JP2737980B2 - Method for forming infrared reflection / transmission prevention layer - Google Patents

Method for forming infrared reflection / transmission prevention layer

Info

Publication number
JP2737980B2
JP2737980B2 JP1032335A JP3233589A JP2737980B2 JP 2737980 B2 JP2737980 B2 JP 2737980B2 JP 1032335 A JP1032335 A JP 1032335A JP 3233589 A JP3233589 A JP 3233589A JP 2737980 B2 JP2737980 B2 JP 2737980B2
Authority
JP
Japan
Prior art keywords
opening
semiconductor substrate
substrate
cold shield
reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1032335A
Other languages
Japanese (ja)
Other versions
JPH02211664A (en
Inventor
修治 渡辺
元 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1032335A priority Critical patent/JP2737980B2/en
Publication of JPH02211664A publication Critical patent/JPH02211664A/en
Application granted granted Critical
Publication of JP2737980B2 publication Critical patent/JP2737980B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Description

【発明の詳細な説明】 〔概 要〕 半導体基板を用いて形成した赤外線検知素子用コール
ドシールドに反射透過防止層を形成する方法に関し、 半導体基板を用いて赤外線の入射の視野角を規制する
開口部を設けたコールドシールドで、前記赤外線が入射
する側の基板表面と前記開口部側面に反射透過防止層が
略同一の厚さで均一にかつ容易に形成されるような赤外
線反射透過防止層の形成方法の提供を目的とし、 所定位置に所定のパターンで複数の貫通する開口部を
形成したコールドシールドとなる半導体基板の表面及び
この開口部の側面に不純物原子を高濃度で拡散後、この
半導体基板をエッチング液に浸漬し、この半導体基板の
表面及びこの開口部の側面を黒化処理する工程を含むよ
うに構成する。
DETAILED DESCRIPTION OF THE INVENTION [Summary] The present invention relates to a method of forming an anti-reflection / transmission layer on a cold shield for an infrared detecting element formed using a semiconductor substrate. In the cold shield provided with the portion, of the infrared reflection and transmission prevention layer such that the reflection and transmission prevention layer is formed uniformly and easily at substantially the same thickness on the substrate surface on the side where the infrared light is incident and on the side surface of the opening. In order to provide a forming method, a semiconductor substrate serving as a cold shield having a plurality of openings formed in a predetermined pattern in a predetermined position and a side surface of the opening is diffused with a high concentration of impurity atoms. The substrate is immersed in an etchant, and the surface of the semiconductor substrate and the side surface of the opening are blackened.

〔産業上の利用分野〕[Industrial applications]

本発明は半導体基板で形成した赤外線検知装置用コー
ルドシールドの反射透過防止層の形成方法に関する。
The present invention relates to a method for forming an anti-reflection / transmission layer of a cold shield for an infrared detection device formed of a semiconductor substrate.

赤外線検知装置に於いては、該検知素子に入射する背
景輻射光を規制し、該検知素子の視野角を規制するコー
ルドシールドが設置されている。
In the infrared detecting device, a cold shield for controlling background radiation incident on the detecting element and restricting a viewing angle of the detecting element is provided.

このようなコールドシールドに於いては、擬似信号を
発生させる迷光が無く、不要背景光により感度低下を招
かないことが要望されている。
In such a cold shield, there is a demand that there is no stray light that generates a pseudo signal and that the unnecessary background light does not lower the sensitivity.

〔従来の技術〕[Conventional technology]

従来、赤外線検知素子のコールドシールドとして、表
面に黒化処理した金属板を底部が開放の箱型形状に加工
し、該箱状部材の表面にスリット状の細長い開口部を設
け、この箱状部材の細長い開口部を、アレイ状に形成し
た赤外線検知素子上に対向するようにして接着剤等を用
いて検知素子を形成したステム上に固定して形成してい
る。
Conventionally, as a cold shield of an infrared detecting element, a metal plate blackened on the surface is processed into a box shape having an open bottom, and a slit-shaped elongated opening is provided on the surface of the box-shaped member. Is fixed to the stem on which the detecting element is formed using an adhesive or the like so as to face the infrared detecting element formed in an array.

然し、このような構造のコールドシールドでは、アレ
イ状の検知素子の各々に対応して開口部が形成されてお
らず、アレイ状の検知素子に対して一括して細長い開口
部が形成されているため、検知素子の解像度が悪くなる
問題がある。
However, in the cold shield having such a structure, an opening is not formed corresponding to each of the array-shaped sensing elements, and an elongated opening is formed collectively for the array-shaped sensing elements. Therefore, there is a problem that the resolution of the sensing element is deteriorated.

そのため、本出願人は以前に特願昭63−263389号公報
に於いて、シリコン(Si)基板に異方性エッチングによ
り所定の間隔を隔てた開口部を有するコールドシールド
を形成し、このコールドシールドの開口部をアレイ状に
形成した赤外線検知素子の各々に対応させて、該検知素
子を形成した基板にバンプ接続させて、アレイ状の各検
知素子に対応した開口部を有するコールドシールドを有
する赤外線検知装置を提案している。
For this reason, the present applicant has previously disclosed in Japanese Patent Application No. 63-263389 a cold shield having openings at predetermined intervals in a silicon (Si) substrate by anisotropic etching. Infrared light having a cold shield having openings corresponding to each of the array-shaped detection elements, corresponding to each of the infrared detection elements formed in the form of an array, and being bump-connected to the substrate on which the detection elements are formed. A detection device is proposed.

ところで、上記した構造のコールドシールドを形成す
る従来の方法は、第3図の斜視図に示すようにSi基板1
に前記赤外線検知素子に対応した箇所に所定のパターン
の開口部2を所定の間隔を隔てて異方性エッチングによ
り形成する。
By the way, the conventional method for forming the cold shield having the above-mentioned structure is based on the Si substrate 1 as shown in the perspective view of FIG.
Next, openings 2 having a predetermined pattern are formed at predetermined positions corresponding to the infrared detecting elements by anisotropic etching at predetermined intervals.

次いで第4図に示すようにこのSi基板1の矢印Aに示
すように赤外線が入射する側の表面3と、前記した開口
部2の側面6にCVD法によってシリコン酸化膜(SiO2
とシリコン窒化膜(Si3N4)を所定の厚さで積層形成し
た反射透過防止層4を形成している。そして前記したシ
リコン酸化膜とシリコン窒化膜の両者の被膜の屈折率が
異なるのを利用して開口部2以外の箇所よりこのコール
ドシールド5に入射された赤外線をこの二層構造の反射
透過防止層4で吸収して反射しないようにし、この反射
光が検知素子に導入されないようにして検知素子の高感
度化を図っている。
Next, as shown in FIG. 4, a silicon oxide film (SiO 2 ) is formed on the surface 3 of the Si substrate 1 on the side where infrared rays are incident as shown by an arrow A and the side surface 6 of the opening 2 by the CVD method.
And a silicon nitride film (Si 3 N 4 ) in a predetermined thickness to form a reflection / transmission preventing layer 4. By utilizing the difference in the refractive index between the silicon oxide film and the silicon nitride film, the infrared light incident on the cold shield 5 from a location other than the opening 2 is used to prevent the reflection and transmission of the two-layer structure. In step 4, the light is not absorbed and reflected, and the reflected light is not introduced into the detection element, thereby increasing the sensitivity of the detection element.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

然し、上記したようにCVD法で反射透過防止層を形成
すると、コールドシールド形成用のSi基板1の表面3に
は反射透過防止層4が堆積されて形成されやすいため
に、所望の厚さで厚く形成されるが、開口部2の側面6
では上記したCVD法による反射透過防止層が堆積され難
いので所定の厚さに形成されない問題がある。
However, when the anti-reflection / transmission layer is formed by the CVD method as described above, the anti-reflection / transmission layer 4 is easily deposited and formed on the surface 3 of the Si substrate 1 for forming the cold shield. Although formed thickly, the side surface 6 of the opening 2
In this case, there is a problem that the antireflection / transmission preventing layer is not formed to a predetermined thickness because it is difficult to deposit the antireflection / transmission layer by the CVD method.

本発明は上記した問題点を解決し、半導体基板に所定
のパターンで開口部を形成したコールドシールド形成用
の半導体基板の前記開口部の側面に所定の厚さの反射透
過防止層が形成されるようにした反射防止層の提供を目
的とする。
The present invention solves the above-described problems, and a reflection-transmission preventing layer having a predetermined thickness is formed on a side surface of the opening of a semiconductor substrate for forming a cold shield in which an opening is formed in a predetermined pattern in a semiconductor substrate. An object of the present invention is to provide an antireflection layer as described above.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の赤外線反射透過防止層の形成方法は、 所定位置に所定のパターンで複数の貫通する開口部を
形成したコールドシールドとなる半導体基板の表面及び
この開口部の側面に不純物原子を高濃度で拡散後、この
半導体基板をエッチング液に浸漬し、この半導体基板の
表面及びこの開口部の側面を黒化処理する工程を含むよ
うに構成する。
The method for forming an infrared reflection / transmission prevention layer according to the present invention comprises the steps of: forming a plurality of through-holes in a predetermined pattern at predetermined positions on a surface of a semiconductor substrate serving as a cold shield; After the diffusion, the semiconductor substrate is immersed in an etchant, and the surface of the semiconductor substrate and the side surface of the opening are blackened.

〔作 用〕(Operation)

本発明においては、所定位置に所定のパターンで複数
の貫通する開口部を形成したコールドシールドとなる半
導体基板の表面及びこの開口部の側面に不純物原子を高
濃度で拡散後、この半導体基板をエッチング液に浸漬
し、この半導体基板の表面及びこの開口部の側面を黒化
処理するから、半導体基板の表面及びこの開口部の側面
に不純物が均一な濃度で拡散浸透するので、半導体基板
の表面及びこの開口部の側面に均一な厚さの拡散層が形
成され、エッチング液に浸漬するとこの拡散層がエッチ
ングされて半導体基板の表面及びこの開口部の側面に均
一な厚さの反射透過防止層を形成することが可能とな
る。
In the present invention, after diffusing impurity atoms at a high concentration into a surface of a semiconductor substrate serving as a cold shield having a plurality of openings formed in a predetermined pattern at predetermined positions and a side surface of the opening, the semiconductor substrate is etched. Since the substrate is immersed in a liquid and the surface of the semiconductor substrate and the side surface of the opening are blackened, impurities diffuse and infiltrate into the surface of the semiconductor substrate and the side surface of the opening at a uniform concentration. A diffusion layer having a uniform thickness is formed on the side surface of the opening, and when immersed in an etching solution, the diffusion layer is etched to form a reflection-transmission preventing layer having a uniform thickness on the surface of the semiconductor substrate and the side surface of the opening. It can be formed.

この高濃度で均一に拡散された半導体基板の表面及び
この開口部の側面は黒色になって赤外線を吸収するよう
になるので、この開口部に入射した光がこの開口部で反
射し迷光が発生するのを防止することが可能となる。
The surface of the semiconductor substrate and the side surface of the opening, which are uniformly diffused at a high concentration, become black and absorb infrared rays, so that light incident on the opening is reflected by the opening to generate stray light. Can be prevented.

〔実 施 例〕〔Example〕

以下、図面を用いて本発明の一実施例につき詳細に説
明する。
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

まず第1図(a)に示すように、Si基板11の所定位置
に所定のパターンで所定の間隔を隔てて開口部12をSi酸
化膜(図示せず)をマスクとして用いて例えば異方性エ
ッチング液〔カセイカリ(KOH)液〕を用いてエッチン
グ形成する。
First, as shown in FIG. 1A, an opening 12 is formed at a predetermined position on a Si substrate 11 at a predetermined pattern at a predetermined interval with an Si oxide film (not shown) as a mask. Etching is performed using an etching solution [Kasakari (KOH) solution].

次いで第2図に示すように、該基板11を石英ボート13
に拡散源となる窒化硼素(BN)のウェハと14と前記開口
部12が対向するようにして共に立てて設置し、該ボート
13を反応管15内に導入し、上部の方向より窒素ガスを導
入して反応管を加熱してB原子をSi基板に1020/cm3の高
濃度に拡散する。
Next, as shown in FIG.
A boat of boron nitride (BN) serving as a diffusion source, and the opening 12 are set up together so that the opening and the opening 12 face each other.
13 is introduced into the reaction tube 15 and nitrogen gas is introduced from above to heat the reaction tube to diffuse B atoms into the Si substrate at a high concentration of 10 20 / cm 3 .

このような工程に於いて、加熱温度、加熱時間、拡散
ソースとなる窒化硼素(BN)のSi基板に対する設置数量
を適宜調節することで、B原子がSi基板に拡散浸透する
ので、基板の表面および開口部の側面に均一な厚さでP
型の高濃度拡散層が形成される。
In such a process, the B atom diffuses and penetrates into the Si substrate by appropriately adjusting the heating temperature, the heating time, and the amount of boron nitride (BN) to be a diffusion source with respect to the Si substrate. And a uniform thickness on the side of the opening
A high concentration diffusion layer of a mold is formed.

次いで第1図(b)に示すように、このようなP型の
不純物が高濃度拡散されたSi基板を弗化水素酸(HF)
と、硝酸(HNO3)の混合液で硝酸が全体の1重量%含有
されている混合液に浸漬することで前記したP型の高濃
度拡散領域を黒化処理して反射透過防止層16を形成す
る。
Next, as shown in FIG. 1 (b), the Si substrate in which such a P-type impurity is diffused at a high concentration is subjected to hydrofluoric acid (HF).
Then, the P-type high-concentration diffusion region is blackened by dipping in a mixed solution containing 1% by weight of nitric acid with a mixed solution of nitric acid (HNO 3 ) to form the reflection / transmission preventing layer 16. Form.

なお、この混合液はステインエッチング液と称し、
(文献;J.Appl.Phys.Vo127,May 1956 pp544〜553 by Fu
ller and Ditzenbergre)によって開示されており、半
導体基板のP型領域のみが選択的に黒化処理されるで、
半導体基板に形成したP−N接合の境界を検知するのに
使用されている。
This mixed solution is called a stain etching solution,
(Literature; J. Appl. Phys. Vo127, May 1956 pp544-553 by Fu
ller and Ditzenbergre), wherein only the P-type region of the semiconductor substrate is selectively blackened,
It is used to detect the boundary of a PN junction formed on a semiconductor substrate.

例えば、このような黒化処理された平板状のSi基板に
垂直方向より赤外線を入射し、その反射光量を測定した
ところ入射光量の30%が反射されていることが判明し
た。なお黒化処理をしていないSi基板の反射率は50%程
度であるのでこの処理を施すことでこの黒化処理されて
いるSi基板は赤外線を吸収することが判る。
For example, an infrared ray was incident on such a blackened flat Si substrate from a vertical direction, and the amount of reflected light was measured. As a result, it was found that 30% of the amount of incident light was reflected. Since the reflectance of the Si substrate not subjected to the blackening treatment is about 50%, it is understood that the Si substrate subjected to the blackening treatment absorbs infrared rays by performing this treatment.

以上述べたように本発明の方法によれば、コールドシ
ールドに用いる開口部を予め形成したSi基板の表面およ
び開口部の側面に均一な反射透過防止層が容易に形成さ
れるので、コールドシールドの形成に本発明の方法を用
いると簡単な方法で容易に赤外線の反射透過防止層が形
成できる。
As described above, according to the method of the present invention, a uniform antireflection / transmission layer is easily formed on the surface of the Si substrate and the side surface of the opening in which the opening used for the cold shield is formed in advance. When the method of the present invention is used for the formation, an antireflection / transmission layer for infrared rays can be easily formed by a simple method.

〔発明の効果〕〔The invention's effect〕

以上の説明から明らかなように本発明によれば、コー
ルドシールドを形成するSi基板の表面と開口部の側面に
略均一な厚さで反射透過防止層が容易に形成されるの
で、本発明の方法を用いると赤外線検知装置のコールド
シールドが容易に形成される効果がある。
As is apparent from the above description, according to the present invention, the reflection / transmission prevention layer is easily formed with a substantially uniform thickness on the surface of the Si substrate forming the cold shield and on the side surfaces of the opening. The use of the method has an effect that the cold shield of the infrared detecting device is easily formed.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)より第1図(b)迄は、本発明の方法の工
程を示す断面図、 第2図は本発明の方法に用いる装置の概略図、 第3図は従来の方法の工程を示す斜視図、 第4図は従来の方法の工程を示す断面図である。 図において、 11はSi基板、12は開口部、13は石英ボート、14はBNウェ
ハ、15は反応管、16は反射透過防止層を示す。
1 (a) to 1 (b) are cross-sectional views showing steps of the method of the present invention, FIG. 2 is a schematic view of an apparatus used in the method of the present invention, and FIG. FIG. 4 is a perspective view showing steps, and FIG. 4 is a cross-sectional view showing steps of a conventional method. In the figure, 11 is a Si substrate, 12 is an opening, 13 is a quartz boat, 14 is a BN wafer, 15 is a reaction tube, and 16 is a reflection / transmission preventing layer.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】所定位置に所定のパターンで複数の貫通す
る開口部を形成したコールドシールドとなる半導体基板
の表面及び該開口部の側面に不純物原子を高濃度で拡散
後、該半導体基板をエッチング液に浸漬し、該半導体基
板の表面及び前記開口部の側面を黒化処理する工程を含
むことを特徴とする赤外線反射透過防止層の形成方法。
An impurity is diffused at a high concentration into a surface of a semiconductor substrate serving as a cold shield having a plurality of openings formed in a predetermined pattern in a predetermined pattern and a side surface of the opening, and then the semiconductor substrate is etched. Immersing the semiconductor substrate in a liquid to blacken the surface of the semiconductor substrate and the side surface of the opening.
JP1032335A 1989-02-10 1989-02-10 Method for forming infrared reflection / transmission prevention layer Expired - Lifetime JP2737980B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1032335A JP2737980B2 (en) 1989-02-10 1989-02-10 Method for forming infrared reflection / transmission prevention layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1032335A JP2737980B2 (en) 1989-02-10 1989-02-10 Method for forming infrared reflection / transmission prevention layer

Publications (2)

Publication Number Publication Date
JPH02211664A JPH02211664A (en) 1990-08-22
JP2737980B2 true JP2737980B2 (en) 1998-04-08

Family

ID=12356084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1032335A Expired - Lifetime JP2737980B2 (en) 1989-02-10 1989-02-10 Method for forming infrared reflection / transmission prevention layer

Country Status (1)

Country Link
JP (1) JP2737980B2 (en)

Also Published As

Publication number Publication date
JPH02211664A (en) 1990-08-22

Similar Documents

Publication Publication Date Title
KR940022738A (en) Semiconductor wafer backside manufacturing method for uniform, repeatable rapid thermal processing
Srinivasan Autodoping effects in silicon epitaxy
JP2737980B2 (en) Method for forming infrared reflection / transmission prevention layer
Joyce et al. Impurity redistribution processes in epitaxial silicon layers
US3806382A (en) Vapor-solid impurity diffusion process
JPS62283678A (en) Manufacture of semiconductor device
Langer et al. Boron autodoping during silane epitaxy
JP2959352B2 (en) Method of manufacturing semiconductor wafer and analysis method by SIMS
US3671338A (en) Method of manufacturing a semiconductor photo-sensitive device
JPH01268120A (en) Temperature measurement for semiconductor device wafer
Skelly et al. Impurity Atom Transfer during Epitaxial Deposition of Silicon
JP3259386B2 (en) Assessment method of contamination
JPH0982768A (en) Evaluating method for semiconductor wafer
JPS6344760A (en) Solid state image sensor
Stock Spectral ageing pattern of carefully handled silicon photodiodes
JPH06177222A (en) Evaluating method for contamination quantity from susceptor
JPS5950217B2 (en) Method for evaluating the amount of impurity doping in semiconductors
JPH07272990A (en) Manufacture of semiconductor wafer
Schmidt et al. Phosphorus concentration profile and phase segregation in phosphosilicate glass on SiO2 films
JP2877201B2 (en) Method for manufacturing element substrate for liquid crystal display device
Hartiti et al. Low temperature formation of emitter and BSF by rapid thermal co-diffusion of P, Al or B
JP2626275B2 (en) Ion implantation monitoring method
JPS57118633A (en) Manufacture of semiconductor device
JP5815330B2 (en) Semiconductor substrate analysis method
JPS56133839A (en) Process for semiconductor substrate