JP2747288B2 - Hot cathode structure - Google Patents

Hot cathode structure

Info

Publication number
JP2747288B2
JP2747288B2 JP4671887A JP4671887A JP2747288B2 JP 2747288 B2 JP2747288 B2 JP 2747288B2 JP 4671887 A JP4671887 A JP 4671887A JP 4671887 A JP4671887 A JP 4671887A JP 2747288 B2 JP2747288 B2 JP 2747288B2
Authority
JP
Japan
Prior art keywords
hot cathode
heating element
cathode structure
insulator
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4671887A
Other languages
Japanese (ja)
Other versions
JPS63216232A (en
Inventor
鈴弥 山田
光明 斉藤
健一 江原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP4671887A priority Critical patent/JP2747288B2/en
Priority to GB8712116A priority patent/GB2192751B/en
Priority to DE19873717974 priority patent/DE3717974A1/en
Priority to US07/222,300 priority patent/US4878866A/en
Publication of JPS63216232A publication Critical patent/JPS63216232A/en
Application granted granted Critical
Publication of JP2747288B2 publication Critical patent/JP2747288B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 <産業上の利用分野> この発明は各種イオン源、三極スパツタリング装置な
どの熱電子源として用いられる熱陰極構造体に関する。 <従来の技術とその問題点> イオンビーム応用技術は半導体製造工程や材料の表面
改質の研究等に使用されており、熱陰極を有する電子衝
撃型のイオン源が広く用いらている。熱陰極を構成する
発熱体の材料としては通常W、Ta、Re等が用いられてい
るが、イオンビームの大電流化および熱陰極の長寿命化
のため導電性のセラミツクスを用いることが検討されて
いる。例えば、カスプ型H-イオン源の発熱体をWからLa
B6に代替することによつて長寿命化に成功している(参
考文献:A.Takagi et al.,“Multicusp H- ion source a
t KEK(II)”、Proc,9th symp.on ISIAT′85、109(19
85))。 導電性セラミツクスは熱電子放射特性が優れており、
発熱体材料としては従来使用されているタングステン、
タンタル、レニウムなどに比べ低い温度で使用できる。
しかしながら、熱陰極はプラズマ中で使用されるため、
熱陰極を構成している金属材料がプラズマ中のイオンに
よつてスパツタリングされ、発熱体の表面に金属が蒸着
して発熱体の熱電子放出特性が劣化したり、熱陰極を構
成している絶縁体部品(端子台、碍子、スペーサーな
ど)に金属が蒸着して絶縁材料の絶縁性が低下したり、
短絡が生ずるという問題があつた。 前者の問題に対しては従来はとくに対応策がなく、熱
陰極を取替える外なかつた。後者の問題に対しては従来
は両端子の間隔を広げたり、端子間の絶縁体の表面に凹
凸を形成させるていどの対策しかなく、これらの方法は
絶縁体部品を小型化する上で支障があつた。 この発明は使用中にスパツタリングの影響を受けるこ
となく、長時間安定に使用できる熱陰極構造体を提供す
ることを目的とする。 <問題点を解決するための手段> この発明は導電性セラミツクスを発熱体とし、しかも
熱電子放出体とする熱陰極構造体において、該導電性セ
ラミツクスの端子部の周囲に絶縁体からなる覆いを設け
たことを特徴とする熱陰極構造体である。 以下この発明について詳細に説明する。この発明にお
いて導電性セラミツクスとは第1にはアルカリ土類金属
および原子番号57から71までのランタン系元素の中から
選ばれた少なくとも1種以上の元素の6ホウ化物の焼結
体、第2には、Ti、Zr、およびTaの中から選ばれた少な
くとも1種以上の2ホウ化物の焼結体、第3にはTi、Z
r、Hf、V、NbおよびTaの中から選ばれた少なくとも1
種以上の炭化物または窒化物、第4にはこの炭素質材料
である。 この発明において端子部とは発熱体へ通電するための
発熱体の2つの端子を中心とする絶縁体部品を含む部位
である。具体的には、発熱体の端部から給電端子にいた
る部位であり、より具体的には、発熱体の二つの端部の
少なくとも一部、該端部に電気的、機械的に固定された
金属部品や絶縁体部、それらの接合用ネジ、給電端子の
少なくとも一部から構成される部位である。絶縁体部品
の表面に金属が蒸着して端子間が短絡することを防ぐた
めに、熱陰極を構成する絶縁体部品を完全に覆うことが
好ましい。 また、金属が発熱体上に蒸着して発熱体の熱電子放出
特性が劣化することを防ぐために、熱陰極を構成する金
属部分のすべてを覆うことが好ましい。しかし、発熱体
近傍の金属部品の一部分を覆つただけでも、発熱体表面
へ蒸着する金属の量がかなり少なくなるので、発熱体の
熱放出特性の劣化を防ぐ効果がある。覆いは端子部の回
りを囲むものであればよく、その外径は角形、円筒形を
問わない。絶縁体はアルミナ、窒化ほう素、窒化アルミ
ニウム、シリカ形セラミツクス、マイカ形セラミツクス
等のセラミツクスが耐熱性の点で好ましい。 この発明の熱陰極構造体は、カウフマン(Kaufman)
型、カルトロン型(Calutron)型、多極磁界型(バケツ
ト型)等の熱電子衝撃型イオン源のほかニールセン(Ni
elsen)型、スカンジナビアン(Scandinavian)型等の
電子振動型イオン源、ビームプラズマ型イオン源、ヒル
・アンド・ネルソン(Hill and Nelson)型等のスパツ
タイオン源、PIG型イオン源、モノプラズマトロン、デ
ユオプラズマトロン、デユオピガトロン等の各種イオン
源、三極スパツタリング装置、電子ビーム溶接装置、電
子ビーム溶解装置、電子ビーム露光装置、電子顕微鏡、
陰極線管に用いる熱陰極として適している。 <実施例> 以下、実施例によりこの発明を具体的に説明する。 実施例1 気孔率約10%のLaB6焼結体をワイヤーカツト放電加工
法により外径10mm、内径7mm、高さ27.5mmの管状体と
し、ついで2本の並行らせん巻き構造に加工することに
よつて第2図に示す発熱体を製作した。発熱体の2本の
らせん1A,1Bの一方の端部2A,2Bは結合部3により電気的
に接続させてあり、もう一方の端部4A,4Bを通電のため
の端子とした。 第3図に示すとおり、端部4A,4Bに通電のためにタン
タル製の金属片5A,5Bを取付けた。端部への金属片の取
付けに当つては、端部4A,4Bの内側に絶縁体製の絶縁体
部品6を挿入し、金属片5A,5B、端部4A,4Bおよび絶縁体
部品6を貫通させてステンレス製ボルト7を通し、ステ
ンレス製ナツト8で締付け固定した。ボルトおよびナツ
トが金属片5A,5Bや端部4A,4Bに触れないようにアルミナ
製の碍子9A,9Bを使用した。 つぎに、窒化ほう素の焼結体を切削加工することによ
り第4図に示す覆いの上部と第5図に示す覆いの下部を
作製し、これらの覆いを第1図に示すとおり発熱体の端
子部に取付けた。 得られた熱陰極構造体をカスプ型イオン源装置に組み
込み真空度5×10-5Torrのアルゴン雰囲気下、アーク電
流7A,アーク電圧60Vで連続81時間の放電試験を行なつ
た。その結果、熱陰極の端子間に短絡が生ずることがな
く、また熱陰極の加熱電流は39〜42Aの範囲で安定して
いた。 実施例2 まず、実施例1と同じ発熱体を製作した。つぎに第6
図〜第8図に示すとおり、モリブデン製の金属片5A,5B
にタンタル製の給電端子12A,12Bをステンレス製のネジ1
4A,14Bにより取付けた。2個の金属片5A,5B間に窒化ほ
う素製の絶縁体部品6を挿入し、アルミナ製の碍子9A,9
Bにより絶縁してステンレス製のボルト7およびステン
レス製のナツト8により固定した。ついで窒化ほう素製
の覆い11を金属片5A,5Bの上部からはめ込み、さらに金
属片5A,5Bの上部に発熱体をさし込み、発熱体の端部4A,
4Bをモリブデン製のネジ13A,13Bによつて、金属片5A,5B
に固定した。 得られた熱陰極構造体をカスプ型イオン源装置に組込
み、真空度5×10-5Torrのアルゴン雰囲気下、アーク電
流7A、アーク電圧60Vで連続100時間の放電試験を行なつ
た。その結果、熱陰極の端子間に短絡が生ずることがな
く、また熱陰極の加熱電流は39〜41Aの範囲で安定して
いた。 比較例 比較のための実施例2の覆い11を取りはずし、実施例
2と同じ条件で放電試験をおこなつた。 その結果、アーク電圧が徐々に変動するようになり、
放電が不安定になつた。また、熱陰極の加熱電流が徐々
に上昇し、6.5時間経過後に発熱体の端子間が短絡し、
放電が維持できなくなつた。熱陰極構造体を分解して観
察したところ、碍子9A,9B及び絶縁体部品6の表面が銀
色に変色しており、この部分で短絡していることがわか
つた。変色部分をEPMAにより分析をおこなつたところ多
量のモリブデンおよびタンタルが検出され、金属片5A,5
Bと給電端子12A,12Bがスパツタリングされ碍子および絶
縁体上に蒸着していることを確認した。 実施例3 まず、実施例1と同じ発熱体を製作した。第9図〜第
11図に示すとおり、モリブデン製の金属片5A,5Bにおの
おのタンタル製の給電端子12A,12Bをステンレス製のネ
ジ14A,14Bにより取付け、つぎに円筒形の窒化けい素製
の覆い10をステンレス製のネジ15A,15Bにより固定し
た。 ついで、発熱体の端部4A,4Bを金属片5A,5Bにモリブデ
ン製のネジ13A,13Bにより固定した。 この熱陰極構造体をカスプ型イオン源装置に組込んで
実施例2と同じ条件で連続100時間の放電試験をおこな
つたところ、試験中に端子間の短絡が生ずることなく、
また熱陰極加熱電流は39〜42Aの範囲で安定していた。 <発明の効果> この発明の熱陰極構造体は使用中に発熱体の表面にス
パツタリング金属の蒸着を受けることがなく、発熱体の
特性劣化がない。また、絶縁体部品の表面に金属が蒸着
することもなくなり、端子間の短絡のおそれがない。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a hot cathode structure used as a thermionic source such as various ion sources and a three-electrode sputtering device. <Conventional technology and its problems> The ion beam application technology is used in semiconductor manufacturing processes and research on surface modification of materials, and an electron impact ion source having a hot cathode is widely used. W, Ta, Re, etc. are usually used as the material of the heating element constituting the hot cathode. However, use of conductive ceramics for increasing the current of the ion beam and extending the life of the hot cathode has been studied. ing. For example, the heating element of the cusp type H - ion source is changed from W to La
Has been successful in'll go-between length of life to be an alternative to the B 6 (reference:. A.Takagi et al, "Multicusp H - ion source a
t KEK (II) ", Proc, 9th symp. on ISIAT'85, 109 (19
85)). Conductive ceramics have excellent thermoelectron emission properties,
Tungsten, which is conventionally used as a heating element material,
Can be used at lower temperatures than tantalum, rhenium, etc.
However, the hot cathode is used in the plasma,
The metal material composing the hot cathode is sputtered by ions in the plasma, and the metal is deposited on the surface of the heating element, thereby deteriorating the thermionic emission characteristics of the heating element and the insulation constituting the hot cathode. Metal deposits on the body parts (terminal blocks, insulators, spacers, etc.) and the insulating properties of the insulating material may decrease,
There is a problem that a short circuit occurs. Conventionally, there has been no particular countermeasure against the former problem, and the hot cathode has to be replaced. Conventionally, the latter problem can be solved only by increasing the distance between both terminals or by forming irregularities on the surface of the insulator between the terminals.Therefore, these methods have problems in reducing the size of the insulator component. Atsuta. An object of the present invention is to provide a hot cathode structure that can be used stably for a long time without being affected by spattering during use. <Means for Solving the Problems> The present invention relates to a hot cathode structure in which conductive ceramics is used as a heating element and a thermionic electron emitter, and a cover made of an insulator is provided around a terminal portion of the conductive ceramics. It is a hot cathode structure characterized by being provided. Hereinafter, the present invention will be described in detail. In the present invention, the conductive ceramic is firstly a sintered body of hexaboride of at least one element selected from alkaline earth metals and lanthanum elements having atomic numbers 57 to 71; Is a sintered body of at least one or more diborides selected from Ti, Zr, and Ta;
at least one selected from r, Hf, V, Nb and Ta
More than one kind of carbide or nitride, and fourthly, this carbonaceous material. In the present invention, the terminal portion is a portion including an insulator part centered on two terminals of the heating element for supplying electricity to the heating element. Specifically, it is a portion from the end of the heating element to the power supply terminal, and more specifically, at least a part of two ends of the heating element, which is electrically and mechanically fixed to the end. It is a part composed of a metal part, an insulator part, a screw for joining them, and at least a part of a power supply terminal. In order to prevent a short circuit between terminals due to deposition of metal on the surface of the insulator component, it is preferable to completely cover the insulator component constituting the hot cathode. Further, in order to prevent the metal from being vapor-deposited on the heating element and thereby deteriorating the thermionic emission characteristics of the heating element, it is preferable to cover all the metal parts constituting the hot cathode. However, even if only a part of the metal component near the heating element is covered, the amount of metal deposited on the surface of the heating element is considerably reduced, so that there is an effect of preventing deterioration of the heat emission characteristics of the heating element. The cover only needs to surround the periphery of the terminal portion, and its outer diameter may be square or cylindrical. As the insulator, ceramics such as alumina, boron nitride, aluminum nitride, silica-type ceramics, and mica-type ceramics are preferable in terms of heat resistance. The hot cathode structure of the present invention is provided by Kaufman
Electron source such as a thermotron type, Caltron type, multipole magnetic field type (bucket type), and Nielsen (Ni)
Ellen), Scandinavian, etc., electron oscillating ion sources, beam plasma type ion sources, Hill and Nelson etc. sputter ion sources, PIG type ion sources, monoplasmatrons, deyuo Various ion sources such as plasmatron and deuopigatron, tripolar sputtering equipment, electron beam welding equipment, electron beam melting equipment, electron beam exposure equipment, electron microscope,
Suitable as a hot cathode for a cathode ray tube. <Example> Hereinafter, the present invention will be described specifically with reference to examples. Example 1 A LaB 6 sintered body having a porosity of about 10% was formed into a tubular body having an outer diameter of 10 mm, an inner diameter of 7 mm, and a height of 27.5 mm by wire-cut electric discharge machining, and then processed into two parallel spiral wound structures. Thus, the heating element shown in FIG. 2 was manufactured. One ends 2A and 2B of the two spirals 1A and 1B of the heating element are electrically connected by a joint 3, and the other ends 4A and 4B are terminals for conducting electricity. As shown in FIG. 3, tantalum metal pieces 5A and 5B were attached to the ends 4A and 4B for energization. In attaching the metal pieces to the ends, the insulator parts 6 made of an insulator are inserted inside the ends 4A and 4B, and the metal pieces 5A and 5B, the ends 4A and 4B and the insulator parts 6 are attached. A stainless steel bolt 7 was passed through, and a stainless steel nut 8 was tightened and fixed. Insulators 9A and 9B made of alumina were used so that bolts and nuts did not touch the metal pieces 5A and 5B and the ends 4A and 4B. Next, by cutting the sintered body of boron nitride, the upper part of the cover shown in FIG. 4 and the lower part of the cover shown in FIG. 5 were produced, and these covers were used as the heating element as shown in FIG. Attached to the terminal. The obtained hot cathode structure was assembled in a cusp type ion source apparatus, and a discharge test was performed continuously for 81 hours at an arc current of 7 A and an arc voltage of 60 V under an argon atmosphere having a degree of vacuum of 5 × 10 −5 Torr. As a result, no short circuit occurred between the terminals of the hot cathode, and the heating current of the hot cathode was stable in the range of 39 to 42A. Example 2 First, the same heating element as in Example 1 was manufactured. Then the sixth
As shown in FIGS. To 8, molybdenum metal pieces 5A and 5B
Tantalum power supply terminals 12A and 12B to stainless steel screw 1
Installed by 4A, 14B. An insulator part 6 made of boron nitride is inserted between two metal pieces 5A and 5B, and insulators 9A and 9 made of alumina are inserted.
It was insulated by B and fixed by stainless steel bolts 7 and stainless steel nuts 8. Next, a cover 11 made of boron nitride was fitted from above the metal pieces 5A and 5B, and a heating element was further inserted into the top of the metal pieces 5A and 5B.
4B with molybdenum screws 13A and 13B, metal pieces 5A and 5B
Fixed to. The obtained hot cathode structure was assembled in a cusp-type ion source apparatus, and a discharge test was performed in an argon atmosphere having a degree of vacuum of 5 × 10 −5 Torr at an arc current of 7 A and an arc voltage of 60 V for 100 hours continuously. As a result, no short circuit occurred between the terminals of the hot cathode, and the heating current of the hot cathode was stable in the range of 39 to 41A. Comparative Example The cover 11 of Example 2 for comparison was removed, and a discharge test was performed under the same conditions as in Example 2. As a result, the arc voltage gradually fluctuates,
Discharge became unstable. In addition, the heating current of the hot cathode gradually increased, and after 6.5 hours, the terminals of the heating element were short-circuited,
Discharge cannot be maintained. When the hot cathode structure was disassembled and observed, it was found that the surfaces of the insulators 9A and 9B and the insulator component 6 were discolored to silver, and a short circuit was found at this portion. When the discolored portion was analyzed by EPMA, a large amount of molybdenum and tantalum were detected, and metal pieces 5A and 5A were detected.
It was confirmed that B and the power supply terminals 12A and 12B were sputtered and deposited on the insulator and the insulator. Example 3 First, the same heating element as in Example 1 was manufactured. FIG. 9 to FIG.
As shown in FIG. 11, tantalum power supply terminals 12A and 12B are attached to molybdenum metal pieces 5A and 5B by stainless steel screws 14A and 14B, and then a cylindrical silicon nitride cover 10 is made of stainless steel. And fixed with screws 15A and 15B. Then, ends 4A and 4B of the heating element were fixed to metal pieces 5A and 5B by screws 13A and 13B made of molybdenum. When this hot cathode structure was assembled in a cusp type ion source device and a discharge test was performed continuously for 100 hours under the same conditions as in Example 2, no short circuit occurred between the terminals during the test.
The hot cathode heating current was stable in the range of 39 to 42A. <Effects of the Invention> The hot cathode structure of the present invention does not undergo sputtering of metal on the surface of the heating element during use, and there is no deterioration in the characteristics of the heating element. In addition, no metal is deposited on the surface of the insulator component, and there is no possibility of short-circuit between terminals.

【図面の簡単な説明】 第1図は本発明の熱陰極構造体の斜視図であり、第2図
はその発熱体部分の斜視図である。第3図は本発明の熱
陰極構造体の覆いを設ける前の正面図であり、第4図お
よび第5図は覆いの斜視図である。 第6図は本発明の別の熱陰極構造体の正面図であり、第
7図は縦断面図、第8図は平面図である。第9図は本発
明のさらに別の熱陰極構造体の正面図であり、第10図は
縦断面図、第11図は平面図である。 符 号 1A,1B……らせん体、2A,2B,4A,4B……端部、3……結合
部、5A,5B……金属片、6……絶縁体部品、7……ボル
ト、8……ナツト、9A,9B……碍子、10A,10B、11……覆
い、12A,12B……給電端子、13A,13B,14A,14B,15A,15B…
…ネジ
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a hot cathode structure of the present invention, and FIG. 2 is a perspective view of a heating element portion thereof. FIG. 3 is a front view of the hot cathode structure of the present invention before a cover is provided, and FIGS. 4 and 5 are perspective views of the cover. FIG. 6 is a front view of another hot cathode structure of the present invention, FIG. 7 is a longitudinal sectional view, and FIG. 8 is a plan view. FIG. 9 is a front view of still another hot cathode structure of the present invention, FIG. 10 is a longitudinal sectional view, and FIG. 11 is a plan view. Symbols 1A, 1B: spiral, 2A, 2B, 4A, 4B: end, 3: joint, 5A, 5B: metal piece, 6: insulator part, 7: bolt, 8 ... ... Nuts, 9A, 9B ... Insulators, 10A, 10B, 11 ... Covers, 12A, 12B ... Feed terminals, 13A, 13B, 14A, 14B, 15A, 15B ...
…screw

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01J 37/08 H01J 37/08 (56)参考文献 特開 昭55−14646(JP,A) 特開 昭52−51861(JP,A) 特開 昭55−28298(JP,A) 実開 昭63−22057(JP,U) 特公 昭55−35812(JP,B2) 特公 平6−24092(JP,B2) 実公 平6−14391(JP,Y2) (58)調査した分野(Int.Cl.6,DB名) H01J 1/14 - 1/18 H01J 27/20 H01J 37/06 H01J 37/08──────────────────────────────────────────────────の Continuation of the front page (51) Int.Cl. 6 Identification symbol FI H01J 37/08 H01J 37/08 (56) References JP-A-55-14646 (JP, A) JP-A-52-51861 (JP) JP-A-55-28298 (JP, A) JP-A-63-22057 (JP, U) JP-B-55-35812 (JP, B2) JP-B-6-24092 (JP, B2) 6-14391 (JP, Y2) (58) Fields investigated (Int. Cl. 6 , DB name) H01J 1/14-1/18 H01J 27/20 H01J 37/06 H01J 37/08

Claims (1)

(57)【特許請求の範囲】 1.導電性セラミックスを発熱体とし、しかも熱電子放
出体とする熱陰極構造体において、該導電性セラミック
スの端子部の周囲に絶縁体からなる覆いを設けたことを
特徴とする熱陰極構造体。
(57) [Claims] What is claimed is: 1. A hot cathode structure comprising a conductive ceramic as a heating element and a thermoelectron emitting body, wherein a cover made of an insulator is provided around a terminal portion of said conductive ceramic.
JP4671887A 1986-07-14 1987-03-03 Hot cathode structure Expired - Lifetime JP2747288B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP4671887A JP2747288B2 (en) 1987-03-03 1987-03-03 Hot cathode structure
GB8712116A GB2192751B (en) 1986-07-14 1987-05-22 Method of making a thermionic cathode structure.
DE19873717974 DE3717974A1 (en) 1986-07-14 1987-05-27 GLOWH CATHODE
US07/222,300 US4878866A (en) 1986-07-14 1988-07-22 Thermionic cathode structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4671887A JP2747288B2 (en) 1987-03-03 1987-03-03 Hot cathode structure

Publications (2)

Publication Number Publication Date
JPS63216232A JPS63216232A (en) 1988-09-08
JP2747288B2 true JP2747288B2 (en) 1998-05-06

Family

ID=12755122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4671887A Expired - Lifetime JP2747288B2 (en) 1986-07-14 1987-03-03 Hot cathode structure

Country Status (1)

Country Link
JP (1) JP2747288B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112768325B (en) * 2021-01-29 2022-11-29 成都创元电子有限公司 Directly-heated hollow cathode

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5251861A (en) * 1975-10-23 1977-04-26 Hitachi Ltd Field radiation type electronic gun
JPS5514646A (en) * 1978-07-17 1980-02-01 Toshiba Corp Electron gun

Also Published As

Publication number Publication date
JPS63216232A (en) 1988-09-08

Similar Documents

Publication Publication Date Title
US4878866A (en) Thermionic cathode structure
JP4817656B2 (en) Indirectly heated cathode ion source
US5170422A (en) Electron emitter for an x-ray tube
TWI418771B (en) Method and apparatus for maintaining emission capabilities of hot cathodes in harsh environments
JPH03500109A (en) Plasma switch with disordered chromium cold cathode
US20060284105A1 (en) Ion source
JP2747288B2 (en) Hot cathode structure
Gushenets et al. Boron vacuum-arc ion source with LaB6 cathode
US4994706A (en) Field free, directly heated lanthanum boride cathode
JP2975543B2 (en) Hot cathode structure
US3391303A (en) Electronic vacuum pump including a sputter electrode
US4240005A (en) Apparatus for the generation of primary electrons from a cathode
JPH0614391Y2 (en) Magnetic field free type hot cathode structure
TWI225658B (en) Ion source
US6323586B1 (en) Closed drift hollow cathode
US3327931A (en) Ion-getter vacuum pump and gauge
JP3034076B2 (en) Metal ion source
Guarnieri et al. Improved ion source for use with oxygen
JPH0837099A (en) Plasma generating device
JPH08264143A (en) Ion source
CALBICK 396 CJ CALBICK: 3. Oberflächen
Gushenets et al. About Some Features of the Vacuum Arc Operation with Boron-Containing Cathodes
JP3150516B2 (en) Contact material for vacuum valve
Miljević Hollow cathode magnetron ion source with axial extraction
JP3374932B2 (en) Hot cathode structure