JP2744184B2 - Method for preventing silicate scale formation and substrate treated by the method - Google Patents

Method for preventing silicate scale formation and substrate treated by the method

Info

Publication number
JP2744184B2
JP2744184B2 JP5009968A JP996893A JP2744184B2 JP 2744184 B2 JP2744184 B2 JP 2744184B2 JP 5009968 A JP5009968 A JP 5009968A JP 996893 A JP996893 A JP 996893A JP 2744184 B2 JP2744184 B2 JP 2744184B2
Authority
JP
Japan
Prior art keywords
scale
substrate
silicate scale
preventing
scale formation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5009968A
Other languages
Japanese (ja)
Other versions
JPH06220654A (en
Inventor
譲 柳沢
英明 矢鳴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Engineering Corp
Original Assignee
Toyo Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Engineering Corp filed Critical Toyo Engineering Corp
Priority to JP5009968A priority Critical patent/JP2744184B2/en
Publication of JPH06220654A publication Critical patent/JPH06220654A/en
Application granted granted Critical
Publication of JP2744184B2 publication Critical patent/JP2744184B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、水蒸気と接触する基材
における珪酸塩スケール生成防止方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for preventing silicate scale formation on a substrate which comes into contact with water vapor.

【0002】[0002]

【従来の技術】産業上利用されるボイラ水中には、規格
内とはいえ給水と共に送入された種々の懸濁、溶解固形
物を含み、その他薬液による溶解固形物が存在する。一
般に給水中の溶解固形分はボイラ内でしだいに濃縮し、
一部Si、Fe等の酸化物、Na化合物等が蒸気中にキ
ャリーオーバーしてタービンに飛来し、ボイラ内はもと
より、スチームタービンの動翼や静翼にも珪酸塩スケー
ル(以下、スケールという)として付着する。タービン
翼にスケールが付着すると、付着量が増加するにつれて
翼の表面粗さが大きくなり、翼の摩擦損失が増加する。
スケールが更に成長すれば、翼のプロフィルを崩して段
落特性を変化させ、蒸気の通過面積を減少させるにいた
る。更には高速回転している動翼のバランスを狂わせ、
破損を引き起こす。
2. Description of the Related Art Boiler water used industrially includes various suspended solids and dissolved solids which are fed together with water supply even though it is within the standard, and there are other dissolved solids due to chemicals. Generally, the dissolved solids in the feedwater are gradually concentrated in the boiler,
Oxides such as Si and Fe, Na compounds, etc. carry over into the steam and fly to the turbine, and silicate scale (hereinafter referred to as scale) not only in the boiler but also in the moving blades and stationary blades of the steam turbine. Adhere as. When the scale adheres to the turbine blade, the surface roughness of the blade increases as the amount of adhesion increases, and the friction loss of the blade increases.
As the scale grows further, it breaks the profile of the wing, altering the paragraph characteristics and reducing the steam passage area. In addition, the balance of the rotating blade rotating at high speed is disturbed,
Cause damage.

【0003】従来より、基材に付着したスケールを除去
する方法として、基材に熱衝撃を加えスケールを剥離し
易くしてから物理的に剥離する方法、あるいは化学的処
理により除去する方法等が試みられている。
Conventionally, as a method of removing scale adhered to a substrate, a method of applying a thermal shock to the substrate to facilitate peeling of the scale and then physically removing the scale, or a method of removing the scale by a chemical treatment, and the like are known. Attempted.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
スケール除去方法は、以下のような問題があった。 (1)熱衝撃を与えることによる基材の損傷、耐熱性等
の問題があり、且つ、熱衝撃を与えることによっても物
理的にスケールを完全に除去することは困難である。 (2)物理的剥離の際、強引に力を加えると、基材に
傷、欠損等の損傷が生じる。 (3)化学的処理によりスケールを除去する場合は、酸
やアルカリ等により基材が溶解腐食等の損傷を受けるほ
か、廃液の処理が必要となる。
However, the conventional scale removing method has the following problems. (1) There are problems such as damage to the substrate and heat resistance caused by applying a thermal shock, and it is difficult to completely remove the scale physically by applying a thermal shock. (2) At the time of physical peeling, if a force is forcibly applied, the base material is damaged such as a scratch or a defect. (3) When the scale is removed by chemical treatment, the base material is damaged such as by dissolution and corrosion by an acid or an alkali, and the waste liquid must be treated.

【0005】本発明は、従来技術の問題点に鑑みて、珪
酸塩スケール生成によるタービン翼の機能低下および損
傷を解消することを目的とする。
[0005] In view of the problems of the prior art, an object of the present invention is to eliminate the deterioration and damage of turbine blades caused by silicate scale formation.

【0006】また、本発明は水蒸気と接する基材上のス
ケール生成を防止する方法およびスケールが付着しにく
く、付着した場合でもスケールを除去し易い基材を提供
することを目的とする。
Another object of the present invention is to provide a method for preventing the formation of scale on a substrate which is in contact with water vapor, and to provide a substrate on which scale is hardly adhered and on which scale is easily removed.

【0007】[0007]

【課題を解決するための手段】上記目的を達成する本発
明は、水蒸気と接触する基材の少なくとも表面を一般式
(1)
According to the present invention, which achieves the above object, at least the surface of a substrate which comes into contact with water vapor has a general formula (1)

【0008】[0008]

【化2】aMcd ・bWxy 一般式(1) [上式中、Wはタングステン元素を示し、Oは酸素元素
を示し、MはNb、Zr、Ni、Co、Cu、Fe、M
g、Mnからなる群より選ばれる1の元素、または2以
上の元素の組み合わせを示し、aおよびbは整数または
小数で、a/bは0以上1以下の範囲にあり、cおよび
dは主としてMのイオン価数によって定まる整数値であ
り、xおよびyは主としてWのイオン価数によって定ま
る整数値である。]で示されるセラミックスで構成する
ことにより、基材上での珪酸塩スケールの生成を防止す
る方法である。
## STR2 ## aM c O d · bW x O y Formula (1) [In the formula, W is shown an elemental tungsten, O represents an oxygen element, M is Nb, Zr, Ni, Co, Cu, Fe , M
g represents an element selected from the group consisting of Mn, or a combination of two or more elements, a and b are integers or decimal numbers, a / b is in the range of 0 or more and 1 or less, and c and d are mainly It is an integer value determined by the ionic valence of M, and x and y are integer values mainly determined by the ionic valence of W. ], The formation of silicate scale on the substrate is prevented.

【0009】また、本発明は、上記方法により珪酸塩ス
ケール防止処理が施された基材である。
Further, the present invention is a substrate which has been subjected to a silicate scale prevention treatment by the above method.

【0010】[0010]

【作用】以下、本発明について説明する。The present invention will be described below.

【0011】一般式(1)で示されるセラミックスは粉
末冶金により構造物として成形されるか、または、ステ
ンレススチール材、高ニッケル合金材等の適当な基材上
に鍍金、蒸着法等により金属皮膜として形成された後、
酸化、セラミックス化されてセラミックス皮膜としてラ
イニングされてもよい。
The ceramics represented by the general formula (1) may be formed as a structure by powder metallurgy, or may be formed on a suitable substrate such as a stainless steel material or a high nickel alloy material by plating, vapor deposition, or the like. After being formed as
It may be oxidized and converted into ceramics and lined as a ceramic film.

【0012】基材の形状は、用途に応じて板状、管状、
繊維状等種々の形状を採ることができ、これらの組み合
せにより容器として用いることも可能である。
The shape of the substrate may be plate-like, tubular,
Various shapes such as a fibrous shape can be adopted, and a combination of these can be used as a container.

【0013】また、前記ライニングで処理されることが
好適な構造物としてはスチームタービン翼、ボイラ加熱
管、スチームドラム、その他、シリカ成分を含む溶液、
気流等に接触する反応器および配管等である。
[0013] Examples of the structure preferably treated with the lining include a steam turbine blade, a boiler heating tube, a steam drum, a solution containing a silica component, and the like.
It is a reactor, piping, etc. that comes into contact with an airflow or the like.

【0014】ライニングにより形成されるセラミックス
皮膜の厚さは目的用途に合わせて選択できるが、10μ
m以上、更には100μm以上であることが好ましい。
10μm未満の場合には、セラミックス皮膜にピンホー
ルが生じる場合があるためである。
The thickness of the ceramic film formed by lining can be selected according to the intended use.
m or more, more preferably 100 μm or more.
If the thickness is less than 10 μm, pinholes may be generated in the ceramic film.

【0015】本発明のスケール生成防止方法により、処
理された基材は、浴液中、気流中、気液混相流等の如何
なる雰囲気においても使用することができる。
The substrate treated by the method for preventing scale formation of the present invention can be used in any atmosphere such as a bath solution, a gas stream, and a gas-liquid multiphase flow.

【0016】処理された基材を気流中、特に酸素存在下
で使用する場合、一般式(1)において、a/b=0、
即ち、基材の表面が酸化タングステンで構成されている
場合は、基材に付着したスケールは、基材の温度が60
0℃を超えると剥離し易くなる。また、a/b>0のと
き基材の温度が700℃から800℃でスケールが剥離
し易くなる。
When the treated substrate is used in an air stream, particularly in the presence of oxygen, in the general formula (1), a / b = 0,
That is, when the surface of the base material is made of tungsten oxide, the scale attached to the base material has a temperature of the base material of 60%.
If it exceeds 0 ° C., it will be easy to peel off. Further, when a / b> 0, the scale easily peels when the temperature of the substrate is from 700 ° C. to 800 ° C.

【0017】処理された基材を酸素が存在しないかもし
くは極度に少ない雰囲気中で使用する場合、酸化が促進
されないのでスケールが生成しにくい。
When the treated substrate is used in an atmosphere in which oxygen is absent or in an extremely small amount, oxidation is not promoted and scale is hardly generated.

【0018】本発明により処理された基材は、理由は明
確ではないが、炭素鋼、ステンレス鋼に比較してスケー
ル生成は極めて少ない。また、スケールが生成しても酸
素存在下で、基材の温度を600℃から800℃に0〜
5分間保った後、室温まで降温することにより適当な手
段で容易にスケールを除去できる。スケール除去手段と
しては、プラスチック製のハンマー等で軽く叩く等の物
理的振動によるもの、金属よりも硬度の低いプラスチッ
クまたは木製のへら等で掻き取る等の物理的剥離による
もの等が使用できる。
[0018] The substrate treated according to the present invention has very little scale formation as compared with carbon steel and stainless steel, although the reason is not clear. In addition, even if the scale is formed, the temperature of the base material is increased from 600 ° C. to 800 ° C. in the presence of oxygen in the presence of oxygen.
After keeping for 5 minutes, the scale can be easily removed by appropriate means by lowering the temperature to room temperature. As the scale removing means, a method using physical vibration such as tapping lightly with a plastic hammer or the like, a method using physical peeling such as scraping with a plastic or a wooden spatula having a lower hardness than metal, and the like can be used.

【0019】[0019]

【実施例】以下、実施例により本発明を更に具体的に説
明する。
EXAMPLES The present invention will be described more specifically with reference to the following examples.

【0020】実施例1 高ニッケル合金製のスチームタービン翼にタングステン
を蒸着し、それを酸化して20μmの厚みでWO3 をラ
イニングした。蒸発量160t/h、ブロー量1.3t
/h、給水量161.3t/h、123.6barの循
環ボイラに25℃の純水を供給し稼働率100%で1年
間運転し、発生したスチームで先に得られたスチームタ
ービン翼を備えたスチームタービンを回し発電した。タ
ービン効率は85%であった。
Example 1 Tungsten was vapor-deposited on a steam turbine blade made of a high nickel alloy, which was oxidized and lined with WO 3 to a thickness of 20 μm. Evaporation amount 160t / h, blow amount 1.3t
/ H, a water supply of 161.3 t / h, a 123.6 bar circulation boiler was supplied with pure water at 25 ° C., operated for one year at an operation rate of 100%, and provided with steam turbine blades previously obtained by generated steam. The steam turbine was turned on to generate electricity. Turbine efficiency was 85%.

【0021】スチームタービン翼に付着したスケールの
量を測定した結果を表1に示すが付着は認められなかっ
た。
The results of measuring the amount of scale adhering to the steam turbine blades are shown in Table 1, but no adhering was observed.

【0022】比較例1 WO3 のライニングを施さなかった以外は実施例1と同
様にスチームタービンを稼働しタービン翼に付着したス
ケール量を測定した結果を表1に示す。また、付着した
スケールを除去する際の作業性も併せて表1に示す。
Comparative Example 1 A steam turbine was operated in the same manner as in Example 1 except that WO 3 was not lined, and the results of measurement of the amount of scale adhering to the turbine blades are shown in Table 1. Table 1 also shows the workability when removing the attached scale.

【0023】実施例2 0.25NiO・WO3 を100μmの厚みでライニン
グした以外は実施例1と同様のタービン翼を用いて、蒸
発量40t/d、ブロー量3t/d、給水量43t/
d、7kgf/cm2 の丸ボイラに軟水を温度20℃で
供給し、稼働率100%で1年間運転し、発生したスチ
ームで先に得られたスチームタービン翼を回し発電し
た。タービン効率は85%であった。スチームタービン
翼に付着したスケール量を測定した結果を表1に示すが
付着は認められなかった。
Example 2 The same turbine blades as in Example 1 were used except that 0.25NiO.WO 3 was lined with a thickness of 100 μm, and the evaporation amount was 40 t / d, the blow amount was 3 t / d, and the water supply amount was 43 t / d.
d. Soft water was supplied to a round boiler of 7 kgf / cm 2 at a temperature of 20 ° C., operated for one year at an operation rate of 100%, and the generated steam was used to turn the previously obtained steam turbine blades to generate power. Turbine efficiency was 85%. The result of measuring the amount of scale adhering to the steam turbine blade is shown in Table 1, but no adhering was observed.

【0024】実施例3 0.25NiO・WO3 をNiO・WO3 に替えた以外は
実施例2と同様のタービン翼を用いて実施例1と同様の
条件でスチームタービンを稼働し、タービン翼に付着し
たスケール量を測定した結果を表1に示す。
The operating a steam turbine under the same conditions as in Example 1 using the same turbine blade except that the Example 3 0.25NiO · WO 3 was changed to NiO · WO 3 in Example 2, the turbine blade Table 1 shows the results of measuring the amount of the attached scale.

【0025】実施例4〜10 0.25NiO・WO3 のNiOをNb、Zr、Co、
Cu、Fe、Mg、Mnの酸化物に各々替えた以外は実
施例2と同様のタービン翼を用いて実施例1と同様の条
件でスチームタービンを稼働し、タービン翼に付着した
スケール量を測定した結果を表1に示す。
Examples 4 to 10 NiO of 0.25NiO.WO 3 was converted to Nb, Zr, Co,
A steam turbine was operated under the same conditions as in Example 1 using the same turbine blades as in Example 2 except that the oxides of Cu, Fe, Mg, and Mn were replaced, and the amount of scale adhering to the turbine blades was measured. Table 1 shows the results.

【0026】実施例11 稼働期間を2年間にした以外は実施例1と同様にスチー
ムタービンを稼働し、タービン翼に付着したスケール量
を測定した結果を表1に示す。また、付着したスケール
を除去する際の作業性も併せて表1に示す。
Example 11 A steam turbine was operated in the same manner as in Example 1 except that the operation period was set to two years, and the results of measuring the amount of scale adhering to the turbine blades are shown in Table 1. Table 1 also shows the workability when removing the attached scale.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【発明の効果】本発明によれば、(1)珪酸塩スケール
生成によるタービン翼の機能低下を防いで安定したスチ
ームタービンの段落特性を得ることができ、(2)また
珪酸塩スケール生成によるタービン翼の破損事故を防止
することができ、(3)また、水蒸気と接する如何なる
雰囲気で使用される基材においてもスケール生成を防止
することが可能で、(4)スケールが付着した場合でも
容易に除去することができる等の効果を奏する。
According to the present invention, it is possible to (1) obtain a stable steam turbine stage characteristic by preventing a function deterioration of a turbine blade due to silicate scale formation, and (2) obtain a turbine blade by silicate scale formation. Wings can be prevented from being damaged, (3) scale can be prevented from being formed on a substrate used in any atmosphere in contact with water vapor, and (4) even if scale adheres. It has effects such as being able to be removed.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水蒸気と接触する基材の少なくとも表面
を一般式(1) 【化1】aMcd ・bWxy 一般式(1) [上式中、Wはタングステン元素を示し、Oは酸素元素
を示し、MはNb、Zr、Ni、Co、Cu、Fe、M
g、Mnからなる群より選ばれる1の元素、または2以
上の元素の組み合わせを示し、aおよびbは整数または
小数で、a/bは0以上1以下の範囲にあり、cおよび
dは主としてMのイオン価数によって定まる整数値であ
り、xおよびyは主としてWのイオン価数によって定ま
る整数値である。]で示されるセラミックスで構成する
ことにより、基材上での珪酸塩スケールの生成を防止す
る方法。
1. A in at least the surface of the general formula (1) ## STR1 ## aM c O d · bW x O y Formula (1) [the above equation of substrates coming into contact with water vapor, W is shown a tungsten element, O represents an oxygen element, M represents Nb, Zr, Ni, Co, Cu, Fe, M
g represents an element selected from the group consisting of Mn, or a combination of two or more elements, a and b are integers or decimal numbers, a / b is in the range of 0 or more and 1 or less, and c and d are mainly It is an integer value determined by the ionic valence of M, and x and y are integer values mainly determined by the ionic valence of W. A method of preventing the formation of silicate scale on a substrate by comprising the ceramics shown in [1].
【請求項2】 請求項1の方法により珪酸塩スケール生
成防止処理が施された基材。
2. A substrate subjected to a silicate scale formation preventing treatment according to the method of claim 1.
JP5009968A 1993-01-25 1993-01-25 Method for preventing silicate scale formation and substrate treated by the method Expired - Lifetime JP2744184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5009968A JP2744184B2 (en) 1993-01-25 1993-01-25 Method for preventing silicate scale formation and substrate treated by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5009968A JP2744184B2 (en) 1993-01-25 1993-01-25 Method for preventing silicate scale formation and substrate treated by the method

Publications (2)

Publication Number Publication Date
JPH06220654A JPH06220654A (en) 1994-08-09
JP2744184B2 true JP2744184B2 (en) 1998-04-28

Family

ID=11734732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5009968A Expired - Lifetime JP2744184B2 (en) 1993-01-25 1993-01-25 Method for preventing silicate scale formation and substrate treated by the method

Country Status (1)

Country Link
JP (1) JP2744184B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9017815B2 (en) 2012-09-13 2015-04-28 Ppg Industries Ohio, Inc. Near-infrared radiation curable multilayer coating systems and methods for applying same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014524825A (en) 2011-05-06 2014-09-25 トロジャン・テクノロジーズ Antifouling surface and radiation source assembly and fluid treatment system including the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9017815B2 (en) 2012-09-13 2015-04-28 Ppg Industries Ohio, Inc. Near-infrared radiation curable multilayer coating systems and methods for applying same

Also Published As

Publication number Publication date
JPH06220654A (en) 1994-08-09

Similar Documents

Publication Publication Date Title
JP5039995B2 (en) Nickel-base superalloy
SE458689B (en) PROCEDURE AND COMPOSITION FOR REMOVAL OF ALUMINUM COATING FROM HEATHOLD SOLID Nickel Alloys
WO1998035075A1 (en) Melting pot with silicon protective layers, method for applying said layer and the use thereof
EP0438560B1 (en) A ferrochromium alloy
JP2744184B2 (en) Method for preventing silicate scale formation and substrate treated by the method
JP2574287B2 (en) High temperature protective coating
JP2757084B2 (en) Electrolytic method for stripping metal coatings from titanium-based metal supports
Xie et al. Effect of an enamel coating on the oxidation and hot corrosion behavior of an HVOF-sprayed Co–Ni–Cr–Al–Y coating
JP3367086B2 (en) Alloy steel with excellent corrosion resistance to molten salts containing alkali metal oxides
Mackert et al. Oxide morphology and adherence on dental alloys designed for porcelain bonding
US3464839A (en) Coating composition
JP3092818B2 (en) Float glass manufacturing roll
Young Oxidation behaviour of some modern heat-resistant cast steels
JPH07316772A (en) Nickel-base alloy powder for thermal spraying and nickel-base alloy thermally sprayed layer
CN1034687A (en) The protective coating that founding non-ferrous metal and alloy are used
JP2914386B2 (en) Method of coating fiber-reinforced ceramic composite and coated composite
JPH09194973A (en) Sulfuric acid corrosion resistant material
JP2000119781A (en) Heat transfer tube for heat exchange, with corrosion and wear resistance, and heating furnace and incinerator using the same
JPS591654A (en) Alloy for spraying
Leyens et al. Effect of Composition on the Hot Corrosion Resistance of NiAl and (Ni, Pt) Al
JPH0159039B2 (en)
JPH07188890A (en) Ni-base alloy powder for thermal spraying and composite member obtained by thermally spraying the powder
JPH0599588A (en) Heat transfer tube for heat exchanger and manufacture thereof
JPH1066898A (en) Spray nozzle
JPS62280341A (en) Highly corrosion resistant cobalt-based stainless alloy