JP2740053B2 - Outlet piping for reactor pressure vessel - Google Patents

Outlet piping for reactor pressure vessel

Info

Publication number
JP2740053B2
JP2740053B2 JP3097279A JP9727991A JP2740053B2 JP 2740053 B2 JP2740053 B2 JP 2740053B2 JP 3097279 A JP3097279 A JP 3097279A JP 9727991 A JP9727991 A JP 9727991A JP 2740053 B2 JP2740053 B2 JP 2740053B2
Authority
JP
Japan
Prior art keywords
pipe
diameter
pressure vessel
outlet
reactor pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3097279A
Other languages
Japanese (ja)
Other versions
JPH04328493A (en
Inventor
本 哲 三 山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3097279A priority Critical patent/JP2740053B2/en
Publication of JPH04328493A publication Critical patent/JPH04328493A/en
Application granted granted Critical
Publication of JP2740053B2 publication Critical patent/JP2740053B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は原子炉圧力容器の出口側
配管装置に係り、特にベンチュリ管とタービンに蒸気を
送る太径管とを接続する広がり管を備えた出口側配管装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an outlet piping system for a reactor pressure vessel, and more particularly to an outlet piping system having a diverging pipe for connecting a venturi pipe and a large-diameter pipe for sending steam to a turbine.

【0002】[0002]

【従来の技術】一般に沸騰型原子炉装置において、図6
に示すように原子炉格納容器50の中に格納された原子
炉圧力容器51内で発生した蒸気は、原子炉圧力容器5
1の出力側から主蒸気ライン52を介してタービン53
へ送られ、タービン53にて仕事をした蒸気は復水器5
4にて凝縮され復水となった後ポンプ55によって原子
炉格納容器51へ再び戻されるようになっている。ま
た、原子炉圧力容器51の出口には、原子炉圧力容器5
1から送り出される蒸気の流量を測定するベンチュリ管
57が設けられている。このベンチュリ管57に太い径
を有する太径管59が、広がり管58を介して接続さ
れ、これらベンチュリ管57、広がり管58および太径
管59によって主蒸気ライン52の一部をなす出口側配
管装置56が構成されている。また、一般に原子炉圧力
容器51の出口側配管装置56は原子炉格納容器50内
に収容されている。
2. Description of the Related Art Generally, in a boiling reactor, FIG.
The steam generated in the reactor pressure vessel 51 stored in the reactor containment vessel 50 as shown in FIG.
1 through the main steam line 52 from the output side of the turbine 53
Is sent to the turbine 53 and worked in the turbine 53.
After being condensed and condensed at 4, the water is returned to the reactor containment vessel 51 again by the pump 55. The outlet of the reactor pressure vessel 51 has a reactor pressure vessel 5
A venturi tube 57 is provided for measuring the flow rate of the steam sent from 1. A large-diameter pipe 59 having a large diameter is connected to the Venturi pipe 57 via a widening pipe 58, and an outlet-side pipe forming a part of the main steam line 52 by the Venturi pipe 57, the widening pipe 58 and the large-diameter pipe 59. An apparatus 56 is configured. Generally, the outlet piping device 56 of the reactor pressure vessel 51 is accommodated in the containment vessel 50.

【0003】一般に原子炉格納容器50のスペースは狭
く、このためベンチュリ管57とその下流側にある太径
管59の上流側端との間の距離を短くする必要がある。
また太径管59の径61はベンチュリ管57の出力側端
の径60に比べて大きくなっている(図7参照)。
In general, the space in the reactor containment vessel 50 is narrow, and therefore, it is necessary to reduce the distance between the venturi tube 57 and the upstream end of the large-diameter tube 59 downstream thereof.
The diameter 61 of the large-diameter tube 59 is larger than the diameter 60 of the output side end of the venturi tube 57 (see FIG. 7).

【0004】このため、広がり管58の内面形状は上流
側から下流側へ広がる大きな広がり角(θ/2)×2を
有する円錐の形状となる。
For this reason, the inner surface of the expanding pipe 58 has a conical shape having a large diverging angle (θ / 2) × 2 which spreads from the upstream side to the downstream side.

【0005】一般にこのような広がり管58内の蒸気の
流れは、流量保存則とベルヌーイの定理に従う。すなわ
ち、下流側に行くほど管径が大きくなるので流速が低下
するとともに、その静圧が上昇する。また、管壁の近く
の蒸気流は管長全長に沿って管壁との抵抗があるため
に、その流速が低下する。
[0005] Generally, the flow of steam in such a spreading pipe 58 follows the law of conservation of flow rate and Bernoulli's theorem. In other words, the pipe diameter increases toward the downstream side, so that the flow velocity decreases and the static pressure increases. In addition, the flow velocity of the steam flow near the pipe wall decreases because of the resistance to the pipe wall along the entire length of the pipe.

【0006】ところで、流体が流れる管の内面形状につ
いては、その管軸方向の流速をw、管軸方向の位置座標
をx、cを定数とする場合、d(w2 )/dx=cの式
を満たすラッパ状の形状にすると、流れの剥離が起こり
にくく、圧力損失が非常に小さくなることが実験的に確
かめられている(板谷松樹著、“水力学“、141頁、
朝倉書店)。
By the way, regarding the inner surface shape of the pipe through which the fluid flows, if the flow velocity in the pipe axis direction is w, the position coordinates in the pipe axis direction are x, and c are constants, d (w 2 ) / dx = c It has been experimentally confirmed that a trumpet-like shape that satisfies the formula makes it difficult for the flow to separate and the pressure loss becomes extremely small (Matsuki Itaya, “Hydraulics”, p. 141,
Asakura Shoten).

【0007】[0007]

【発明が解決しようとする課題】上述のように、従来の
出口側配管装置56における広がり管58の内面形状は
円錐の形状となっており、このような円錐形状の広がり
管58は、限られた原子炉格納容器50のスペースが限
られているために、大きな広がり角を有している。この
結果、蒸気流の静圧は、下流に行く程急激に上昇する。
一方、管壁の近くの蒸気流は管壁から大きな抵抗を受け
る。このために、管壁の近くの蒸気流は、前述の急激な
圧力の上昇に追従できなくなる。そして、図7に矢印6
2で示すように管壁近くの蒸気流の流れに逆流が生じた
り、符号63で示すような管壁の位置で剥離を生じたり
する。この結果として、以下のような問題が生じてい
る。
As described above, the inner surface of the expanding pipe 58 in the conventional outlet side piping device 56 has a conical shape, and such a conical expanding pipe 58 is limited. Due to the limited space of the reactor containment vessel 50, it has a large divergence angle. As a result, the static pressure of the steam flow increases sharply as it goes downstream.
On the other hand, the steam flow near the pipe wall receives a large resistance from the pipe wall. For this reason, the steam flow near the pipe wall cannot follow the above-mentioned rapid pressure rise. And arrow 6 in FIG.
As shown by 2, a reverse flow occurs in the flow of the steam flow near the tube wall, or separation occurs at the position of the tube wall as indicated by reference numeral 63. As a result, the following problem occurs.

【0008】すなわち、蒸気流の管壁側の領域でこのよ
うに剥離が生じ渦が形成されると、蒸気の流動パターン
が不安定となり、その結果、圧力変動や圧力損失が増加
するという問題がある。
That is, if the separation occurs and the vortex is formed in the region of the steam flow on the tube wall side, the flow pattern of the steam becomes unstable, and as a result, the pressure fluctuation and the pressure loss increase. is there.

【0009】また、このような剥離に起因して圧力変動
が生じると、配管が振動したり、主蒸気ライン52に設
置された機器が流体振動によって損傷されたり、ベンチ
ュリ管57の流量計測の計測精度が悪化したりする恐れ
もある。
Further, when pressure fluctuation occurs due to such peeling, the piping vibrates, equipment installed in the main steam line 52 is damaged by fluid vibration, or the flow rate of the venturi pipe 57 is measured. Accuracy may be reduced.

【0010】さらに、流速の大きい中央部の蒸気流64
は、下流側の曲り管65、66(図6参照)等でエロー
ジョンを起こす恐れもある。
Furthermore, the central steam flow 64 having a high flow velocity
May cause erosion at the downstream curved pipes 65 and 66 (see FIG. 6).

【0011】そこで本発明の目的は、上記従来技術が有
する問題を解消し、限られた原子炉格納容器のスペース
内で、ベンチュリ管と大口径の太径管とを接続する広が
り管の内面形状を剥離の生じにくい所定の形状にするこ
とにより、安定性の高い原子炉圧力容器の出口側配管装
置を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art and to improve the inner shape of an expanding pipe connecting a venturi pipe and a large-diameter large-diameter pipe in a limited space of a reactor containment vessel. An object of the present invention is to provide a highly stable outlet-side piping device for a reactor pressure vessel by forming a predetermined shape that is less likely to cause peeling.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、沸騰型原子炉の原子炉圧力容器の出口側
に設けられたベンチュリ管と、このベンチュリ管の下流
側にあり前記原子炉圧力容器の蒸気をタービンに送る前
記ベンチュリ管の出口側径より大きい入口側径を有する
太径管と、前記ベンチュリ管と前記太径管とを接続する
広がり管とを備えた原子炉圧力容器の出口側配管装置に
おいて、前記広がり管は、その入口側径より大きいその
出口側径を有し、その管軸方向の流速をw、管軸方向の
位置座標をx、cを定数とする場合、d(w2)/dx
=cの式を満たす内面形状を有することを特徴とする。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a venturi tube provided at an outlet side of a reactor pressure vessel of a boiling reactor, and a venturi tube provided downstream of the venturi tube. A reactor pressure comprising: a large-diameter pipe having an inlet-side diameter larger than an outlet-side diameter of the Venturi pipe for sending steam from a reactor pressure vessel to a turbine; and a widening pipe connecting the Venturi pipe and the large-diameter pipe. In the outlet-side piping device for a container, the expanding pipe has an outlet-side diameter larger than the inlet-side diameter, and the flow rate in the pipe axis direction is w, the position coordinates in the pipe axis direction is x, and c is a constant. In the case, d (w2) / dx
= C.

【0013】また、前記広がり管の上流側端の広がり角
は、前記ベンチュリ管の下流側端の広がり角と略等しい
ことを特徴とする。
The divergent angle of the upstream end of the divergent pipe is substantially equal to the divergent angle of the downstream end of the venturi pipe.

【0014】[0014]

【作用】本発明によれば、広がり管は、管軸方向の流速
をw、管軸方向の位置座標をx、cを定数とする場合、
d(w2 )/dx=cの式を満たす内面形状を有するの
で、広がり管の広がり角の増加係数は、円錐形状の場合
のように一定ではなく、剥離が生じにくいように増減す
る。そして、蒸気流の圧力は、下流に行くにつれて極端
に急激な増加をしない。このため、管壁の近くの蒸気流
は、管壁から抵抗を受けても、管径の増加に伴う圧力増
加に追従することができる。そして、広がり管の管壁に
剥離が生じにくく、また、広がり管の蒸気流に逆流や渦
が発生したりすることがない。
According to the present invention, when the flow rate in the pipe axis direction is w, the position coordinates in the pipe axis direction are x and c are constants,
Since it has an inner surface shape that satisfies the formula of d (w 2 ) / dx = c, the increase coefficient of the divergence angle of the divergent pipe is not constant as in the case of the conical shape, but is increased or decreased so that peeling does not easily occur. And the pressure of the steam flow does not increase extremely sharply as it goes downstream. For this reason, the steam flow near the pipe wall can follow the pressure increase accompanying the increase in the pipe diameter, even if it receives resistance from the pipe wall. In addition, separation is less likely to occur on the pipe wall of the expanding pipe, and no backflow or vortex is generated in the vapor flow of the expanding pipe.

【0015】[0015]

【実施例】以下本発明による原子炉圧力容器の出口側配
管装置の実施例を図1乃至図5を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the piping system on the outlet side of a reactor pressure vessel according to the present invention will be described below with reference to FIGS.

【0016】図1は、本発明の一実施例による原子炉圧
力容器の出口側配管装置を示す。図1において、出口側
配管装置1は、沸騰型原子炉の原子炉圧力容器2の出口
側に直接取り付けられたノズル型のベンチュリ管3と、
このベンチュリ管3の下流側にあり原子炉圧力容器2の
蒸気をタービン53の送る太径管5と、ベンチュリ管3
と太径管5とを接続する広がり管4とを備えている。
FIG. 1 shows an outlet piping system of a reactor pressure vessel according to one embodiment of the present invention. In FIG. 1, an outlet-side piping device 1 includes a nozzle-type venturi tube 3 directly attached to an outlet side of a reactor pressure vessel 2 of a boiling reactor,
A large-diameter pipe 5 downstream of the Venturi pipe 3 for sending steam from the reactor pressure vessel 2 to the turbine 53;
And a widening pipe 4 connecting the large diameter pipe 5 with the expanding pipe 4.

【0017】ベンチュリ管3の口径は、圧力容器2の出
口端から下流に向かって減少して所定位置で最小にな
り、さらに下流側へ向かって口径が増大し下流側端部で
最大となる。ベンチュリ管3の下流側端部は広がり管4
に接続されている。
The diameter of the venturi tube 3 decreases downstream from the outlet end of the pressure vessel 2 and becomes minimum at a predetermined position, further increases toward the downstream side, and becomes maximum at the downstream end. The downstream end of the Venturi tube 3 is
It is connected to the.

【0018】ベンチュリ管3と広がり管4との接続部に
おいては、蒸気流の乱れが生じないようにする必要があ
る。このため、広がり管4の広がり角(θ/2)×2
は、ベンチュリ管3の下流側端の広がり角(δ/2)×
2に略等しくしてある。
At the connection between the venturi tube 3 and the widening tube 4, it is necessary to prevent the turbulence of the steam flow from occurring. For this reason, the spread angle of the spread pipe 4 (θ / 2) × 2
Is the spread angle (δ / 2) of the downstream end of the Venturi tube 3 ×
It is almost equal to 2.

【0019】広がり管4の口径の大きさは、広がり管4
の上流側端においてベンチュリ管3の下流側端の口径と
等しく、また、広がり管4の上流側端において太径管5
の口径と等しくなっている。
The size of the diameter of the expanding pipe 4 is
The diameter of the upstream end of the Venturi tube 3 is equal to the diameter of the downstream end of the Venturi tube 3.
Caliber is equal to.

【0020】このような広がり管4の形状は、蒸気流に
剥離を生じさせないために、その管軸方向の流速をw、
管軸方向の位置座標をx、cを定数とするとき、 d(w2 )/dx=c (1) の式をほぼ満たすようになっている。式(1)を満たす
形状は、ラッパ状にひろがる形状である。この広がり管
4の広がり角の増加係数は一定ではなく、下流に行くに
したがって漸増する。そのために、管壁の近くの蒸気流
は、管壁から抵抗を受けても、管径の増加に伴う圧力増
加に追従することができる。そのため、広がり管4の管
壁に剥離が生じにくく、また、広がり管の蒸気流に逆流
や渦が発生しにくくなる。なお、一般に広がりを有する
管の内面形状が式(1)を満たすと、管壁の近くの蒸気
流は、管径増加に伴う圧力増加に追従し、流れの剥離が
起こりにくいことは実験的に確かめられている(板谷松
樹著、“水力学“、141頁、朝倉書店)。
The shape of the expanding pipe 4 is such that the flow velocity in the axial direction of the pipe is w, in order to prevent separation of the steam flow.
When the position coordinates in the tube axis direction are x and c are constants, the equation d (w 2 ) / dx = c (1) is almost satisfied. The shape that satisfies the expression (1) is a shape that spreads like a trumpet. The increase coefficient of the divergent angle of the divergent pipe 4 is not constant, but gradually increases toward the downstream. Therefore, the steam flow near the pipe wall can follow the pressure increase with the increase in the pipe diameter, even if the steam flow receives the resistance from the pipe wall. For this reason, separation is unlikely to occur on the pipe wall of the expanding pipe 4, and a backflow or a vortex is less likely to occur in the steam flow of the expanding pipe. In general, when the inner surface shape of a diverging tube satisfies the formula (1), it is experimentally confirmed that the steam flow near the tube wall follows the pressure increase with the increase in the tube diameter, and that the flow is hardly separated. (Matsuki Itaya, "Hydraulics", p. 141, Asakura Shoten).

【0021】次に式(1)を満たす広がり管3の内面形
状を具体的に求める。
Next, the inner surface shape of the expanding pipe 3 that satisfies the equation (1) is specifically determined.

【0022】ベンチュリ管3が広がり始める地点の位置
座標をx、口径半径をr、またベンチュリ管3と広
がり管4とが接続される地点の位置座標をx、口径半
径をr、さらに広がり管4と太径管5とが接続される
地点の位置座標をx、口径半径をrとする。管軸方
向の流速wと口径半径rとは、流体が管軸方向に等速と
仮定すると流量保存則によりw・r=流量一定であ
る。上記境界条件の下で式(1)の解を求めると、広が
り管3の内面形状は、 r=r・((x−x)/(((r/r−1)・(x−x )+(x−x)))0.25 (2) の式で表される。
The position coordinate of the point where the venturi tube 3 starts to spread is x 0 , the radius of the aperture is r 0 , the position coordinate of the point where the venturi tube 3 and the expanding tube 4 are connected is x 1 , the radius of the radius is r 1 , Further, the position coordinates of the point where the expanding pipe 4 and the large diameter pipe 5 are connected are x 2 , and the diameter radius is r 2 . The velocity w and the diameter radius r of the tube axis direction, the fluid is a w · r 2 = flow rate constant by a constant velocity assuming the flow conservation law in the axial direction of the tube. When solving equation (1) under the boundary conditions, the inner surface shape of the spread tube 3, r = r 1 · (( x 2 -x 1) / (((r 1 / r 2) 4 -1 ) · (X−x 1 ) + (x 2 −x 1 ))) 0.25 (2)

【0023】また、x=xにおいて、ベンチュリ管3
の下流側端の広がり角δと広がり管4の広がり角θとが
等しいためには、 dr/dx=tan(θ/2) (x=x) (3) を満たさなければならない。
[0023] In addition, in x = x 1, the venturi tube 3
In order for the divergence angle δ at the downstream end of the divergence and the divergence angle θ of the divergent pipe 4 to be equal, dr / dx = tan (θ / 2) (x = x 1 ) (3) must be satisfied.

【0024】式(3)より、 −r/4・((r/r−1)=(x−x)・tan(θ/ 2) (4) のようになる。The equation (3) becomes as -r 1/4 · ((r 1 / r 2) 4 -1) = (x 2 -x 1) · tan (θ / 2) (4).

【0025】また、図1から明らかなように、 r=r+(x−x)・tan(θ/2) (5) である。Further, as is apparent from FIG. 1, r 1 = r 0 + (x 1 −x 0 ) · tan (θ / 2) (5).

【0026】ベンチュリ管2が広がり始める地点の位置
座標x、口径r、および、太径管5の上流側端部の
座標x,口径rを既知として、以下の手順でノズル
型のベンチュリ管3の広がり部分の長さ、および、それ
に続く広がり管4の形状を決定する。
Assuming that the position coordinates x 0 and the diameter r 0 of the point where the venturi tube 2 starts to spread and the coordinates x 2 and the diameter r 2 of the upstream end of the large-diameter tube 5 are known, the following procedure is used for the nozzle type. The length of the expanding portion of the venturi tube 3 and the shape of the subsequent expanding tube 4 are determined.

【0027】まず、式(4)および(5)よりx、r
を求め、求めたx、rを式(2)に代入して広が
り管4の内面形状を決定する。
First, from equations (4) and (5), x 1 , r
1 is determined, and the determined x 1 and r 1 are substituted into equation (2) to determine the inner surface shape of the expanding pipe 4.

【0028】図4において、このようにして具体的に計
算して求めた原子炉圧力容器の出口側配管装置の断面を
示す。r=261.8mm、r=319.9mm、
θ/2=2.5°、x−x=1388.1mm、x
−x=589.9mmとなる。また広がり管3の内
面形状は、わかりやすくするためにその上流側端部の座
標xを座標原点にとりなおして表示すると、 r=r・(589.9/(((r/r−1)×1388.1+ 589.9)))0.25 (6) となる。なお、太径管の下流側の曲率直径は1422m
mである。
FIG. 4 shows a cross section of the outlet-side piping device of the reactor pressure vessel obtained by specifically calculating in this manner. r 1 = 261.8 mm, r 2 = 319.9 mm,
θ / 2 = 2.5 °, x 1 −x 0 = 1388.1 mm, x
A 2 -x 1 = 589.9mm. The inner shape of the spread tube 3, when the coordinates x 1 of the upstream end displays retaken the coordinate origin for clarity, r = r 1 · (589.9 / (((r 1 / r 2 ) 4 -1) × 1388.1 + 589.9 ))) 0.25 (6). In addition, the curvature diameter of the downstream side of a large diameter pipe is 1422m.
m.

【0029】図5に、図4における出口側配管装置1を
通過する蒸気の各位置における速度の分布を示す。位置
Pにおける最大速度は、53m/secである。図5に
おいて蒸気流は、原子炉圧力容器2の内部の出口近傍に
おいて球心的な等速度面を形成してベンチュリ管3に入
る。図5から明らかなように、ベンチュリ管3、広がり
管4および太径管5において、極めて良好な等速度面が
形成されていることが認められる。
FIG. 5 shows the distribution of the velocity of the steam passing through the outlet-side piping device 1 in FIG. 4 at each position. The maximum speed at the position P is 53 m / sec. In FIG. 5, the steam flow forms a spherical constant velocity surface near the outlet inside the reactor pressure vessel 2 and enters the venturi tube 3. As is apparent from FIG. 5, it is recognized that the Venturi tube 3, the expanding tube 4, and the large-diameter tube 5 have extremely good uniform velocity surfaces.

【0030】なお、広がり管4の内面形状は厳密に式
(6)を満たす必要があるわけではない。式(6)を満
たす内面形状を基準形状とし、この基準形状を図2にお
いて点線によっ表示する。実験によれば、広がり管4の
広がり角θのばらつき量Δ(θ/2)が±3.5°より
小さい場合は基準形状の場合と同様の効果を奏すること
が解っている。したがって、本実施例の広がり管3の形
状は、図2において基準形状を示す点線を挟む実線の範
囲にあるものであっても構わない。
Note that the inner surface shape of the expanding pipe 4 does not need to strictly satisfy the equation (6). The inner shape that satisfies Expression (6) is set as a reference shape, and this reference shape is indicated by a dotted line in FIG. According to the experiment, when the variation Δ (θ / 2) of the spread angle θ of the spread pipe 4 is smaller than ± 3.5 °, the same effect as in the case of the reference shape is obtained. Therefore, the shape of the spreading pipe 3 of the present embodiment may be in the range of the solid line sandwiching the dotted line indicating the reference shape in FIG.

【0031】以上の記載から明らかなように本実施例に
よれば、ベンチュリ管3と大口径の太径管5とを接続す
る広がり管4の内面形状を式(1)を満たすようにした
ので、蒸気流に剥離が生じにくくすることができる。そ
の結果、剥離によって引き起こされる圧力変動が減少す
るので、弁体等の振動を低減させることができる。ま
た、太径管5における流速の均一化を図ることができ、
下流側の曲り管におけるエロージョンを防止することが
できる。さらに、流速が均一であるので、ベンチュリ管
3の下流側の配管変更を行っても、ベンチュリ管3の流
量較正を再度行う必要がない。
As is apparent from the above description, according to the present embodiment, the inner surface shape of the expanding pipe 4 connecting the Venturi pipe 3 and the large-diameter large-diameter pipe 5 satisfies the formula (1). In addition, it is possible to make it difficult for the vapor flow to be separated. As a result, the pressure fluctuation caused by the peeling is reduced, so that the vibration of the valve body and the like can be reduced. Further, the flow velocity in the large-diameter pipe 5 can be made uniform,
Erosion in the downstream bent pipe can be prevented. Furthermore, since the flow velocity is uniform, it is not necessary to recalibrate the flow rate of the venturi tube 3 even if the piping on the downstream side of the venturi tube 3 is changed.

【0032】次に、図3に本発明の他の実施例を示す。
本実施例においては、太径管5の途中に円錐型のベンチ
ュリ管6が取り付けられ、このベンチュリ管6に本発明
の広がり管4が接続されている。この場合も上述の実施
例と同様な効果を得ることができる。
Next, FIG. 3 shows another embodiment of the present invention.
In the present embodiment, a conical venturi tube 6 is mounted in the middle of the large-diameter tube 5, and the expanding tube 4 of the present invention is connected to the venturi tube 6. In this case, the same effect as in the above-described embodiment can be obtained.

【0033】[0033]

【発明の効果】以上の説明から明らかなように本発明に
よれば、ベンチュリ管と太径管とを接続する広がり管の
内面形状を剥離の生じにくい所定の形状にしたので、管
壁近くの領域で渦が形成されにくい。そのため、蒸気流
の流動パターンが安定して、圧力変動や圧力損失が減少
する。また、太径管において流速の均一化を図れるの
で、エロージョンを防止することができる。さらに、剥
離が生じないので圧力変動が生じず、配管や機器が振動
したり損傷されたりすることがない。また、ベンチュリ
管の流量計測の計測精度を良好に保つことができる。そ
して、安定性の高い原子炉圧力容器の出口側配管装置を
提供することができる。
As is apparent from the above description, according to the present invention, the inner surface of the expanding pipe connecting the Venturi pipe and the large-diameter pipe has a predetermined shape that is less likely to peel off. Vortices are not easily formed in the region. Therefore, the flow pattern of the steam flow is stabilized, and pressure fluctuation and pressure loss are reduced. In addition, since the flow velocity can be made uniform in the large-diameter pipe, erosion can be prevented. Furthermore, since there is no separation, there is no pressure fluctuation, and there is no vibration or damage to piping or equipment. In addition, the measurement accuracy of the flow measurement of the Venturi tube can be kept good. Further, it is possible to provide a highly stable outlet-side piping device of the reactor pressure vessel.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による原子炉圧力容器の出口側配管装置
の内面形状を示した説明図。
FIG. 1 is an explanatory diagram showing an inner surface shape of an outlet-side piping device of a reactor pressure vessel according to the present invention.

【図2】同原子炉圧力容器の出口側配管装置の広がり管
の基準形状に対して、ほぼ同一の形状と見なされる範囲
を示した説明図。
FIG. 2 is an explanatory view showing a range considered to be substantially the same as the reference shape of the expanding pipe of the outlet-side piping device of the reactor pressure vessel.

【図3】同原子炉圧力容器の出口側配管装置の他の実施
例を示す説明図。
FIG. 3 is an explanatory view showing another embodiment of the outlet-side piping device of the reactor pressure vessel.

【図4】図1に対応する実施例を示す縦断面図。FIG. 4 is a longitudinal sectional view showing an embodiment corresponding to FIG. 1;

【図5】図4の示す原子炉圧力容器の出口側配管装置の
蒸気流の速度分布を示す説明図。
FIG. 5 is an explanatory view showing a velocity distribution of a steam flow in an outlet-side piping device of the reactor pressure vessel shown in FIG. 4;

【図6】沸騰型原子炉装置を示す概略図。FIG. 6 is a schematic view showing a boiling reactor apparatus.

【図7】従来の原子炉圧力容器の出口側配管装置を示す
説明図。
FIG. 7 is an explanatory view showing a conventional piping device on the outlet side of a reactor pressure vessel.

【符号の説明】[Explanation of symbols]

1 原子炉圧力容器の出口側配管装置 2 原子炉圧力容器 3 ベンチュリ管 4 広がり管 5 太径管 6 ベンチュリ管 DESCRIPTION OF SYMBOLS 1 Outlet piping device of reactor pressure vessel 2 Reactor pressure vessel 3 Venturi pipe 4 Spreading pipe 5 Large diameter pipe 6 Venturi pipe

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】沸騰型原子炉の原子炉圧力容器の出口側に
設けられたベンチュリ管と、このベンチュリ管の下流側
にあり前記原子炉圧力容器の蒸気をタービンに送る前記
ベンチュリ管の出口側径より大きい入口側径を有する
径管と、前記ベンチュリ管と前記太径管とを接続する広
がり管とを備えた原子炉圧力容器の出口側配管装置にお
いて、前記広がり管は、その入口側径より大きいその出
口側径を有し、その管軸方向の流速をw、管軸方向の位
置座標をx、cを定数とする場合、d(w2)/dx=
cの式を満たす内面形状を有することを特徴とする原子
炉圧力容器の出口側配管装置。
1. A venturi tube provided on the outlet side of the reactor pressure vessel of the boiling reactor, the sending the vapor of the reactor pressure vessel located downstream of the venturi tube to the turbine
An outlet-side piping device for a reactor pressure vessel, comprising: a large-diameter pipe having an inlet-side diameter larger than an outlet-side diameter of a Venturi pipe; and a divergent pipe connecting the Venturi pipe and the large-diameter pipe. Is larger than its inlet side diameter.
In the case of having a mouth side diameter, the flow velocity in the pipe axis direction is w, the position coordinate in the pipe axis direction is x, and c is a constant, d (w2) / dx =
An outlet-side piping device for a reactor pressure vessel having an inner surface shape that satisfies the expression c.
【請求項2】前記広がり管の上流側端の広がり角は、前
記ベンチュリ管の下流側端の広がり角と略等しいことを
特徴とする請求項1記載の原子炉圧力容器の出口側配管
装置。
2. A piping apparatus for an outlet of a reactor pressure vessel according to claim 1, wherein the divergent angle of the upstream end of the divergent pipe is substantially equal to the divergent angle of the downstream end of the venturi pipe.
JP3097279A 1991-04-26 1991-04-26 Outlet piping for reactor pressure vessel Expired - Lifetime JP2740053B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3097279A JP2740053B2 (en) 1991-04-26 1991-04-26 Outlet piping for reactor pressure vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3097279A JP2740053B2 (en) 1991-04-26 1991-04-26 Outlet piping for reactor pressure vessel

Publications (2)

Publication Number Publication Date
JPH04328493A JPH04328493A (en) 1992-11-17
JP2740053B2 true JP2740053B2 (en) 1998-04-15

Family

ID=14188081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3097279A Expired - Lifetime JP2740053B2 (en) 1991-04-26 1991-04-26 Outlet piping for reactor pressure vessel

Country Status (1)

Country Link
JP (1) JP2740053B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014133658A1 (en) * 2013-02-27 2014-09-04 Westinghouse Electric Company Llc Pressurized water reactor depressurization system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63181898U (en) * 1987-05-13 1988-11-24
JPH0776132B2 (en) * 1988-06-27 1995-08-16 松下電工株式会社 Degreasing method for ceramic molded products

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014133658A1 (en) * 2013-02-27 2014-09-04 Westinghouse Electric Company Llc Pressurized water reactor depressurization system

Also Published As

Publication number Publication date
JPH04328493A (en) 1992-11-17

Similar Documents

Publication Publication Date Title
US6463810B1 (en) Method and device for bi-directional low-velocity flow measurement
KR100291725B1 (en) Method and apparatus for measuring fluid flow characteristics
KR20040097292A (en) Averaging orifice primary flow element
US11326915B2 (en) Flow measurement device for pipes when fluid flow is discharged to atmosphere
JPH03194421A (en) Venturi apparatus
US4644800A (en) Annular venturi flow measuring device
JP2009524058A (en) A reduced-bore vortex flowmeter with a stepped inlet.
CA1118232A (en) Flow rate measuring device
JP2740053B2 (en) Outlet piping for reactor pressure vessel
JP2001124280A (en) Orifice plate
Iwamoto et al. Unsteady flow characteristics in a 90 degree elbow affected by developed, undeveloped and swirling inflow conditions
JP2000110676A (en) Fluid pipeline and air cleaner equipped with flow meter
JPS6328247B2 (en)
US5363705A (en) Vortex generator having a protrusion formed at an upstream surface
JP3122983B2 (en) Throttle flow meter
JPS642204B2 (en)
JPH09210120A (en) Vibration control structure of cylindrical structure
JP2000337935A (en) Straightening device
Hashemi et al. An investigation of the flow characteristics and of losses in radial nozzle cascades
JP3182718B2 (en) Temperature detector for differential pressure flow meter and its protection tube
JPH09280913A (en) Differential pressure flowmeter
CN218673764U (en) Ultrasonic gas flow metering device
RU2078277C1 (en) Pipe unit with branch
KR100552254B1 (en) Orifice Flowmeter with Low Losses
Niizeki et al. A studyof Radially-Curved, Mixed-Flow Vaneless Diffusers (Diffusers to Give Possibly small Static Pressure Gradient Normal to the Walls Over the Entire Flow Passage)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080123

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090123

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100123

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110123

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 14