縁体層を形成する電歪効
果素子では、製造工程が複雑であること、製造条件の管
理が難しいこと及び良品率がばらつきやすいことなどか
ら、製造コストを下げるのが容易ではない。
On the other hand, the insulator layer forming technique based on the electrophoresis method disclosed in the second gazette does not cause displacement of the insulator layer with respect to the internal electrode layer due to the principle of formation thereof, so that the screen printing is performed. It is suitable for forming a fine and high-quality glass insulator layer as compared with the formation of an insulator layer by the method described above. However, in the electrostrictive effect element to which this technology is applied, the step of forming a temporary electrode, the step of masking the exposed portion of the internal electrode layer, and the step of electrodeposition are performed only for electrophoresis. It is necessary twice each for each side. Moreover, the electrical characteristics of the formed insulator layer are affected by the electrodeposition state of the insulator layer,
This electrodeposition condition is sensitive to the temperature and concentration of the bath, and its thickness and shape are easily affected by the voltage and time during electrodeposition.Therefore, in the actual manufacturing process, it is very important to control these electrodeposition conditions. If not strictly performed, the non-defective rate will be reduced.
As described above, in the electrostrictive effect element in which the insulator layer is formed by electrophoresis, it is necessary to reduce the manufacturing cost because the manufacturing process is complicated, the management of the manufacturing conditions is difficult, and the yield rate is easily varied. It's not easy.

【0018】上述した、素子側面の絶縁体層を各内部電
極毎に独立、分離した構造にすることに伴う、素子の機
械的強度の低下、電気的特性の劣化、製造コスト低減の
困難さの問題は、絶縁体層を(独立、分離した構造では
ない)連続する帯状のものにすることによって避けるこ
とができる。図5に、そのような帯状絶縁体層を有する
積層型電歪効果素子の一例の斜視図を示す。この図に示
す電歪効果素子は、特開平3―225975号公報(以
下、第4の公報と記す)に開示された積層圧電アクチュ
エータ素子であって、積層体の側面に積層方向に連続す
る帯状の絶縁体層51Aが形成されている。外部電極3
1Aはその帯状絶縁体層51A上に、櫛の歯状に形成さ
れている。外部電極31Aの各櫛の歯は、それぞれの先
端が絶縁体層51Aから飛び出して、内部電極2の露出
部に接続している。
The above-described insulator layer on the side surface of the element is connected to each internal electrode.
The device function associated with an independent and separate structure for each pole
Reduction of mechanical strength, deterioration of electrical characteristics, reduction of manufacturing cost
The difficulty is that the insulator layer must be
No) Avoid using continuous strips
Can be. FIG. 5 shows such a band-shaped insulator layer.
1 shows a perspective view of an example of a laminated electrostrictive element. As shown in this figure
The electrostriction effect element is disclosed in Japanese Patent Application Laid-Open No. 3-225975
Below, referred to as a fourth publication).
Eta element, which is continuous on the side surface of the laminate in the laminating direction.
A strip-shaped insulator layer 51A is formed. External electrode 3
1A is formed in a comb-teeth shape on the strip-shaped insulator layer 51A.
Have been. The teeth of each comb of the external electrode 31A are
The end protrudes from the insulator layer 51A to expose the internal electrode 2.
Connected to the unit.

【0019】絶縁体層を連続した帯状とすると共に外部
電極を櫛の歯状にすることにより、後に詳細に述べるよ
うに、絶縁体層が内部電極毎に分離、独立した構造に伴
う上記諸問題が解決される。尚、図6に示される電歪効
果素子は、一対の外部電極が素子の相対向する側面にそ
れぞれ一つずつ形成された構造であるが、図7に示すよ
うに、二つの外部電極を一つの側面上の同じ帯状絶縁体
層51の上に並べて配置する構造にしても、これまで述
べたと同様の効果が得られる。
The insulating layer is formed in a continuous band shape and
The electrodes are comb-shaped, which will be described in detail later.
As described above, the insulator layer is separated for each internal electrode,
The above problems are solved. The electrostrictive effect shown in FIG.
The element has a pair of external electrodes on opposite sides of the element.
The structures are formed one by one, as shown in FIG.
As shown, two external electrodes are connected to the same band insulator on one side.
Even if the structure is arranged side by side on the layer 51,
The same effect as solid can be obtained.

【0020】[0020]

【発明が解決しようとする課題】上述したように、素子
側面の絶縁体層を各内部電極毎に独立、分離した構造に
することに伴う、素子の機械的強度の低下、電気的特性
の劣化、製造コスト低減の困難さの問題は、絶縁体層を
(独立、分離した構造ではない)連続する帯状のものに
することによって避けることができる。
As described above, the element
Insulation layer on the side is independent and separated for each internal electrode
Decrease in mechanical strength and electrical characteristics of the device
Problems such as deterioration of the manufacturing cost and difficulty in reducing the manufacturing cost
(Not an independent, separated structure)
Can be avoided by doing

【0021】しかし、絶縁体層を積層方向に連続する帯
状構造にした場合、素子の発生変位量が低下するという
副作用が伴う。絶縁体層は、素子が発生する積層方向の
変位を拘束するものであるところ、これを帯状の連続体
にすると、内部電極毎に分離、独立した構造にした場合
に比べ絶縁体層と積層体との接触面積が増加するからで
ある。
However, when the insulator layer is continuous in the laminating direction,
In the case of a helical structure, the generated displacement of the element is reduced
With side effects. The insulator layer is located in the stacking direction
Where the displacement is constrained, this is called a continuum
In case of separate and independent structure for each internal electrode
Because the contact area between the insulator layer and the laminate increases.
is there.

【0022】従って、本発明は、内部電極が全面電極構
造で素子側面に連続帯状の絶縁体層と櫛の歯状の外部電
極とを備える型の積層型電歪効果素子において、絶縁体
層を内部電極毎に分離、独立して形成することに起因す
る素子の機械的強度の低下、電気的特性の劣化および、
製造コストの低減の困難性解決できるという利点を確保
しつつ、素子の発生変位量を増大させることを目的とす
るものである。
Therefore, according to the present invention, the internal electrode has a full-surface electrode structure.
A continuous strip-shaped insulator layer and comb-shaped external
In a laminated electrostrictive effect element of a type having
Due to separate and independent layers for each internal electrode
Of the mechanical strength, electrical characteristics and
Ensuring the advantage of solving the difficulty of reducing manufacturing costs
While increasing the amount of displacement generated by the element.
Things.

【0023】本発明の積層型電歪効果素子は、電歪効果
を示すセラミック層と前記セラミック層の平面形状と同
一な平面形状をもつ内部電極層とを交互に積層してなる
積層体の積層方向に沿う軸に平行な第1の側面上に、前
記積層方向に帯状に連続し前記内部電極層の前記第1の
側面への露出部を部分的に覆う第1の絶縁体層と、前記
第1の絶縁体層上に設けられ、前記内部電極層のうち一
層おきに配置された第1の内部電極層の前記第1の側面
への露出部を電気的に接続する第1の外部電極層を設
け、前記積層体の前記積層方向に沿う軸に平行な第2の
側面上には、前記積層方向に帯状に連続し前記内部電極
層の前記第2の側面への露出部を部分的に覆う第2の絶
縁体層と、前記第2の絶縁体層上に設けられ、前記内部
電極層のうち前記第1の内部電極層とは異なる第2の内
部電極層の前記第2の側面への露出部を電気的に接続す
る第2の外部電極層を設け、前記第1の外部電極層及び
前記第2の外部電極層の平面形状を、各内部電極層と接
続する部分が各絶縁体層から櫛歯状に突出した形状にし
た構造の積層型電歪効果素子において、前記第1の絶縁
体層及び前記第2の絶縁体層の平面形状を、前記積層方
向に平行な辺の前記第1の外部電極層及び前記第2の外
部電極層の前記櫛歯状の突出部に挟まれた部分に、角の
ない滑らかな線で描かれる凹みを有する形状としたこと
を特徴とする。
The laminated electrostrictive effect element of the present invention is a laminate of a laminate in which ceramic layers exhibiting an electrostrictive effect and internal electrode layers having the same planar shape as the ceramic layer are alternately laminated. A first insulator layer that is continuous in a band shape in the laminating direction and partially covers an exposed portion of the internal electrode layer to the first side surface, on a first side surface parallel to an axis along a direction; A first external electrode provided on a first insulator layer and electrically connecting an exposed portion of the first internal electrode layer disposed on every other one of the internal electrode layers to the first side surface; A layer is provided, and on the second side surface parallel to the axis along the stacking direction of the stacked body, the exposed portion of the internal electrode layer exposed to the second side surface in a band shape in the stacking direction is partially formed. A second insulator layer covering the second insulator layer, the second electrode layer being provided on the second insulator layer; A second external electrode layer that electrically connects an exposed portion of the second internal electrode layer, which is different from the internal electrode layer, to the second side surface, wherein the first external electrode layer and the second external electrode layer are connected to each other. In the stacked electrostrictive effect element having a structure in which a portion connected to each internal electrode layer has a planar shape protruding in a comb-like shape from each insulator layer, the first insulator layer and the first insulator layer The planar shape of the second insulator layer is changed to a corner between the comb-shaped protrusions of the first external electrode layer and the second external electrode layer on a side parallel to the stacking direction. of
It is characterized by having a shape having a dent drawn with no smooth lines .

【0024】又、本発明の積層型電歪効果素子は、上記
の積層型電歪効果素子において、前記積層方向に平行な
辺は、前記凹みとこの凹み以外の部分とが、角を持たな
いように、滑らかな線で接続されてなることを特徴とす
る。
Further, in the laminated electrostrictive element according to the present invention, in the above-described laminated electrostrictive element, the side parallel to the laminating direction has no corner between the recess and a portion other than the recess.
It is characterized by being connected by smooth lines .

【0025】[0025]

【実施例】次に、本発明の好適な実施例について、図面
を参照して説明する。
Next, a preferred embodiment of the present invention will be described with reference to the drawings.

【0026】まず始めに、本発明の積層型電歪効果素子
の製造工程に対する理解を容易にするために、図5又は
図7に示すような、絶縁体層を連続帯状構造にした参考
例の積層型電歪効果素子を用いて、その製造工程及び連
続帯状絶縁体層の効果について説明する。
First, the laminated electrostrictive effect element of the present invention
In order to facilitate understanding of the manufacturing process of FIG.
Reference as shown in FIG. 7 in which the insulator layer has a continuous band structure.
Using the laminated electrostrictive effect element of the example,
The effect of the continuation-shaped insulator layer will be described.

【0027】図5は、第1の参考例の斜視図である。図
5及び図3を参照すると、本参考例が従来の全面内部電
極型の積層型電歪効果素子と異るのは、絶縁体層51
A,51B(絶縁体層51Bは、積層体の隠れている側
の側面に形成されているので、図には表われていない)
の構造と、外部電極層31A,31B(同)の構造、特
に素子側面に垂直な方向から見たときの平面形状であ
る。本参考例における絶縁体層は、従来の素子の絶縁体
層5A,5Bが、各内部電極層ごとにその露出部とその
周辺だけを覆う孤立性の部分からなっていたのに対し
て、積層方向に帯状に連続した形状をもっている。又、
参考例の外部電極層31A(31B)は、上記の絶縁
体層51A(51B)上に帯状に設けられている。そし
て、内部電極層2の露出部と接続する部分だけは、絶縁
体層51A(51B)から櫛歯状に飛び出して奇数(偶
数)番目の内部電極層2を電気的に接続している。絶縁
体層及び外部電極層は、後述するように、スクリーン印
刷法により形成する。セラミック層1の厚さは110μ
mである。
FIG. 5 is a perspective view of the first reference example . Referring to FIG. 5 and FIG. 3, the reference example conventional entire internal power
The difference from the polar laminated electrostrictive element is that the insulator layer 51
A, 51B (The insulator layer 51B is not shown in the figure because it is formed on the side surface on the hidden side of the laminate)
And the structure of the external electrode layers 31A and 31B (same as above), particularly the planar shape when viewed from the direction perpendicular to the side surface of the element. The insulator layer in this reference example is different from the prior art in that the insulator layers 5A and 5B of the conventional device each consist of an isolated portion covering only the exposed portion and its periphery for each internal electrode layer. It has a continuous shape in the direction of a band. or,
The external electrode layer 31A (31B) of the present reference example is provided in a strip shape on the insulator layer 51A (51B). Only the portion connected to the exposed portion of the internal electrode layer 2 protrudes in a comb shape from the insulator layer 51A (51B) and electrically connects the odd-numbered (even-numbered) internal electrode layer 2. The insulator layer and the external electrode layer are formed by a screen printing method as described later. The thickness of the ceramic layer 1 is 110 μm
m.

【0028】本発明者は、本参考例を以下に述べるよう
にして作製した。先ず、例えば、Pb(Zr、Ti)O
のようなペロブスカイト結晶構造をもつ多成分固溶体セ
ラミック粉末に、有機バインダーとしてポリビニル・ブ
チラール樹脂の粉末を混合しグリーンシートを作る。そ
して、その上に内部電極層となる銀ーパラジウムのペー
ストを全面にスクリーン印刷し乾燥した後、これを80
層積層し1000℃以上で高温焼結することによって積
層焼結体を形成する。
The present inventor produced this reference example as described below. First, for example, Pb (Zr, Ti) O
A green sheet is prepared by mixing a polyvinyl butyral resin powder as an organic binder with a multi-component solid solution ceramic powder having a perovskite crystal structure as described above. Then, a silver-palladium paste to be an internal electrode layer is screen-printed on the entire surface and dried.
The layers are laminated and sintered at a high temperature of 1000 ° C. or more to form a laminated sintered body.

【0029】次に、この積層焼結体の対向する側面のう
ち、先ず右側面に、絶縁体層51Aとなるガラスペース
トをスクリーン印刷して乾燥する。このとき、図5に示
すような帯状のパターンを用いる。この帯状ガラスペー
ストは、厚さが50μm以上で、幅(内部電極層の露出
部に沿う方向の幅)が積層焼結体の幅(同)の1/3で
ある。続いて対向する左側面にも、同様にして、絶縁体
層51B(隠れて見えない)となるガラスペーストをス
クリーン印刷し乾燥した後、温度650℃で両面のガラ
スペーストを同時に焼成してガラス絶縁体層51A、5
1B(同)を形成する。
Next, a glass paste to be the insulator layer 51A is screen-printed and dried on the right side surface of the opposing side surfaces of the laminated sintered body. At this time, a band-like pattern as shown in FIG. 5 is used. This band-shaped glass paste has a thickness of 50 μm or more, and a width (width in a direction along the exposed portion of the internal electrode layer) is 1 / of a width (same as above) of the laminated sintered body. Subsequently, on the opposite left side surface, similarly, a glass paste to be the insulator layer 51B (hidden and invisible) is screen-printed and dried. Body layer 51A, 5
1B (same as above).

【0030】次いで、ガラス絶縁体層51Aを形成した
側面に対して、外部電極層31Aとなる銀ペーストをス
クリーン印刷し乾燥する。この銀ペーストの印刷パター
ンは図5に示すように、絶縁体層51A上に帯状に連続
し、一部がこの帯状部分に対して直角方向に櫛歯状に飛
び出し奇数番目(紙面上部側から)の内部電極層2の露
出部に接続するパターンである。同様にして、ガラス絶
縁体層51Bを形成した側面上に、外部電極層31B
(隠れて見えない)となる銀ペーストをスクリーン印刷
する。この銀ペーストの印刷パターンは、内部電極層の
うち偶数番目(紙面上部側から)の内部電極層の露出部
に接続するパターンである。この後、温度650℃で両
面同時に焼成して外部電極層31A、31Bを同時形成
する。これら外部電極層は、厚さが10μm、内部電極
層と電気的に接触する櫛歯状部分の積層方向の幅が30
μmであり、ガラス絶縁体層上の帯状部分の幅(内部電
極層の露出部に沿う方向の幅)は、ガラス絶縁体層の幅
(同)の2/3である。
Next, a silver paste to be the external electrode layer 31A is screen-printed and dried on the side surface on which the glass insulator layer 51A is formed. As shown in FIG. 5, the printing pattern of the silver paste is continuous in a band shape on the insulator layer 51A, and a part thereof protrudes in a comb-like shape in a direction perpendicular to the band portion and is odd-numbered (from the upper side of the paper). Are connected to the exposed portions of the internal electrode layer 2 of FIG. Similarly, the external electrode layer 31B is formed on the side surface on which the glass insulator layer 51B is formed.
Screen-print silver paste (hidden and invisible). The printed pattern of the silver paste is a pattern connected to the exposed portions of the even-numbered (from the upper side of the paper) internal electrode layers of the internal electrode layers. Thereafter, both surfaces are simultaneously fired at a temperature of 650 ° C. to simultaneously form the external electrode layers 31A and 31B. Each of these external electrode layers has a thickness of 10 μm and a width in the stacking direction of a comb-tooth-like portion that is in electrical contact with the internal electrode layer is 30 μm.
μm, and the width of the band-shaped portion on the glass insulator layer (the width in the direction along the exposed portion of the internal electrode layer) is / of the width of the glass insulator layer (the same).

【0031】この後、外部電極層31A、31Bに対し
て、外部の駆動用電源回路(図示せず)との接続用のリ
ード線(同)をはんだ付けして本参考例を完成する。
Thereafter, lead wires (same as above) for connection to an external drive power supply circuit (not shown) are soldered to the external electrode layers 31A and 31B to complete the present reference example .

【0032】本参考例においては、内部電極層2の露出
部と導通を取るための外部電極層の櫛歯状突出部の積層
方向の幅を30μmとしているが、この幅は必要以上に
広くする必要はない。これは電歪効果素子が、基本的
に、電流駆動型の素子ではなく電圧駆動型の素子である
からである。すなわち、電歪効果素子では、内部電極層
の露出部と外部電極層との接触は、極論すれば、ただ電
気的に接触して電圧だけを伝達すればよい。従って、内
部電極層と外部電極層との間の接触抵抗による電圧降下
や外部電極層の抵抗成分による電圧降下などを考慮し
て、接触面積を広くしておく必要がない。これに対して
第1の公報記載の電歪効果素子では、セラミック層に掛
かる電界、言い換えればガラス絶縁体層を挟んで内部電
極層と外部電極層との間に掛かる電界の強さに応じて、
ガラス絶縁体層の幅を或る程度以上確保しなければなら
ないので、これによってセラミック層の厚さが制限され
てしまう。
In the present embodiment , the width in the stacking direction of the comb-tooth-shaped protrusions of the external electrode layer for establishing conduction with the exposed portions of the internal electrode layer 2 is set to 30 μm, but this width is made wider than necessary. No need. This is because the electrostrictive effect element is basically not a current-driven element but a voltage-driven element. That is, in the electrostrictive effect element, the contact between the exposed portion of the internal electrode layer and the external electrode layer may be, in the extreme case, merely an electrical contact to transmit only the voltage. Therefore, it is not necessary to increase the contact area in consideration of the voltage drop due to the contact resistance between the internal electrode layer and the external electrode layer and the voltage drop due to the resistance component of the external electrode layer. On the other hand, in the electrostrictive effect element described in the first publication, the electric field applied to the ceramic layer, in other words, according to the strength of the electric field applied between the internal electrode layer and the external electrode layer with the glass insulator layer interposed therebetween. ,
This limits the thickness of the ceramic layer, as the width of the glass insulator layer must be kept above a certain level.

【0033】今、内部電極層ごとに独立した絶縁体層を
形成する従来の電歪効果素子の側面の要部を拡大して示
す図6(a)を参照して、各セラミック層1の厚さをt
C1、絶縁体層5Aの幅をw1 とし、絶縁体層5Aが内部
電極層2n+1 に対して、正常な位置(図中、実線で示
す)から距離dだけずれたとする(同、破線で示す)。
このとき、絶縁体層5Aが隣りの内部電極層2n を覆っ
てはいけないので、 (1/2)w1 +d<tC1 でなくてはならない。一方、内部電極層2n+1 と外部電
極層との間の絶縁耐力を確保しなくてはならないので、 (1/2)w1 −d≧tBD を満足しなくてはならない(但し、tBDは、必要な絶縁
耐力を得るための絶縁体層5Aの厚さ)。
Now, referring to FIG. 6 (a) showing an enlarged main part of a side surface of a conventional electrostrictive element in which an independent insulator layer is formed for each internal electrode layer, the thickness of each ceramic layer 1 is shown. T
C1, the width of the insulating layer 5A and w 1, the insulator layer 5A is for the internal electrode layer 2 n + 1, (in the figure, indicated by a solid line) a normal position and displaced from a distance d (equal, (Indicated by dashed lines).
At this time, since the insulator layer 5A must not cover the adjacent internal electrode layer 2 n , (1/2) w 1 + d <t C1 must be satisfied. On the other hand, since the dielectric strength between the internal electrode layer 2 n + 1 and the external electrode layer must be ensured, (1/2) w 1 -d ≧ t BD must be satisfied (however, tBD is the thickness of the insulator layer 5A for obtaining a necessary dielectric strength).

【0034】従って、セラミック層1の厚さの最小値t
C1min は、式と式とから、 tC1min >tBD+2d で表される。
Therefore, the minimum value t of the thickness of the ceramic layer 1
C1min is represented by t C1min > t BD + 2d from the following equations.

【0035】これに対して、本参考例の素子側面要部を
拡大して示す図6(b)を参照して、各セラミック層1
の厚さをtC2、外部電極層31Aの櫛歯状部分の幅をw
2 、外部電極層31Aの内部電極層2n+1 に対する位置
ずれ量をdとすると、位置ずれを起した外部電極層31
A(図中、破線で示す)が、内部電極層2n に接触せず
且つ内部電極層2n+1 とは接触を保たなければならない
ことから、各セラミック層1の厚さtC2は、 (1/2)w2 +d<tC2 及び、 (1/2)w2 −d>0 を満足しなければならない。
On the other hand, with reference to FIG. 6B which shows an enlarged view of a main part of the element side surface of this embodiment , each ceramic layer 1
Is the thickness of t C2 , and the width of the comb-like portion of the external electrode layer 31A is
2. If the amount of displacement of the external electrode layer 31A with respect to the internal electrode layer 2 n + 1 is d, the external electrode layer 31
(Shown by a broken line) A is from having to keep the contact with the internal electrode layer 2 n + 1 and not contacting the internal electrode layer 2 n, the thickness t C2 of each ceramic layer 1 , (1/2) w 2 + d <t C2, and (1/2) w 2 −d> 0.

【0036】従って、本実施例におけるセラミック層1
の厚さの最小値tC2min は、式と式とから、 tC2≧2d となる。
Accordingly, the ceramic layer 1 in this embodiment is
The minimum value t C2min of the thickness of the following equation is t C2 ≧ 2d from the following equations.

【0037】ここで、式と式とを比較すると、各内
部電極層ごとに絶縁体層を独立して形成する従来の電歪
効果素子では、たとえ絶縁体層形成の精度が向上した場
合でも、セラミック層の薄膜化には絶縁体層の絶縁耐力
に伴なう制限が加わるのに対して、本参考例では、スク
リーン印刷の精度を向上させることによって、セラミッ
ク層の厚さを薄くすることができることが分る。特に、
参考例と同様に絶縁体層の形成にスクリーン印刷を用
いる第1の公報記載の電歪効果素子では、本参考例との
効果の差は顕著である。
Here, comparing the equations, it is found that the conventional electrostrictive effect element in which an insulator layer is independently formed for each internal electrode layer has a good effect even if the precision of the insulator layer formation is improved. While the thinning of the ceramic layer is subject to the limitations associated with the dielectric strength of the insulator layer, in this reference example, it is possible to reduce the thickness of the ceramic layer by improving the accuracy of screen printing. See what you can do. Especially,
In electrostrictive effect element of the first publication to use screen printing to form the present embodiment similarly to the insulating layer, the difference of the effects of the present embodiment is remarkable.

【0038】しかも、本参考例では、絶縁体層及び外部
電極層をスクリーン印刷で形成しているので、第2の公
報記載の電歪効果素子とは異なって、絶縁体層形成のた
めに何ら新しい技術、製造工程を必要としないし、勿
論、そのための製造装置及び複雑な製造条件管理も必要
ない。従って、本参考例は第2の公報記載の電歪効果素
子に比べて、製造コストを大きく低減できる。本実施例
では、一例として、1000個当りの加工工数を電気泳
動法による場合の1/3にできた。
Further, in the present embodiment , since the insulator layer and the external electrode layer are formed by screen printing, unlike the electrostrictive effect element described in the second publication, there is no need to form any insulator layer. No new technology or manufacturing process is required, and of course, no manufacturing equipment and complicated manufacturing condition management are required. Therefore, the present embodiment can greatly reduce the manufacturing cost as compared with the electrostrictive effect element described in the second publication. In the present embodiment, as an example, the number of processing steps per 1000 pieces can be reduced to 1/3 of that in the case of electrophoresis.

【0039】又、第3の公報記載の電歪効果素子におけ
るような、絶縁体層を選択的に除去することに起因する
熱的・電気的特性の低下及び信頼性の劣化も勿論起らな
い。
Further, as in the electrostrictive effect element described in the third publication, the thermal and electrical characteristics and the reliability are not deteriorated due to the selective removal of the insulator layer. .

【0040】本参考例では、絶縁体層51A(51B)
の平面形状が連続した帯状をしているので、この帯状無
機絶縁体層がセラミック層のひずみ発生を素子側面で拘
束することによる発生変位量の低下及び、繰り返し変位
を発生させたときに絶縁体層に加わるストレスに起因す
る故障発生の点で、上記第1の公報及び第2の公報記載
の電歪効果素子に比べて多少不利である。しかしなが
ら、近年、この種の電歪効果素子の用途が広まってきて
いるので、例えば、半導体製造装置に用いられるマスフ
ローコントローラ(精密ガス流量制御装置)や、光ファ
イバの位置決め用或いは光学機器におけるミラーの位置
制御用など、変位量が10μm程度以下と比較的小さい
用途、頻繁に変位を繰り返さないDCサーボ的な動作を
するような用途、更には、故障した場合の交換が容易な
場合などには、その低コスト性という利点を発揮するこ
とができる。
In this embodiment , the insulator layers 51A (51B)
Has a continuous band shape, so that the band-shaped inorganic insulator layer reduces the amount of displacement caused by restricting the strain generation of the ceramic layer on the side of the element, and the insulator when repeated displacement occurs. It is somewhat disadvantageous in comparison with the electrostrictive effect elements described in the first and second publications in that a failure occurs due to stress applied to the layer. However, in recent years, the use of this type of electrostrictive effect element has been widespread, and thus, for example, a mass flow controller (precision gas flow control device) used in a semiconductor manufacturing apparatus, a mirror for positioning an optical fiber, or a mirror in an optical device. In applications where the displacement is relatively small, such as about 10 μm or less, such as for position control, in applications where DC servo-like operations are not repeated frequently, and when it is easy to replace in case of failure, The advantage of low cost can be exhibited.

【0041】ここで、上記の帯状無機絶縁体層による発
生変位量低下及び故障発生を軽減するには、第2の公報
に記載されているように、材料自体が伸縮性を持つ有機
材料系の絶縁体層を用いると良い。従来、有機系の絶縁
材料はその絶縁破壊の強さが無機系絶縁材料に比べて十
分ではなかったが、近年、有機材料の電気的特性の改良
は著しく、例えば、ポリイミド樹脂のような材料は絶縁
破壊の強さが数100kV/mmとガラスのそれに劣ら
ないので、電歪効果素子の絶縁体層用材料として十分実
用に供し得る。
Here, in order to reduce the amount of displacement generated and the occurrence of failure due to the above-mentioned band-like inorganic insulator layer, as described in the second publication, an organic material based material having elasticity is used. It is preferable to use an insulator layer. Conventionally, organic insulating materials have not had sufficient dielectric breakdown strength as compared with inorganic insulating materials, but in recent years, the electrical properties of organic materials have been significantly improved. Since the dielectric breakdown strength is several hundred kV / mm, which is not inferior to that of glass, it can be practically used as a material for an insulator layer of an electrostrictive effect element.

【0042】尚、上述した参考例では、絶縁体層51A
及び外部電極層31Aが形成される側面(右側面)と、
絶縁体層51B及び外部電極層31Bが形成される側面
(左側面)とが互いに異なる面であったが、これらの面
は同じ側面であっても構わない。更には、図7に示す斜
視図のように、外部電極層31Aと外部電極層31Bと
が、同一の側面上で同じ一つの絶縁体層51を共用する
構造とすることもできる。
In the above-described reference example , the insulator layer 51A
And a side surface (right side surface) on which the external electrode layer 31A is formed;
Although the side surface (left side surface) on which the insulator layer 51B and the external electrode layer 31B are formed is different from each other, these surfaces may be the same side surface. Further, as shown in the perspective view of FIG. 7, the external electrode layer 31A and the external electrode layer 31B may have a structure in which the same one insulator layer 51 is shared on the same side surface.

【0043】次に、上述の帯状絶縁体層による発生変位
量の低下及び故障発生を軽減した、本発明の実施例につ
いて説明する。図1は、本発明の一実施例による積層型
電歪効果素子の斜視図である。尚、以下の説明では、説
明の煩雑さを避けるために、相対向する二つの絶縁体層
のうち右側面上の絶縁体層52Aを例にとって説明す
る。
Next, a description will be given of an embodiment of the present invention in which a reduction in the amount of displacement caused by the above-mentioned band-shaped insulator layer and occurrence of a failure are reduced. FIG. 1 shows a laminated type according to an embodiment of the present invention.
It is a perspective view of an electrostriction effect element . In the following description, for the sake of simplicity, the insulator layer 52A on the right side of the two insulator layers opposed to each other will be described as an example.

【0044】図1を参照すると、本実施例は絶縁体層5
2Aのパターンが、図5に示す参考例のものとは異なっ
ている。本実施例における絶縁体層52Aのパターン
は、図1及び図2(a)に示すように、絶縁体層52A
の、外部電極層31Aの櫛歯状突出部の間の部分に半円
形の凹み部6が設けられた形状となっている。
Referring to FIG. 1, the present embodiment employs an insulating layer 5
The pattern of 2A is different from that of the reference example shown in FIG. Pattern of the insulator layer 52A in the present embodiment, as shown in FIGS. 1 and 2 (a), an insulator layer 52A
The semi-circular recess 6 is provided between the comb-shaped protrusions of the external electrode layer 31A.

【0045】この凹み部6を設けたことにより、積層体
側面と絶縁体層52Aとの接触面積が減る。又、例え
ば、直円筒状の金属パイプと蛇腹状の金属パイプとの比
較から分るように、凹み部6を設けたことによる形状効
果により絶縁体層52Aに伸縮性がもたらされる。本実
施例ではこれら接触面積の減少と伸縮性の付与とによっ
て、積層体の変位発生に対する絶縁体層52Aの拘束力
と、これに伴なう発生変位量の低下が軽減される。
The provision of the recess 6 reduces the contact area between the side surface of the laminate and the insulator layer 52A. Further, for example, as can be seen from a comparison between a straight cylindrical metal pipe and a bellows-shaped metal pipe, the insulating layer 52A has elasticity due to the shape effect provided by the concave portion 6. In the present embodiment, by reducing the contact area and imparting the elasticity, the restraining force of the insulator layer 52A against the displacement of the stacked body and the resulting reduction in the amount of displacement are reduced.

【0046】又、積層体が紙面上下方向に変位するのに
伴なって絶縁体層52Aに上下方向の力が加ったとき、
凹み部6では絶縁体層52Aの側辺部に対する引張り力
が分散される。従って、例えば今、図2(a)に示すよ
うに、凹み部6にスクリーン印刷時の微小欠陥が生じた
場合でも、この微小欠陥に対する応力の集中は、同図中
に短い矢印で示すように緩和される。これに対して、図
2(b)に示す直線状絶縁体層51Aでは、上記のよう
な絶縁体層51A側辺部での引張り力の分散はない。そ
の結果、絶縁体層51A周辺部に上述したと同様の微小
欠陥が生じた場合には、図中に長い矢印で示すようにこ
の欠陥部分に大きな応力の集中が起り、変位発生が繰り
返されるのに従ってこの欠陥から絶縁体層51Aの破断
が進行する。従って、絶縁体層の側辺部に生じる微小欠
陥の密度が、図2(a)に示す本実施例と図2(b)に
示す直線状の絶縁体層とで同一であれば、絶縁体層の微
小欠陥からの破断の確率は本実施例の方が低く、それだ
け素子を繰り返し変位させたときの故障が少ない。尚、
凹み部6の形状は半円形に限られるものではない。楕円
の一部でもよいし、正弦曲線の一部でもよい。更には、
複数の直線を角がないように、滑らかに連結させて作ら
れる形状でもよい。
When a vertical force is applied to the insulator layer 52A as the laminate is displaced in the vertical direction on the paper,
In the recess 6, the tensile force on the side of the insulator layer 52A is dispersed. Therefore, for example, as shown in FIG. 2A, even when a minute defect occurs at the time of screen printing in the concave portion 6, the concentration of the stress on the minute defect is as shown by a short arrow in FIG. Be relaxed. On the other hand, in the linear insulator layer 51A shown in FIG. 2B, there is no dispersion of the tensile force at the side of the insulator layer 51A as described above. As a result, when a small defect similar to that described above occurs in the peripheral portion of the insulator layer 51A, a large concentration of stress occurs at this defective portion as indicated by a long arrow in the drawing, and displacement is repeated. Accordingly, the rupture of the insulator layer 51A proceeds from this defect. Therefore, if the density of the micro defects generated on the side portions of the insulator layer is the same between the present embodiment shown in FIG. 2A and the linear insulator layer shown in FIG. In this embodiment, the probability of rupture from a microdefect in the layer is lower, and there is less failure when the element is repeatedly displaced. still,
The shape of the recess 6 is not limited to a semicircle. It may be a part of an ellipse or a part of a sine curve. Furthermore,
A shape formed by connecting a plurality of straight lines smoothly without any corners may be used.

【0047】上述した本実施例では、絶縁体層52Aの
凹み部6とその他の部分(帯状絶縁体層の長手方向に平
行な縁の部分)とは、角をなしてつながっている。従っ
て、スクリーン印刷時の微小欠陥の発生部位が、この
続点の尖った角の部分あるいは凹み部6以外の直線状部
分に合致し、そこに応力の集中が起り素子が故障する可
能性が、僅かではあるが残る。このような原因による素
子の故障は、絶縁体層のパターンを図2(c)に示す形
状にすることによって、更に軽減できる。すなわち、図
2(c)を参照すると、この図に示す絶縁体層53Aの
パターンは、外部電極層の櫛歯状突出部に相当する部分
を半円形凸状に形成し、凹み部6と滑らかに接続させて
いる。このような形状の絶縁体層53Aでは、絶縁体層
周辺部のいずれの部分でも引張り力が分散されるので、
微小欠陥による素子の故障発生はより少なくなる。ここ
で、この例では、凸状半円と凹み状半円とを連続させた
が、それぞれの形状は半円に限られるものではない。楕
円の一部でもよいし、正弦曲線のようにしても同様の効
果を得ることができる。勿論、絶縁体層の、外部電極層
の櫛歯状突出部に相当する部分は直線のままにしておい
て、その直線と半円系の凹み部分とを滑らかにつなぐだ
けでも、応力分散の効果は得られる。
In the above-described embodiment, the concave portion 6 of the insulator layer 52A and other portions (flat portions in the longitudinal direction of the strip-shaped insulator layer) are formed.
(The edge of the line) is connected at an angle . Therefore, generation site of minute defects during screen printing, the contact
There is a small possibility that stress will be concentrated on the straight portion other than the sharp corner portion or the concave portion 6 of the connecting point and the element will fail, although this is small. Failure of the element due to such a cause can be further reduced by forming the pattern of the insulator layer into the shape shown in FIG. That is, referring to FIG. 2C, the pattern of the insulator layer 53A shown in FIG. 2C is such that the portion corresponding to the comb-shaped protrusion of the external electrode layer is formed in a semicircular convex shape, and the concave portion 6 is smoothly formed. Connected to In the insulator layer 53A having such a shape, the tensile force is dispersed in any part around the insulator layer.
The occurrence of device failures due to minute defects is reduced. Here, in this example, the convex semicircle and the concave semicircle are continuous, but the shape of each is not limited to the semicircle. A similar effect can be obtained even if it is a part of an ellipse or a sinusoidal curve. Of course, the external electrode layer of the insulator layer
The part corresponding to the comb-shaped protrusion of
And smoothly connect the straight line to the semicircular recess
However, the effect of stress dispersion can be obtained.

【0048】尚、これまで述べた実施例においては、外
部電極層31Aのパターンを、図1に示すように、その
帯状部分に対して櫛歯状突出部が両方向に飛び出す形
状、つまり二つの櫛歯状突出部を背中合せに設けたパタ
ーンとしたが、このパターンは、図5に示すように、櫛
歯状突出部が片側にだけ飛び出すような形状としてもよ
いことは勿論である。又、二つの絶縁体層を積層体の同
一側面上に形成してもよいし、更に、このとき二つの外
部電極層が同一の絶縁体層を共用するようにしてもよい
ことは、前述の参考例におけると同様である。
In the embodiment described so far, the pattern of the external electrode layer 31A is formed in such a shape that the comb-like projections protrude in both directions with respect to the band-like portion as shown in FIG. Although the pattern in which the tooth-shaped protrusions are provided back to back is used, it is a matter of course that the pattern may be such that the comb-shaped protrusions protrude only to one side as shown in FIG. Further, two insulator layers may be formed on the same side surface of the laminate, and further, at this time, two external electrode layers may share the same insulator layer, as described above. This is the same as in the reference example .

【0049】[0049]

【発明の効果】以上説明したように、本発明は内部電極
が全面電極構造の積層型電歪効果素子において、積層体
側面に露出する内部電極層の露出部を外部電極層から絶
縁するための絶縁体層及び、内部電極層を一層置きに接
続するための外部電極層をスクリーン印刷により形成す
ると共に、絶縁体層の形状を、帯状に連続する一つの絶
縁体層で全内部電極層を絶縁する形状とし、又、外部電
極層の形状を、内部電極層の露出部と接続する部分が絶
縁体層の帯状部分から櫛歯状に突出する形状としてい
る。
As described above, according to the present invention, in a laminated electrostrictive effect element having an entire internal electrode structure, the exposed portion of the internal electrode layer exposed on the side surface of the laminate is insulated from the external electrode layer. Insulator layers and external electrode layers for connecting the internal electrode layers every other layer are formed by screen printing, and the shape of the insulator layers is insulated from all internal electrode layers by one continuous insulator layer. The shape of the external electrode layer is such that a portion connected to the exposed portion of the internal electrode layer protrudes in a comb-like shape from the strip portion of the insulator layer.

【0050】これにより本発明によれば、セラミック層
の厚さが絶縁体層の絶縁耐力に制限されることなく、外
部電極層のスクリーン印刷精度でのみ決るようにでき
る。従がって、内部電極層ごとに独立した絶縁体層を形
成する従来の電歪効果素子に比べて、セラミック層をよ
り薄膜化し高電界で駆動することができる。
Thus, according to the present invention, the thickness of the ceramic layer can be determined only by the screen printing accuracy of the external electrode layer without being limited by the dielectric strength of the insulator layer. Accordingly, the ceramic layer can be made thinner and driven by a high electric field, as compared with a conventional electrostrictive element in which an independent insulator layer is formed for each internal electrode layer.

【0051】しかも、電気泳動法により絶縁体層を形成
する素子とは異なって、絶縁体層及び外部電極層形成の
ために何等新しい工程を必要せず、又、製造条件の管理
を厳しくする必要がないので、製造コストを大きく低減
できる。
Further, unlike an element in which an insulator layer is formed by an electrophoresis method, no new process is required for forming the insulator layer and the external electrode layer, and strict control of manufacturing conditions is required. Because there is no such, manufacturing cost can be greatly reduced.

【0052】更には、絶縁体層を選択的除去法により形
成する素子に比べて、素子製造時の熱的、機械的損傷が
ないので、これらの損傷に伴なう電気的、機械的特性の
劣化や信頼性の低下などの問題はない。
Furthermore, since there is no thermal or mechanical damage at the time of manufacturing the device as compared with a device in which the insulator layer is formed by the selective removal method, the electrical and mechanical characteristics associated with these damages are reduced. There are no problems such as deterioration and reliability.

【0053】更に、本発明は、絶縁体層の積層方向に延
びる側辺に対して、外部電極層の櫛歯状突出部に挟まれ
た部分に、連続した線で描かれる凹み部を設けている。
これにより、絶縁体層を帯状連続体にすることによる発
生変位量の低下及び、繰り返し変位させたときの絶縁体
層の破断に起因する素子の故障発生を軽減できる。
Further, according to the present invention, a concave portion drawn by a continuous line is provided in a portion of the external electrode layer sandwiched between the comb-shaped protrusions with respect to a side extending in the stacking direction of the insulator layer. I have.
Accordingly, it is possible to reduce the amount of displacement caused by forming the insulator layer into a strip-shaped continuum and to reduce the occurrence of failure of the element due to breakage of the insulator layer when the insulator layer is repeatedly displaced.

【0054】本発明の電歪効果素子は、変位量が比較的
小さい用途、頻繁に変位を繰り返さないDCサーボ的な
動作をするような用途、更には、故障した場合の交換が
容易な用途などに用いた場合、特にその低コスト性とい
う利点を大いに発揮する。
The electrostrictive effect element of the present invention is used for applications where the amount of displacement is relatively small, for applications where DC servo operation is performed without frequent repetition, and for applications where replacement is easy in case of failure. In particular, the advantage of low cost is greatly exhibited.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の斜視図である。FIG. 1 is a perspective view of one embodiment of the present invention.

【図2】分図(a)は、図1に示す実施例における絶縁
体層に微小欠陥が生じた場合の応力の状態を示す図であ
る。 分図(b)は、図5に示す参考例における絶縁体層に微
小欠陥が生じた場合の応力の状態を示す図である。 分図(c)は、本発明の実施例における絶縁体層のパタ
ーンの、他の例を示す図である。
FIG. 2A is a diagram showing a state of stress when a minute defect occurs in an insulator layer in the embodiment shown in FIG. FIG. 5B is a diagram showing a state of stress when a minute defect occurs in the insulator layer in the reference example shown in FIG. FIG. 4C is a diagram showing another example of the pattern of the insulator layer in the embodiment of the present invention .

【図3】従来の積層型電歪効果素子の一例の斜視図であ
る。
FIG. 3 is a perspective view of an example of a conventional laminated electrostrictive element.

【図4】従来の積層型電歪効果素子の他の例の断面図で
ある。
FIG. 4 is a cross-sectional view of another example of the conventional laminated electrostrictive effect element.

【図5】参考例の積層型電歪効果素子の斜視図である。FIG. 5 is a perspective view of a laminated electrostrictive effect element of a reference example .

【図6】絶縁体層が内部電極毎に分離、独立した構造の
積層型電歪効果素子及び参考例の積層型電歪効果素子
おいて、セラミック層の厚さと絶縁体層の幅との関係及
び、セラミック層と外部電極層の幅との関係を説明する
ための図である。
FIG. 6 shows a structure in which an insulator layer is separated and independent for each internal electrode.
In the multilayered electrostrictive element and the multilayer electrostrictive element of the reference example, the relationship between the thickness of the ceramic layer and the width of the insulator layer, and the relationship between the width of the ceramic layer and the width of the external electrode layer FIG.

【図7】参考例の積層型電歪効果素子における絶縁体層
及び外部電極層の構造の、他の例を示す斜視図である。
FIG. 7 is a perspective view showing another example of the structure of the insulator layer and the external electrode layer in the multilayer electrostrictive effect element of the reference example .

【符号の説明】[Explanation of symbols]

1 セラミック層 2 内部電極層 3A,3B 外部電極層 4 接続導体 5A,5B 絶縁体層 6 凹み部 31A,31B 外部電極層 51,51A,51B,52A,52B,53A,53
B 絶縁体層
DESCRIPTION OF SYMBOLS 1 Ceramic layer 2 Internal electrode layer 3A, 3B External electrode layer 4 Connection conductor 5A, 5B Insulator layer 6 Depression 31A, 31B External electrode layer 51, 51A, 51B, 52A, 52B, 53A, 53
B Insulator layer

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電歪効果を示すセラミック層と前記セラ
ミック層の平面形状と同一な平面形状をもつ内部電極層
とを交互に積層してなる積層体の積層方向に沿う軸に平
行な第1の側面上に、前記積層方向に帯状に連続し前記
内部電極層の前記第1の側面への露出部を部分的に覆う
第1の絶縁体層と、前記第1の絶縁体層上に設けられ、
前記内部電極層のうち一層おきに配置された第1の内部
電極層の前記第1の側面への露出部を電気的に接続する
第1の外部電極層を設け、前記積層体の前記積層方向に
沿う軸に平行な第2の側面上には、前記積層方向に帯状
に連続し前記内部電極層の前記第2の側面への露出部を
部分的に覆う第2の絶縁体層と、前記第2の絶縁体層上
に設けられ、前記内部電極層のうち前記第1の内部電極
層とは異なる第2の内部電極層の前記第2の側面への露
出部を電気的に接続する第2の外部電極層を設け、前記
第1の外部電極層及び前記第2の外部電極層の平面形状
を、各内部電極層と接続する部分が各絶縁体層から櫛歯
状に突出した形状にした構造の積層型電歪効果素子にお
いて、 前記第1の絶縁体層及び前記第2の絶縁体層の平面形状
を、前記積層方向に平行な辺の前記第1の外部電極層及
び前記第2の外部電極層の前記櫛歯状の突出部に挟まれ
た部分に、角のない滑らかな線で描かれる凹みを有する
形状としたことを特徴とする積層型電歪効果素子。
A first layer parallel to an axis along a laminating direction of a laminate formed by alternately laminating ceramic layers exhibiting an electrostrictive effect and internal electrode layers having the same planar shape as the ceramic layer. A first insulator layer continuous in a strip shape in the laminating direction and partially covering an exposed portion of the internal electrode layer to the first side surface; and provided on the first insulator layer. And
A first external electrode layer that electrically connects exposed portions of the first internal electrode layer to the first side surface disposed every other of the internal electrode layers; A second insulator layer that is continuous in a band shape in the laminating direction and partially covers an exposed portion of the internal electrode layer to the second side surface, the second insulator layer being parallel to an axis along the axis; A second electrode provided on a second insulator layer and electrically connecting an exposed portion of the internal electrode layer to the second side surface of a second internal electrode layer different from the first internal electrode layer; 2 external electrode layers, and the planar shape of the first external electrode layer and the second external electrode layer is changed so that a portion connected to each internal electrode layer protrudes in a comb-like shape from each insulator layer. In the laminated electrostrictive effect element having the structure described above, the planar shape of the first insulator layer and the second insulator layer is A shape having a concave portion drawn by a smooth line with no corners at a portion between sides of the first external electrode layer and the second external electrode layer which are parallel to the layer direction and between the comb-shaped protrusions. A stacked electrostrictive effect element comprising:
【請求項2】 請求項1記載の積層型電歪効果素子にお
いて、 前記積層方向に平行な辺は、前記凹みとこの凹み以外の
部分とが、角を持たないように、滑らかな線で接続され
てなることを特徴とする積層型電歪効果素子。
2. The laminated electrostrictive effect element according to claim 1, wherein the side parallel to the laminating direction is connected by a smooth line so that the recess and a portion other than the recess have no corner. A laminated electrostrictive effect element characterized by being formed.
JP5243423A 1993-09-30 1993-09-30 Multilayer electrostrictive effect element Expired - Lifetime JP2748830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5243423A JP2748830B2 (en) 1993-09-30 1993-09-30 Multilayer electrostrictive effect element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5243423A JP2748830B2 (en) 1993-09-30 1993-09-30 Multilayer electrostrictive effect element

Publications (2)

Publication Number Publication Date
JPH07106652A JPH07106652A (en) 1995-04-21
JP2748830B2 true JP2748830B2 (en) 1998-05-13

Family

ID=17103654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5243423A Expired - Lifetime JP2748830B2 (en) 1993-09-30 1993-09-30 Multilayer electrostrictive effect element

Country Status (1)

Country Link
JP (1) JP2748830B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3876082B2 (en) * 1998-10-29 2007-01-31 株式会社日立製作所 Manufacturing method of two-dimensional array type module
JP2005072370A (en) * 2003-08-26 2005-03-17 Ngk Insulators Ltd Multilayer ceramics electronic component and manufacturing method therefor
US7352115B2 (en) 2004-04-28 2008-04-01 Tdk Corporation Piezoelectric element and piezoelectric device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62211974A (en) * 1986-03-12 1987-09-17 Hitachi Metals Ltd Laminated piezoelectric element and manufacture thereof
JPH03225975A (en) * 1990-01-31 1991-10-04 Nec Corp Laminated piezoelectric actuator element

Also Published As

Publication number Publication date
JPH07106652A (en) 1995-04-21

Similar Documents

Publication Publication Date Title
EP0247540B1 (en) Electrostriction effect element
JPH04340778A (en) Laminated piezoelectric actuator element
JP2006351602A (en) Multilayer piezoelectric actuator device
JPH04159785A (en) Electrostrictive effect element
JPH07176802A (en) Manufacture of piezoelectric actuator
JP2986706B2 (en) Piezoelectric element and piezoelectric actuator using the same
JPS6127688A (en) Electrostrictive effect element and production thereof
JP2748830B2 (en) Multilayer electrostrictive effect element
JPH0794796A (en) Multilayered electrostrictive/piezoelectric device
JP2004296772A (en) Electrically driving method of stacked piezo-electric element
JP2692397B2 (en) Electrostrictive effect element
JPH09148638A (en) Multilayered piezoelectric actuator and its manufacture
JP2645628B2 (en) Multilayer type electrostrictive / piezoelectric element
US20100308693A1 (en) Piezoelectric Stack Actuator Assembly
JPH04337682A (en) Piezoelectric effect element and electrostrictive effect element
JPH11135851A (en) Laminated piezo electric actuator
JP3227896B2 (en) Stacked piezoelectric body
JP2613408B2 (en) Multilayer piezoelectric actuator
JP6898167B2 (en) Laminated piezoelectric element
JP3377922B2 (en) Multilayer piezoelectric actuator
JPS62133777A (en) Lamination-type piezoelectric element and manufacture thereof
JPH02164084A (en) Manufacture of laminated piezoelectric actuator element
JPH0364978A (en) Electrostrictive effect element
JPH06283776A (en) Multilayer piezoelectric element
JPH10270768A (en) Laminated type piezoelectric transformer

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980120