JP2737725B2 - Robot control device and method - Google Patents

Robot control device and method

Info

Publication number
JP2737725B2
JP2737725B2 JP29657395A JP29657395A JP2737725B2 JP 2737725 B2 JP2737725 B2 JP 2737725B2 JP 29657395 A JP29657395 A JP 29657395A JP 29657395 A JP29657395 A JP 29657395A JP 2737725 B2 JP2737725 B2 JP 2737725B2
Authority
JP
Japan
Prior art keywords
acceleration
deceleration
deceleration processing
processing
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29657395A
Other languages
Japanese (ja)
Other versions
JPH08234824A (en
Inventor
幸一 舩矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP29657395A priority Critical patent/JP2737725B2/en
Publication of JPH08234824A publication Critical patent/JPH08234824A/en
Application granted granted Critical
Publication of JP2737725B2 publication Critical patent/JP2737725B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、組立・加工工程等
に利用される産業用ロボット、その他のロボットの制御
装置及び制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an industrial robot used in an assembling / machining process and the like, and to a control device and a control method for other robots.

【0002】[0002]

【従来の技術】ロボット制御装置では、ロボット先端が
通過すべき通過点を与えることによってロボットが追従
すべき軌道を指定し、ロボットがこれに追従するように
制御する。しかし、場合によっては、指定された通過点
においてロボットの関節の駆動能力を越えた加速度が要
求されることとなり、指定された軌道が追従不可能とな
ることがある。このため、指定された軌道を修正するこ
とによってロボットによる追従を可能とする、いわゆる
加減速処理が必要となる。従来より加減速処理法として
幾つかの手法が提案されてきた。
2. Description of the Related Art In a robot controller, a trajectory to be followed by a robot is specified by giving a passing point through which the robot tip passes, and the robot is controlled so as to follow the trajectory. However, in some cases, an acceleration exceeding the driving capability of the joint of the robot is required at the specified passing point, and the specified trajectory may not be able to follow. For this reason, so-called acceleration / deceleration processing that enables the robot to follow by correcting the designated trajectory is required. Conventionally, several methods have been proposed as acceleration / deceleration processing methods.

【0003】その一つとして、通過点において指定軌道
に忠実に追従させるよう加減速処理を実施する、軸間協
調加減速処理によるロボット制御装置が提案されている
(例えば青木、etc.,「入力の平滑化と複数軸間の
協調による高精度軌道制御」、第35回自動制御連合講
演会予稿集、1992年10月、pp353−35
6)。このようなロボット制御装置は、図2に示すよう
に、各軸目標速度発生部11で各軸に与えられた通過点
をもとに各軸の目標速度を算出した後、まず予め設定さ
れた最高許容加速度を越える軸を加速度検出部12で検
出する。そして、最高許容加速度を越える軸のうち最高
許容加速度に対する発生加速度の比が最も大きい軸、す
なわち最も追従の難しい軸が、最高許容加速度に納まる
ような減速率を軸間協調部13で算出する。算出された
減速率を全ての軸に適用し、各々の軸の目標速度変換部
14で目標速度を算出する。同装置により、図3のロボ
ット先端軌道が示すように、加減速処理後の軌道がi番
目の通過点p(i)を通過するときに発生する指定され
た軌道に対する追従誤差が最小限に抑えられる。なお、
p(i)は、通過点の座標を示すベクトルで、通常は座
標系を関節座標にとる。V(i)* は、加減速処理後の
速度である。
As one of them, there has been proposed a robot control apparatus based on inter-axis cooperative acceleration / deceleration processing which performs acceleration / deceleration processing so as to faithfully follow a designated trajectory at a passing point (for example, Aoki, etc. High-Precision Trajectory Control by Smoothing and Cooperation between Multiple Axes ", Proceedings of the 35th Automatic Control Joint Lecture Meeting, October 1992, pp. 353-35
6). In such a robot control device, as shown in FIG. 2, a target speed of each axis is calculated based on a passing point given to each axis by a target speed generator 11 for each axis, and then the target speed of each axis is set in advance. An axis exceeding the maximum allowable acceleration is detected by the acceleration detection unit 12. Then, the inter-axis coordinating unit 13 calculates a deceleration rate such that the axis having the largest ratio of the generated acceleration to the maximum allowable acceleration among the axes exceeding the maximum allowable acceleration, that is, the axis most difficult to follow falls within the maximum allowable acceleration. The calculated deceleration rate is applied to all the axes, and the target speed is calculated by the target speed converter 14 of each axis. With this apparatus, as shown by the robot tip trajectory in FIG. 3, the tracking error with respect to the designated trajectory that occurs when the trajectory after the acceleration / deceleration process passes through the i-th passing point p (i) is minimized. Can be In addition,
p (i) is a vector indicating the coordinates of the passing point, and usually uses a coordinate system as joint coordinates. V (i) * is the speed after the acceleration / deceleration processing.

【0004】また、通過点での追従誤差許容値を予め指
定した上で、軌道全体の通過に要する時間を最小とする
ような速度プロファイルを生成する、最小時間制御によ
るロボット制御装置も提案されている(例えば、J.
Y.S.Luh,M.W.Walker,“Minim
um−Time Along the Path fo
r a Mechanical Arm”,Proc.
16th Conf.Decision Cont
r.,Dec.1977,pp755−759)。図4
は同装置によるロボットの一つの関節の動きを示し、細
線からなる折れ線は、指定された動きを示し、太線は加
減速処理後の動きを示す。時刻t(i)に通過するよう
指定されたi番目の通過点p(i)を通過する際の追従
誤差d(i)が予め与えられた誤差許容値e(i)以内
に納まり、且つ通過点を通過するのに要する時間2s
(i)が最小となるように、加減速処理開始時刻t
(i)−s(i)及び終了時刻t(i)+s(i)を探
索する。ただし、iはサンプル時刻を、p(i)、d
(i)、e(i)は座標値を示すベクトルを表す。同装
置によると、ロボット先端は図5に示すような軌道を描
き、設定された誤差許容値の範囲で通過点を最短時間で
通過するロボット動作が実現される。
[0004] A robot control apparatus based on minimum time control has been proposed, which specifies a permissible tracking error value at a passing point in advance and generates a velocity profile that minimizes the time required for passing the entire trajectory. (For example, J.
Y. S. Luh, M .; W. Walker, "Minim
um-Time Along the Path fo
ra Mechanical Arm ", Proc.
16th Conf. Decision Cont
r. , Dec. 1977, pp 755-759). FIG.
Indicates the movement of one joint of the robot by the device, the broken line consisting of a thin line indicates the specified movement, and the thick line indicates the movement after the acceleration / deceleration processing. The following error d (i) when passing through the i-th passing point p (i) designated to pass at time t (i) falls within the error tolerance e (i) given in advance, and passes. Time 2s required to pass through a point
The acceleration / deceleration processing start time t is set so that (i) is minimized.
(I) Search for -s (i) and end time t (i) + s (i). Where i is the sample time, p (i), d
(I) and e (i) represent vectors indicating coordinate values. According to this device, the robot tip draws a trajectory as shown in FIG. 5, and a robot operation that passes through a passing point in the shortest time within the set error tolerance value is realized.

【0005】指定軌道上の最大許容加速度を越える点で
の加減速処理法として、図6に示すような、各軸の制御
装置に複数の線形フィルタを接続する各軸線形フィルタ
型のロボット制御装置も提案されている(例えば、特開
昭63−273107、あるいは、Sai−Kai C
heng,Chi−Keng Tsai,Ryuich
i Hara,“IntelliTrak−A Met
hod of Cartesian Path Con
trol”,Proceeding,24thInte
rnational Symposium on In
dustrial Robot,Nov.1993,T
okyo,Japan,pp415−420)。図6
(a)はロボットの軸1,2に指定された移動速度を示
し、この移動速度を指令する信号を図6(b)に示す線
形フィルタを通した後の信号で動作させた軸1,2の移
動速度を図6(c)に示す。図7(a)は図6(a)の
速度で軸1,2を移動させた時のロボット先端軌道を示
し、図7(b)は図6(b)と同じ線形フィルタ、図7
(c)はフィルタ通過後の信号によるロボット先端軌道
を示す。図6(a)と(c)のフィルタを通す前と通し
た後の各軸の移動速度を比べると分かるように、線形フ
ィルタによって各軸の加速度が許容値内に納まるように
調整される。この結果、得られるロボット先端軌道は、
例えば図7のようになる。同装置では、線形フィルタの
時間長を指定することによって通過点での誤差量を調整
可能とする。
As an acceleration / deceleration processing method at a point exceeding the maximum allowable acceleration on a designated trajectory, a robot controller of each axis linear filter type in which a plurality of linear filters are connected to a controller of each axis as shown in FIG. (For example, JP-A-63-273107 or Sai-Kai C).
Heng, Chi-Keng Tsai, Ryuich
i Hara, "IntelliTrak-A Met
hod of Cartesian Path Con
troll ”, Proceeding, 24thInte
national symposium on In
dust Robot, Nov. 1993, T
Okyo, Japan, pp415-420). FIG.
(A) shows the moving speed specified for the axes 1 and 2 of the robot, and the signals for commanding the moving speed are operated on the signals after passing through the linear filter shown in FIG. FIG. 6 (c) shows the moving speed. FIG. 7A shows the trajectory of the robot tip when the axes 1 and 2 are moved at the speed shown in FIG. 6A, and FIG. 7B shows the same linear filter as in FIG.
(C) shows the trajectory of the robot tip by the signal after passing through the filter. As can be seen by comparing the moving speeds of the respective axes before and after passing the filters of FIGS. 6A and 6C, the linear filters are adjusted so that the accelerations of the respective axes fall within the allowable values. As a result, the resulting robot tip trajectory is
For example, as shown in FIG. In the apparatus, the error amount at the passing point can be adjusted by designating the time length of the linear filter.

【0006】通過点で厳密な位置決めを必要としない場
合に、変位量の平滑化補正によるロボット制御装置も提
案されている(例えば特開昭63−10207号)。同
装置では、図8に示すように、指定された軌道である加
減速処理前の軌道のi−1番目の通過点p(i−1)か
らi番目の通過点p(i)までの変位量dp(i)と、
i番目の通過点p(i)からi+1番目の通過点p(i
+1)までの変位量dp(i+1)とを算出し、通過点
でのロボット先端軌道が滑らかになるようにある比率α
を求めて、 dp′(i)=dp(i)+α(dp(i+1)−dp
(i)) dp′(i+1)=dp(i)+(1−α)(dp(i
+1)−dp(i)) と補正し、新たにdp′(i)とdp′(i+1)をも
とにi番目の加減速処理後通過点P′(i)を、以下の
式により求める。
[0006] A robot controller using smoothing correction of a displacement amount when strict positioning is not required at a passing point has been proposed (for example, JP-A-63-10207). In the apparatus, as shown in FIG. 8, the displacement from the (i-1) th passing point p (i-1) to the ith passing point p (i) of the designated trajectory before the acceleration / deceleration processing is performed. The quantity dp (i),
From the ith passing point p (i) to the (i + 1) th passing point p (i
+1), and calculates a ratio α such that the robot tip trajectory at the passing point becomes smooth.
Dp ′ (i) = dp (i) + α (dp (i + 1) −dp
(I)) dp ′ (i + 1) = dp (i) + (1−α) (dp (i
+1) -dp (i)), and the i-th post-acceleration / deceleration-processed passing point P '(i) is newly obtained based on dp' (i) and dp '(i + 1) by the following equation. .

【0007】p′(i)=p(i−1)+dp′(i)
=p(i+1)−dp′(i+1) そして、加減速処理後通過点p′(i)を通過するよう
に加減速制御する。簡易なアルゴリズムにより加減速処
理が実現される。
P '(i) = p (i-1) + dp' (i)
= P (i + 1) -dp '(i + 1) Then, acceleration / deceleration control is performed so as to pass through the passing point p' (i) after the acceleration / deceleration processing. Acceleration / deceleration processing is realized by a simple algorithm.

【0008】[0008]

【発明が解決しようとする課題】従来のロボット制御装
置では、加減速処理に際して、通過点でのロボット先端
の移動スピードを数値として明確に指定できなかった。
このため、塗装やシーリングといったロボット先端を一
定の速さで移動させる必要のある工程に適用する際に、
塗布にムラが発生するという問題があった。また、通過
点での誤差許容値を連続的に調節することもできなかっ
た。
In the conventional robot control apparatus, the moving speed of the robot tip at the passing point cannot be clearly designated as a numerical value during the acceleration / deceleration processing.
For this reason, when applying to processes that need to move the robot tip at a constant speed, such as painting and sealing,
There is a problem that unevenness occurs in application. Further, it was not possible to continuously adjust the allowable error value at the passing point.

【0009】例えば、軸間協調制御型のロボット制御装
置によると、各通過点での追従誤差は最小となるもの
の、追従誤差を抑えるために通過点で減速しているた
め、ロボット先端のスピードを一定とするような制御が
出来ない。
For example, according to the robot control device of the inter-axis cooperative control type, the following error at each passing point is minimized, but the speed at the passing point is reduced because the speed is reduced at the passing point to suppress the following error. Control cannot be made constant.

【0010】最小時間制御型のロボット制御装置では、
通過点で指定された誤差許容値の範囲内で最短時間で通
過点を通過する。通過点を通過するときのロボット先端
のスピードを指定したい場合、各通過点で指定されるス
ピードから同通過点での誤差を算出し、間接的にスピー
ド指定することが可能であるが、実際はあらゆる通過点
で複雑な指定をしなければならないため実用的でない。
すなわち同制御装置は、ロボット先端をなるべく速く移
動させることを目的としているので、ロボット先端を一
定の速さで動かす用途には向かない。
In a robot controller of a minimum time control type,
It passes through the passing point in the shortest time within the range of the allowable error value specified by the passing point. If you want to specify the speed of the robot tip when passing through a passing point, it is possible to calculate the error at the passing point from the speed specified at each passing point and indirectly specify the speed, but in practice It is not practical because complicated specifications must be made at the passing point.
That is, since the control device aims at moving the robot tip as fast as possible, it is not suitable for applications in which the robot tip is moved at a constant speed.

【0011】各軸線形フィルタ型のロボット制御装置で
は、やはり間接的に通過点でのロボット手先の移動の速
さを調整することになり、ロボット先端を一定の速さで
動かすのが困難である。さらに、同装置では軌道追従誤
差をゼロとすることが不可能であるため、ロボット先端
の移動スピードに対する要求が厳しくないときに追従誤
差を小さく設定するといった使い方が出来ない。
In each axis linear filter type robot controller, the speed of movement of the robot hand at the passing point is also indirectly adjusted, and it is difficult to move the robot tip at a constant speed. . Further, since it is impossible to reduce the trajectory tracking error to zero with the same device, it is not possible to set the tracking error to a small value when the demand for the moving speed of the robot tip is not severe.

【0012】変位量の平滑化補正によるロボット制御装
置では、移動スピードの条件を指定することも、誤差の
条件を指定することも不可能である。
[0012] In a robot control apparatus that uses the smoothing correction of the displacement amount, it is impossible to specify the condition of the moving speed or the condition of the error.

【0013】本発明の目的は、従来技術のこのような欠
点を解消し、通過点での軌道追従誤差許容値と移動スピ
ードを、そのトレードオフを考慮した上で連続的且つ定
量的に設定することが可能なロボット制御装置を提供す
ることにある。
An object of the present invention is to solve such disadvantages of the prior art, and to continuously and quantitatively set an allowable value of a trajectory following error at a passing point and a moving speed in consideration of a trade-off thereof. It is an object of the present invention to provide a robot control device capable of performing the above.

【0014】[0014]

【課題を解決するための手段】本発明のロボット制御装
置は、ロボット先端軌道及びロボット先端速度である加
減速処理前軌道及び加減速処理前速度を生成する軌道生
成装置と、通過速度パラメータを用いて前記加減速処理
前軌道及び前記加減速処理前速度について加減速処理を
行ってロボットの各軸が最高許容速度を越える加速度を
発生しないロボット先端軌道及びロボット先端速度であ
る加減速処理後軌道及び加減速処理後速度を生成する加
減速処理装置と、前記加減速処理後軌道及び前記加減速
処理後速度に従ってロボットを駆動するサーボ処理装置
とを含み、前記加減速処理装置は、前記加減速処理前軌
道上のロボットのいずれかの軸の加速度が最高許容加速
度を越える加減速処理前通過点及びロボット先端がこの
加減速処理前通過点を通過する時刻である加減速処理前
通過点通過時刻を算定する通過点算定手段と、前記加減
速処理前通過点通過時刻の前後に加減速処理前加減速開
始時刻及び加減速処理前加減速終了時刻並びにこれらに
対応する加減速開始位置及び加減速終了位置の初期値を
設定する初期値設定手段と、前記加減速処理前加減速開
始時刻,前記加減速処理前加減速終了時刻,前記加減速
開始位置及び前記加減速終了位置から加減速処理前前半
平均速度及び加減速処理前後半平均速度を算出する平均
速度算出手段と、前記通過速度パラメータ並びに前記加
減速処理前前半平均速度及び前記加減速処理前後半平均
速度を線形結合したものから加減速処理後通過速度を算
出する通過速度算出手段と、ロボットの各軸の最高許容
速度並びに前記加減速処理前前半平均速度、前記加減速
処理前後半平均速度及び前記加減速処理後通過速度並び
に前記通過速度パラメータから加減速処理後前半所要時
間及び加減速処理後後半所要時間並びに加減速処理前加
減速開始時刻及び加減速処理前加減速終了時刻の再計算
値を算出する再計算手段と、前記加減速処理前加減速開
始時刻及び前記加減速処理前加減速終了時刻の前記平均
速度算出手段で用いたものと前記再計算値との差が許容
誤差を越える時は許容誤差以内になるまで前記加減速処
理前加減速開始時刻及び前記加減速処理前加減速終了時
刻として前記再計算値のものを用い対応する前記加減速
開始位置及び前記加減速終了位置を算出して前記平均速
度算出手段、前記通過速度算出手段及び前記再計算手段
を実行させることを繰り返し前記加減速処理前加減速開
始時刻及び前記加減速処理前加減速終了時刻の前記平均
速度算出手段で用いたものと前記再計算値との差が許容
誤差以内になった時は、その時に用いた前記加減速処理
後前半所要時間,前記加減速処理後後半所要時間,加減
速開始時速度,加減速終了時速度により加減速処理後前
半加速度及び加減速処理後後半加速度を算出して前記加
減速処理後軌道及び前記加減速処理後速度を求める軌道
算出手段とを有する。
SUMMARY OF THE INVENTION A robot control device according to the present invention uses a trajectory generation device for generating a trajectory before acceleration / deceleration processing and a velocity before acceleration / deceleration processing, which are a robot tip trajectory and a robot tip speed, and a passing speed parameter. The robot trajectory and the trajectory after acceleration / deceleration processing, which are the robot tip trajectory and the robot tip velocity, in which the axes of the robot do not generate acceleration exceeding the maximum allowable speed by performing acceleration / deceleration processing on the trajectory before acceleration / deceleration processing and the speed before acceleration / deceleration processing. An acceleration / deceleration processing device that generates a speed after the acceleration / deceleration processing; and a servo processing device that drives a robot according to the trajectory after the acceleration / deceleration processing and the speed after the acceleration / deceleration processing, wherein the acceleration / deceleration processing device The passing point before acceleration / deceleration processing where the acceleration of any axis of the robot on the front trajectory exceeds the maximum allowable acceleration and the robot tip pass before this acceleration / deceleration processing Passing point calculation means for calculating a passing point before acceleration / deceleration process, which is a time of passing through the vehicle; an acceleration / deceleration start time before / after acceleration / deceleration processing before and after the passing point before / after acceleration / deceleration processing; Initial value setting means for setting an end time and an initial value of an acceleration / deceleration start position and an acceleration / deceleration end position corresponding thereto; an acceleration / deceleration start time before the acceleration / deceleration processing; an acceleration / deceleration end time before the acceleration / deceleration processing; An average speed calculating means for calculating a first half average speed before the acceleration / deceleration process and a second half average speed before the acceleration / deceleration process from the deceleration start position and the acceleration / deceleration end position, the passing speed parameter, the first half average speed before the acceleration / deceleration process, and the acceleration / deceleration process; Passing speed calculating means for calculating a passing speed after the acceleration / deceleration processing from a linear combination of the average speeds before and after the deceleration processing; a maximum allowable speed of each axis of the robot; From the speed, the second half average speed before and after the acceleration / deceleration processing, the passing speed after the acceleration / deceleration processing, and the passing speed parameter, the first half required time after the acceleration / deceleration processing, the second half required time after the acceleration / deceleration processing, the acceleration / deceleration start time before the acceleration / deceleration processing, and the acceleration / deceleration start time A recalculating means for calculating a recalculated value of the acceleration / deceleration end time before deceleration processing; an acceleration / deceleration start time before acceleration / deceleration processing and an average speed calculation means for acceleration / deceleration end time before acceleration / deceleration processing; When the difference from the recalculated value exceeds the permissible error, the acceleration / deceleration process pre-acceleration / deceleration start time and the acceleration / deceleration pre-acceleration / deceleration end time are used as the accel / deceleration process predecessor until the difference is within the permissible error. The acceleration / deceleration start position and the acceleration / deceleration end position are calculated, and the average speed calculation means, the passing speed calculation means, and the recalculation means are repeatedly executed. When the difference between the start time and the acceleration / deceleration end time before acceleration / deceleration processing used by the average speed calculation means and the recalculated value is within an allowable error, the latter half of the acceleration / deceleration processing used at that time is used. The first half acceleration after the acceleration / deceleration processing and the second half acceleration after the acceleration / deceleration processing are calculated based on the required time, the second half required time after the acceleration / deceleration processing, the speed at the start of acceleration / deceleration, and the speed at the end of acceleration / deceleration processing. Trajectory calculating means for obtaining the speed after the deceleration processing.

【0015】本発明のロボット制御装置は、ロボット先
端軌道及びロボット先端速度である加減速処理前軌道及
び加減速処理前速度を生成する軌道生成装置と、通過速
度パラメータを用いて前記加減速処理前軌道及び前記加
減速処理前速度について加減速処理を行ってロボットの
各軸が最高許容速度を越える加速度を発生しないロボッ
ト先端軌道及びロボット先端速度である加減速処理後軌
道及び加減速処理後速度を生成する加減速処理装置と、
前記加減速処理後軌道及び前記加減速処理後速度に従っ
てロボットを駆動するサーボ処理装置とを含み、前記加
減速処理装置は、前記加減速処理前軌道上のロボットの
いずれかの軸の加速度が最高許容加速度を越える加減速
処理前通過点及びロボット先端がこの加減速処理前通過
点を通過する時刻である加減速処理前通過点通過時刻を
算定する通過点算定手段と、前記加減速処理前通過点通
過時刻の前後に加減速処理前加減速開始時刻及び加減速
処理前加減速終了時刻並びにこれらに対応する加減速開
始位置及び加減速終了位置の初期値を設定する初期値設
定手段と、加減速開始位置及び前記加減速終了位置にお
ける前記加減速処理前速度である加減速処理前開始時速
度及び加減速処理前終了時速度を線形結合したもの並び
に前記通過速度パラメータから加減速処理後通過速度を
算出する通過速度算出手段と、ロボットの各軸の最高許
容速度並びに前記加減速処理開始時速度、前記加減速処
理終了時速度及び前記加減速処理後通過速度並びに前記
通過速度パラメータから加減速処理後前半所要時間及び
加減速処理後後半所要時間並びに加減速処理前加減速開
始時刻及び加減速処理前加減速終了時刻の再計算値を算
出する再計算手段と、前記加減速処理前加減速開始時刻
及び前記加減速処理前加減速終了時刻の前記通過速度算
出手段で用いた加減速処理前開始時速度及び加減速処理
前終了時速度に対応するものと前記再計算値との差が許
容誤差を越える時は許容誤差以内になるまで前記加減速
処理前加減速開始時刻及び前記加減速処理前加減速終了
時刻として前記再計算値のものを用い対応する前記加減
速開始位置及び前記加減速終了位置並びに前記加減速処
理前開始時速度及び前記加減速処理前終了時速度を算出
して前記通過速度算出手段及び前記再計算手段を実行さ
せることを繰り返し前記加減速処理前加減速開始時刻及
び前記加減速処理前加減速終了時刻の前記通過速度算出
手段で用いた加減速処理前開始時速度及び加減速処理前
終了時速度に対応するものと前記再計算値との差が許容
誤差以内になった時は、その時に用いた前記加減速処理
後前半所要時間,前記加減速処理後後半所要時間,加減
速開始時速度,加減速終了時速度により加減速処理後前
半加速度及び加減速処理後後半加速度を算出して前記加
減速処理後軌道及び前記加減速処理後速度を求める軌道
算出手段とを有する。
A robot control device according to the present invention comprises: a trajectory generating device for generating a trajectory before acceleration / deceleration processing which is a robot tip trajectory and a robot tip speed; and a trajectory before acceleration / deceleration processing; Acceleration / deceleration processing is performed for the trajectory and the speed before the acceleration / deceleration processing, and the robot tip trajectory and the robot trajectory and the post-acceleration / deceleration processing trajectory, which are the robot tip velocities where each axis of the robot does not generate an acceleration exceeding the maximum allowable speed, are obtained. An acceleration / deceleration processing device to generate;
A servo processing device that drives the robot in accordance with the post-acceleration / deceleration processing trajectory and the post-acceleration / deceleration processing speed, wherein the acceleration / deceleration processing device has the highest acceleration of any axis of the robot on the pre-acceleration / deceleration processing trajectory. Passing point calculating means for calculating a passing point before the acceleration / deceleration processing, which is a time at which the passing point before the acceleration / deceleration processing exceeding the allowable acceleration and the robot tip pass through the passing point before the acceleration / deceleration processing; Initial value setting means for setting an acceleration / deceleration start time before acceleration / deceleration processing, an acceleration / deceleration end time before acceleration / deceleration processing, and an initial value of an acceleration / deceleration start position and an acceleration / deceleration end position corresponding thereto before and after the point passing time; A linear combination of the pre-acceleration / deceleration processing start speed and the pre-acceleration / deceleration processing end speed, which are the pre-acceleration / deceleration processing speeds at the deceleration start position and the acceleration / deceleration end position, and the passing speed parameter Passing speed calculating means for calculating the passing speed after the acceleration / deceleration processing from the meter, the maximum allowable speed of each axis of the robot, the speed at the start of the acceleration / deceleration processing, the speed at the end of the acceleration / deceleration processing, and the passing speed after the acceleration / deceleration processing; Recalculating means for calculating a recalculated value of the first half required time after the acceleration / deceleration processing and the second half required time after the acceleration / deceleration processing, and the acceleration / deceleration start time before acceleration / deceleration processing and the acceleration / deceleration end time before acceleration / deceleration processing from the passing speed parameter; The acceleration / deceleration processing start time before acceleration / deceleration processing and the acceleration / deceleration processing acceleration / deceleration end time corresponding to the acceleration / deceleration processing start speed and acceleration / deceleration processing end speed used by the passing speed calculation means are used. When the difference from the calculated value exceeds the allowable error, the acceleration / deceleration processing pre-acceleration / deceleration start time and the acceleration / deceleration processing pre-acceleration / deceleration end time using the recalculated value are used until the difference is within the allowable error. Calculating the corresponding acceleration / deceleration start position and acceleration / deceleration end position, the speed at the start before acceleration / deceleration processing, and the speed at the end before acceleration / deceleration processing, and causing the passing speed calculation means and the recalculation means to execute. The one corresponding to the speed before the acceleration / deceleration process and the speed before the acceleration / deceleration process used by the passing speed calculation means of the acceleration / deceleration process time before acceleration / deceleration process and the acceleration / deceleration process time before acceleration / deceleration process repeatedly. If the difference from the recalculated value is within the allowable error, the first half required time after the acceleration / deceleration processing, the second required time after the acceleration / deceleration processing, the acceleration / deceleration start speed, and the acceleration / deceleration end speed used at that time are used. Trajectory calculating means for calculating the first half acceleration after the acceleration / deceleration processing and the second half acceleration after the acceleration / deceleration processing to obtain the trajectory after the acceleration / deceleration processing and the velocity after the acceleration / deceleration processing.

【0016】本発明のロボット制御装置は、ロボット先
端軌道及びロボット先端速度である加減速処理前軌道及
び加減速処理前速度を生成する軌道生成装置と、通過速
度パラメータを用いて前記加減速処理前軌道及び前記加
減速処理前速度について加減速処理を行ってロボットの
各軸が最高許容速度を越える加速度を発生しないロボッ
ト先端軌道及びロボット先端速度である加減速処理後軌
道及び加減速処理後速度を生成する加減速処理装置と、
前記加減速処理後軌道及び前記加減速処理後速度に従っ
てロボットを駆動するサーボ処理装置とを含み、前記加
減速処理装置は、前記加減速処理前軌道上のロボットの
いずれかの軸の加速度が最高許容加速度を越える加減速
処理前通過点及びロボット先端がこの加減速処理前通過
点を通過する時刻である加減速処理前通過点通過時刻を
算定する通過点算定手段と、ロボット先端の前記加減速
処理前通過点の直前及び直後の速度である加減速処理前
通過点直前速度及び加減速処理前通過点直後速度並びに
前記通過速度パラメータから加減速処理後通過速度を算
出する通過速度算出手段と、前記加減速処理前通過点直
前速度,前記加減速処理前通過点直後速度,前記加減速
処理後通過速度及び前記通過速度パラメータから加減速
処理後前半所要時間及び加減速処理後後半所要時間を算
出する所要時間算出手段と、前記加減速処理後前半所要
時間,前記加減速処理後後半所要時間及び前記通過速度
パラメータから加減速処理前加減速開始時刻及び加減速
処理前加減速終了時刻を算出する時刻算出手段と、前記
加減速処理前加減速開始時刻及び加減速処理前加減速終
了時刻における前記加減速処理前速度である加減速開始
時速度及び加減速終了時速度並びに前記加減速処理後前
半所要時間,前記加減速処理後後半所要時間及び前記加
減速処理後通過速度から加減速処理後前半加速度及び加
減速処理後後半加速度を算出して前記加減速処理後軌道
及び前記加減速処理後速度を求める軌道算出手段とを有
する。
A robot control device according to the present invention comprises: a trajectory generating device for generating a trajectory before acceleration / deceleration processing which is a robot tip trajectory and a robot tip speed; and a trajectory before acceleration / deceleration processing. Acceleration / deceleration processing is performed for the trajectory and the speed before the acceleration / deceleration processing, and the robot tip trajectory and the robot trajectory and the post-acceleration / deceleration processing trajectory, which are the robot tip velocities where each axis of the robot does not generate an acceleration exceeding the maximum allowable speed, are obtained. An acceleration / deceleration processing device to generate;
A servo processing device that drives the robot in accordance with the post-acceleration / deceleration processing trajectory and the post-acceleration / deceleration processing speed, wherein the acceleration / deceleration processing device has the highest acceleration of any axis of the robot on the pre-acceleration / deceleration processing trajectory. Passing point calculating means for calculating a passing point before the acceleration / deceleration processing, which is a time when the passing point before the acceleration / deceleration processing exceeding the permissible acceleration and the robot tip pass through the passing point before the acceleration / deceleration processing; and the acceleration / deceleration of the robot tip. Passing speed calculating means for calculating a passing speed immediately before and after the pre-processing pass point, a speed immediately before the passing point before the acceleration / deceleration process, a speed immediately after the passing point before the acceleration / deceleration process, and the passing speed after the acceleration / deceleration process from the passing speed parameter. From the speed immediately before the passing point before the acceleration / deceleration processing, the speed immediately after the passing point before the acceleration / deceleration processing, the passing speed after the acceleration / deceleration processing, and the first half required after the acceleration / deceleration processing from the passing speed parameter A required time calculating means for calculating a required second half time after the acceleration / deceleration processing; a required first half required time after the acceleration / deceleration processing; a required second half required time after the acceleration / deceleration processing; A time calculating means for calculating an acceleration / deceleration end time before the deceleration processing; an acceleration / deceleration start speed and an acceleration / deceleration which are the acceleration / deceleration processing speeds at the acceleration / deceleration processing acceleration / deceleration start time and the acceleration / deceleration processing pre-acceleration / deceleration end time. Calculating the first half acceleration after the acceleration / deceleration processing and the second half acceleration after the acceleration / deceleration processing from the end time, the first half required time after the acceleration / deceleration processing, the second half required time after the acceleration / deceleration processing, and the passing speed after the acceleration / deceleration processing; Trajectory calculating means for obtaining the post-processing trajectory and the speed after the acceleration / deceleration processing.

【0017】本発明のロボット制御方法は、加減速処理
前速度で移動するロボット先端の軌道として生成された
加減速処理前軌道上のロボットのいずれかの軸の加速度
が最高許容加速度を越える加減速処理前通過点を通過す
る時刻である加減速処理前通過点通過時刻の前後に加減
速処理前加減速開始時刻及び加減速処理前加減速終了時
刻並びにこれらに対応する加減速開始位置及び加減速終
了位置の初期値を設定し、前記加減速処理前加減速開始
時刻,前記加減速処理前加減速終了時刻,前記加減速開
始位置及び前記加減速終了位置から加減速処理前前半平
均速度及び加減速処理前後半平均速度を算出し、通過速
度パラメータ並びに前記加減速処理前前半平均速度及び
前記加減速処理前後半平均速度を線形結合したものから
加減速処理後通過速度を算出し、ロボットの各軸の最高
許容速度並びに前記加減速処理前前半平均速度,前記加
減速処理前後半平均速度及び前記加減速処理後通過速度
並びに前記通過速度パラメータから加減速処理後前半所
要時間及び加減速処理後後半所要時間並びに加減速処理
前加減速開始時刻及び加減速処理前加減速終了時刻の再
計算値を算出し、前記加減速処理前加減速開始時刻及び
前記加減速処理前加減速終了時刻の前記加減速処理前前
半平均速度及び前記加減速処理前後半平均速度の算出で
用いたものと前記再計算値との差が許容誤差を越える時
は許容誤差以内になるまで前記加減速処理前加減速開始
時刻及び前記加減速処理前加減速終了時刻として前記再
計算値のものを用い対応する前記加減速開始位置及び前
記加減速終了位置を算出して前記加減速処理前前半平均
速度及び加減速処理前後半平均速度の算出,前記加減速
処理後の通過速度の算出及び前記再計算値の算出を繰り
返し前記加減速処理前加減速開始時刻及び前記加減速処
理前加減速終了時刻の前記加減速処理前前半平均速度及
び加減速処理前後半平均速度の算出で用いたものと前記
再計算値との差が許容誤差以内になった時は、その時に
用いた前記加減速処理後前半所要時間,前記加減速処理
後後半所要時間,加減速開始時速度,加減速終了時速度
により加減速処理後前半加速度及び加減速処理後後半加
速度を算出して前記加減速処理後軌道及び前記加減速処
理後速度を求めることを特徴とする。
According to the robot control method of the present invention, the acceleration or deceleration of any axis of the robot on the trajectory before the acceleration / deceleration processing generated as the trajectory of the robot moving at the speed before the acceleration / deceleration processing exceeds the maximum allowable acceleration. The acceleration / deceleration start time before acceleration / deceleration processing, the acceleration / deceleration end time before acceleration / deceleration processing, and the acceleration / deceleration start position and acceleration / deceleration corresponding to these before and after the passage point before acceleration / deceleration processing, which is the time passing through the passing point before processing. An initial value of the end position is set, and the acceleration / deceleration start time before the acceleration / deceleration processing, the acceleration / deceleration end time before the acceleration / deceleration processing, the acceleration / deceleration start position, and the acceleration / deceleration end position are set to the first half average speed and acceleration / deceleration processing. The second half average speed before and after the deceleration process is calculated, and the passing speed parameter and the first half average speed before and after the acceleration / deceleration process and the first half average speed before and after the acceleration / deceleration process are linearly combined to pass after the acceleration / deceleration process. And calculating the maximum allowable speed of each axis of the robot, the first half average speed before the acceleration / deceleration process, the second half average speed before / after the acceleration / deceleration process, the passing speed after the acceleration / deceleration process, and the first half after the acceleration / deceleration process. The required time and the second half required time after the acceleration / deceleration processing, the acceleration / deceleration start time before the acceleration / deceleration processing, and the recalculated value of the acceleration / deceleration end time before the acceleration / deceleration processing are calculated, and the acceleration / deceleration start time before the acceleration / deceleration processing and the acceleration / deceleration processing are calculated. When the difference between the re-calculated value and the first half average speed before and after the acceleration / deceleration processing at the end time of the previous acceleration / deceleration processing and the recalculated value exceeds the allowable error, the difference is within the allowable error. Using the recalculated values as the acceleration / deceleration start time before acceleration / deceleration processing and the acceleration / deceleration end time before acceleration / deceleration processing, the corresponding acceleration / deceleration start position and acceleration / deceleration end position are calculated. The calculation of the first half average speed before the speed processing and the second half average speed before and after the acceleration / deceleration processing, the calculation of the passing speed after the acceleration / deceleration processing, and the calculation of the recalculated value are repeated, and the acceleration / deceleration start time before the acceleration / deceleration processing and the acceleration / deceleration processing When the difference between the pre-acceleration / deceleration end time used in the calculation of the first half average speed before the acceleration / deceleration process and the average speed before and after the acceleration / deceleration process and the recalculated value was within an allowable error, it was used at that time. The first half acceleration after acceleration / deceleration processing and the second half acceleration after acceleration / deceleration processing are calculated based on the first half required time after acceleration / deceleration processing, the second half required time after acceleration / deceleration processing, the acceleration / deceleration start speed, and the acceleration / deceleration end speed. A trajectory after the processing and a speed after the acceleration / deceleration processing are obtained.

【0018】本発明のロボット制御方法は、加減速処理
前速度で移動するロボット先端の軌道として生成された
前記加減速処理前軌道上のロボットのいずれかの軸の加
速度が最高許容加速度を越える加減速処理前通過点を通
過する時刻である加減速処理前通過点通過時刻の前後に
加減速処理前加減速開始時刻及び加減速処理前加減速終
了時刻並びにこれらに対応する加減速開始位置及び加減
速終了位置の初期値を設定し、前記加減速開始位置及び
前記加減速終了位置における前記加減速処理速度である
加減速処理前開始時速度及び加減速処理前終了時速度を
線形結合したもの並びに前記通過速度パラメータから加
減速処理後通過速度を算出し、ロボットの各軸の最高許
容速度並びに前記加減速処理開始時速度、前記加減速処
理終了時速度及び前記加減速処理後通過速度並びに前記
通過速度パラメータから加減速処理後前半所要時間及び
加減速処理後後半所要時間並びに加減速処理前加減速開
始時刻及び加減速処理前加減速終了時刻の再計算値を算
出し、前記加減速処理前加減速開始時刻及び前記加減速
処理前加減速終了時刻の前記加減速処理後通過速度の算
出で用いたものと前記再計算値との差が許容誤差を越え
る時は許容誤差以内になるまで前記加減速処理前加減速
開始時刻及び前記加減速処理前加減速終了時刻として前
記再計算値のものを用い対応する前記加減速開始位置及
び前記加減速終了位置並びに前記加減速処理前開始時速
度及び前記加減速処理前終了時速度を算出して前記加減
速処理後通過速度の算出及び前記再計算値の算出を繰り
返し前記加減速処理前加減速開始時刻及び前記加減速処
理前加減速終了時刻の前記加減速処理後通過速度の算出
で用いたものと前記再計算値との差が許容誤差以内にな
った時は、その時に用いた前記加減速処理後前半所要時
間,前記加減速処理後後半所要時間,加減速開始時速
度,加減速終了時速度により加減速処理後前半加速度及
び加減速処理後後半加速度を算出して前記加減速処理後
軌道及び前記加減速処理後速度を求めることを特徴とす
る。
According to the robot control method of the present invention, the acceleration of any axis of the robot on the trajectory before the acceleration / deceleration processing generated as the trajectory of the robot tip moving at the speed before the acceleration / deceleration processing exceeds the maximum allowable acceleration. Before and after the passing point before acceleration / deceleration processing, which is the time passing through the passing point before acceleration / deceleration processing, the acceleration / deceleration start time before acceleration / deceleration processing, the acceleration / deceleration end time before acceleration / deceleration processing, and the acceleration / deceleration start position and acceleration / deceleration corresponding thereto. The initial value of the deceleration end position is set, and the acceleration / deceleration processing speed at the acceleration / deceleration start position and the acceleration / deceleration processing speed at the acceleration / deceleration end position are linearly combined with the speed at the start and before the acceleration / deceleration processing, and The passing speed after the acceleration / deceleration process is calculated from the passing speed parameter, and the maximum allowable speed of each axis of the robot, the speed at the start of the acceleration / deceleration process, the speed at the end of the acceleration / deceleration process, and From the passing speed after the acceleration / deceleration processing and the passing speed parameter, the recalculated value of the first half required time after the acceleration / deceleration processing, the second required time after the acceleration / deceleration processing, the acceleration / deceleration start time before the acceleration / deceleration processing, and the acceleration / deceleration end time before the acceleration / deceleration processing. The difference between the re-calculated value and the one used in the calculation of the post-acceleration / deceleration processing passing speed of the acceleration / deceleration processing pre-acceleration / deceleration start time and the acceleration / deceleration processing pre-acceleration / deceleration end time exceeds an allowable error. Time is the acceleration / deceleration start time before acceleration / deceleration processing corresponding to the acceleration / deceleration start position before acceleration / deceleration processing and the acceleration / deceleration end position before acceleration / deceleration processing using the recalculated value as the acceleration / deceleration end time. At the start of acceleration / deceleration processing before acceleration / deceleration processing, the velocity at the start before acceleration / deceleration processing and the velocity at the end before acceleration / deceleration processing are calculated, and the calculation of the passing velocity after acceleration / deceleration processing and the calculation of the recalculated value are repeated. And when the difference between the one used in the calculation of the passing speed after the acceleration / deceleration processing at the acceleration / deceleration end time before the acceleration / deceleration processing and the recalculated value is within an allowable error, the acceleration / deceleration processing used at that time. The first half acceleration after the acceleration / deceleration processing and the second half acceleration after the acceleration / deceleration processing are calculated based on the latter half required time, the latter half required time after the acceleration / deceleration processing, the acceleration / deceleration start speed, and the acceleration / deceleration end velocity, and The speed after the acceleration / deceleration processing is obtained.

【0019】本発明のロボット制御方法は、加減速処理
前速度で移動するロボット先端の軌道として生成された
加減速処理前軌道上のロボットのいずれかの軸の加速度
が最高許容加速度を越える加減速処理前通過点を通過す
る時刻である加減速処理前通過点通過時刻を算定し、ロ
ボット先端の前記加減速処理前通過点の直前及び直後の
速度である加減速処理前通過点直前速度及び加減速処理
前通過点直後速度並びに通過速度パラメータから加減速
処理後通過速度を算出し、前記加減速処理前通過点直前
速度,前記加減速処理前通過点直後速度,前記加減速処
理後通過速度及び前記通過速度パラメータから加減速処
理後前半所要時間及び加減速処理後後半所要時間を算出
し、前記加減速処理後前半所要時間,前記加減速処理後
後半所要時間及び前記通過速度パラメータから加減速処
理前加減速開始時刻及び加減速処理前加減速終了時刻を
算出し、前記加減速処理前加減速開始時刻及び加減速処
理前加減速終了時刻における前記加減速処理前速度であ
る加減速開始時速度及び加減速終了時速度並びに前記加
減速処理後前半所要時間,前記加減速処理後後半所要時
間及び前記加減速処理後通過速度から加減速処理後前半
加速度及び加減速処理後後半加速度を算出して前記加減
速処理後軌道及び前記加減速処理後速度を求めることを
特徴とする。
According to the robot control method of the present invention, the acceleration or deceleration of any axis of the robot on the trajectory before the acceleration / deceleration processing generated as the trajectory of the robot moving at the speed before the acceleration / deceleration processing exceeds the maximum allowable acceleration. The passing point before acceleration / deceleration processing, which is the time passing through the passing point before processing, is calculated. The post-acceleration / deceleration processing passing speed is calculated from the pre-deceleration processing passing point speed and the passing speed parameter, and the acceleration / deceleration processing passing point immediately before speed, the acceleration / deceleration processing passing point speed, the acceleration / deceleration processing passing speed, and The first half required time after the acceleration / deceleration processing and the second required time after the acceleration / deceleration processing are calculated from the passing speed parameter, and the first required time after the acceleration / deceleration processing, the second required time after the acceleration / deceleration processing, and The acceleration / deceleration start time before the acceleration / deceleration processing and the acceleration / deceleration end time before the acceleration / deceleration processing are calculated from the passing speed parameter. First acceleration after acceleration / deceleration processing and acceleration / deceleration from acceleration / deceleration start velocity and acceleration / deceleration end velocity, the first half required time after the acceleration / deceleration processing, the second required time after the acceleration / deceleration processing, and the passing velocity after the acceleration / deceleration processing The second half acceleration after the processing is calculated to obtain the trajectory after the acceleration / deceleration processing and the speed after the acceleration / deceleration processing.

【0020】[0020]

【作用】本発明によるロボット制御装置では、軌道生成
装置の出力である加減速処理前軌道を加減速処理するこ
とにより、ロボット各軸の加速度が予め設定された最高
許容加速度以下に納まり、且つ軌道上でのロボット移動
スピードを指定することができる。
In the robot control apparatus according to the present invention, the acceleration of each axis of the robot falls below the preset maximum allowable acceleration by performing acceleration / deceleration processing on the trajectory before acceleration / deceleration processing, which is the output of the trajectory generation apparatus. You can specify the robot movement speed above.

【0021】加減速処理後通過速度をゼロとすることに
よって、軌道生成装置で指定された軌道が正確に踏襲さ
れるロボット動作が実現される。また、加減速処理後通
過速度を加減速開始位置での速度と加減速終了位置での
速度の平均値とすることにより、加減速処理前軌道に対
してはある程度の軌道誤差が発生するものの、移動スピ
ードの変動が最小となるロボット動作が可能となる。後
者は、例えばロボット先端を一定のスピードで移動させ
たい塗装等の作業で有効となる。また、これらの中間の
移動スピードを設定することにより、移動スピードの正
確さと移動軌道の正確さという二つの矛盾する要求を、
作業の種類に応じて調整することが可能となる。
By setting the passing speed to zero after the acceleration / deceleration processing, a robot operation in which the trajectory specified by the trajectory generation device is accurately followed is realized. Also, by setting the passing speed after the acceleration / deceleration process to the average value of the speed at the acceleration / deceleration start position and the speed at the acceleration / deceleration end position, although a certain orbit error occurs in the orbit before the acceleration / deceleration process, Robot operation that minimizes fluctuations in moving speed becomes possible. The latter is effective, for example, in a work such as painting in which the tip of the robot is to be moved at a constant speed. In addition, by setting a moving speed between these two, two contradictory requirements of the accuracy of the moving speed and the accuracy of the moving trajectory,
It can be adjusted according to the type of work.

【0022】[0022]

【発明の実施の形態】まず、本発明の具体的な説明に先
立って、用語及び記号の定義をする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Prior to concrete description of the present invention, terms and symbols will be defined.

【0023】ロボットは複数のリンクを複数の軸によっ
て直列、あるいは並列に接続することによって構成され
る。各軸はモータによって駆動されるため、各軸で許さ
れる加速度の絶対値は、モータや制御装置の物理的・電
気的な特性によって制限される。このとき、各軸で許容
される最大の加速度の絶対値を最大許容加速度と称す
る。接続された複数のリンクの先端の軌道をロボット先
端軌道と称し、ロボット先端軌道として予め指定された
ものが加減速処理前軌道であり、これを加減速処理した
軌道が加減速処理後軌道である。
The robot is constructed by connecting a plurality of links in series or in parallel by a plurality of axes. Since each axis is driven by a motor, the absolute value of the acceleration allowed in each axis is limited by the physical and electrical characteristics of the motor and the control device. At this time, the absolute value of the maximum acceleration allowed for each axis is referred to as the maximum allowable acceleration. The trajectory of the ends of the plurality of connected links is referred to as a robot trajectory, and the trajectory designated in advance as the robot trajectory is the trajectory before acceleration / deceleration processing, and the trajectory obtained by performing acceleration / deceleration processing is the trajectory after acceleration / deceleration processing. .

【0024】また、以下の説明で、k、km、kp、k
n等、kで始まる記号によって加減速処理前軌道を指定
するサンプル時刻、あるいは同サンプル時刻の増分値を
表すこととする。また、j、jm、jp、jn等、jで
始まる記号によって加減速処理後軌道を指定するサンプ
ル時刻、あるいは同サンプル時刻の増分値を表すことと
する。
In the following description, k, km, kp, k
A symbol starting with k, such as n, represents a sample time at which the trajectory before acceleration / deceleration processing is designated, or an increment value of the sample time. Also, a symbol starting with j, such as j, jm, jp, jn, etc., represents a sample time for specifying the trajectory after the acceleration / deceleration processing, or an increment value of the sample time.

【0025】特に、kは加減速処理前軌道を指定するサ
ンプル時刻を、jは加減速処理後軌道を指定するサンプ
ル時刻を表す。
In particular, k represents a sample time for specifying the trajectory before the acceleration / deceleration processing, and j represents a sample time for specifying the trajectory after the acceleration / deceleration processing.

【0026】加減速処理に際して使用するmaxl (x
(l))で表される関数は、ベクトルxの要素であるx
(l)、(ただし、l=1,2,…,lmax )のうち
で、最大の値を表す。
[0026] As used during acceleration and deceleration processing max l (x
The function represented by (l)) is x which is an element of the vector x.
(L), (where l = 1, 2,..., L max ) represents the maximum value.

【0027】以下、本発明を図を使って説明する。Hereinafter, the present invention will be described with reference to the drawings.

【0028】図1は本発明の一実施例を示すブロック図
である。同図によると、まず、教示点やCADデータ等
を基に軌道生成装置1でロボットの加減速処理前軌道q
(k)及び加減速処理前速度w(k)を生成する。ただ
し、kは加減速処理前軌道を指定するサンプル時刻を表
す。生成された軌道上の点のうち、ロボット動作軸の少
なくとも一つが最高許容加速度を越える加速度を発生す
るような点を加減速処理前通過点と称する。加減速処理
前軌道に対して加減速処理装置2で加減速処理をするこ
とによって最高許容加速度を超える軸が一つもないよう
な軌道である加減速処理後軌道q′(j)及びその軌道
上の点での速度である加減速処理後速度w′(j)を算
出する。このとき、加減速処理前通過点は加減速処理後
通過点に修正される。
FIG. 1 is a block diagram showing one embodiment of the present invention. According to the figure, first, the trajectory q before the acceleration / deceleration processing of the robot is performed by the trajectory generation device 1 based on the teaching points and CAD data.
(K) and the pre-acceleration / deceleration processing speed w (k) are generated. Here, k represents a sample time for specifying the trajectory before the acceleration / deceleration processing. Among the generated points on the trajectory, a point at which at least one of the robot operation axes generates an acceleration exceeding the maximum allowable acceleration is referred to as a passing point before the acceleration / deceleration processing. The trajectory q '(j) after acceleration / deceleration processing, which is a trajectory in which no trajectory exceeds the maximum allowable acceleration by performing acceleration / deceleration processing on the trajectory before acceleration / deceleration processing by the acceleration / deceleration processing device 2, and on the trajectory Then, the post-acceleration / deceleration processing speed w '(j), which is the speed at the point (1), is calculated. At this time, the passing point before the acceleration / deceleration processing is corrected to the passing point after the acceleration / deceleration processing.

【0029】図1における通過速度パラメータ指定装置
5では、加減速処理によって得られる加減速処理後通過
点での速度である加減速処理後通過速度を指定するため
のパラメータである通過速度パラメータrを出力する。
そして、加減速処理装置2では通過速度パラメータrを
使って加減速処理後通過速度を算出し、この加減速処理
後通過速度を実現し、かつロボット全軸の加速度が最高
許容加速度以下となるような軌道を探索することによっ
て加減速処理後軌道を得る。
The passing speed parameter designating device 5 shown in FIG. 1 uses a passing speed parameter r, which is a parameter for designating the passing speed after the acceleration / deceleration process, which is the speed at the passing point after the acceleration / deceleration process obtained by the acceleration / deceleration process. Output.
Then, the acceleration / deceleration processing device 2 calculates the passing speed after the acceleration / deceleration processing using the passing speed parameter r, realizes the passing speed after the acceleration / deceleration processing, and sets the acceleration of all axes of the robot to be equal to or less than the maximum allowable acceleration. A trajectory after acceleration / deceleration processing is obtained by searching for a suitable trajectory.

【0030】図1の加減速処理装置2の出力である加減
速処理後軌道q′(j)及び加減速処理後速度w′
(j)をサーボ処理装置3に転送し、ロボットアームの
移動速度plsとの比較を基に電流指令値icを発生、
同電流指令値によってロボットアーム4を駆動する。
The trajectory q '(j) after the acceleration / deceleration processing and the speed w' after the acceleration / deceleration processing, which are the outputs of the acceleration / deceleration processing device 2 in FIG.
(J) is transferred to the servo processor 3 to generate a current command value ic based on a comparison with the moving speed pls of the robot arm,
The robot arm 4 is driven by the current command value.

【0031】以下、図1の実施例の詳細を説明する。Hereinafter, details of the embodiment of FIG. 1 will be described.

【0032】図9は、軌道生成装置1において生成され
た加減速処理前軌道q(k)及び加減速処理前速度w
(k)、及び加減速処理装置2で得られる加減速処理後
軌道q′(j)及び加減速処理後速度w′(j)の内容
の例を示す。加減速処理前軌道q(k)ではロボットの
少なくとも一つの軸が最高許容加速度を越えるような屈
曲点が存在するが、加減速処理後軌道q′(j)ではこ
のような屈曲点が解消している。
FIG. 9 shows the trajectory q (k) before acceleration / deceleration processing and the velocity w before acceleration / deceleration processing generated by the trajectory generation device 1.
(K) and examples of the contents of the trajectory q ′ (j) after acceleration / deceleration processing and the speed w ′ (j) after acceleration / deceleration processing obtained by the acceleration / deceleration processing device 2. In the trajectory q (k) before the acceleration / deceleration processing, there exists a bending point where at least one axis of the robot exceeds the maximum allowable acceleration, but in the trajectory q ′ (j) after the acceleration / deceleration processing, such a bending point is eliminated. ing.

【0033】図10は、加減速処理前通過点、及び加減
速処理後通過速度の意味を表す。図に示す加減速処理前
通過点q(km)とは、軌道生成装置1で生成される加
減速処理前軌道において、ロボット各軸のうち少なくと
も一つの軸の加速度が最高許容加速度を越えるような点
である。また、加減速処理前軌道を加減速処理装置2で
修正して加減速処理後軌道とした結果、加減速前通過点
q(km)は加減速処理後通過点q′(jm)に移動す
る。加減速処理装置2では、加減速処理後軌道を算出す
る前に加減速処理後通過速度wcbを算出し、加減速処
理後通過速度wcbを使って加減速処理を実施すること
により加減速処理後軌道及び加減速処理後通過点q′
(jm)を得る。
FIG. 10 shows the meaning of the passing point before the acceleration / deceleration processing and the passing speed after the acceleration / deceleration processing. The passing point q (km) before the acceleration / deceleration processing shown in the figure is such that, in the trajectory before the acceleration / deceleration processing generated by the trajectory generation device 1, the acceleration of at least one of the robot axes exceeds the maximum allowable acceleration. Is a point. Further, as a result of correcting the trajectory before the acceleration / deceleration processing by the acceleration / deceleration processing device 2 to be the trajectory after the acceleration / deceleration processing, the passing point q (km) before the acceleration / deceleration processing moves to the passing point q ′ (jm) after the acceleration / deceleration processing. . The acceleration / deceleration processing device 2 calculates the passing speed wcb after the acceleration / deceleration process before calculating the trajectory after the acceleration / deceleration process, and performs the acceleration / deceleration process using the passing speed wcb after the acceleration / deceleration process. Trajectory and passing point q 'after acceleration / deceleration processing
(Jm).

【0034】図11は、加減速処理装置2の作用を説明
するため、加減速処理装置2の入力と出力を更に詳細に
示したものである。加減速処理装置2には図11(a)
に示す加減速処理前軌道が入力され、その内部処理によ
って図11(b)に示す加減速処理後軌道が出力され
る。加減速処理装置2内で加減速処理を実施して加減速
処理前軌道を修正する際、加減速処理を開始する位置を
加減速開始位置q(km−kp)同加減速処理を終了す
る位置を加減速終了位置q(km+kn)と称する。加
減速開始位置q(km−kp)及び加減速終了位置q
(km+kn)は加減速処理前軌道におけるそれと加減
速処理後軌道におけるそれとを共通に定義できるので、
加減速処理前と加減速処理後の区別をしない。すなわ
ち、q′(jm−jp)=q(km−kp)及びq′
(jm+jn)=p(km+kn)である。さらに、加
減速処理に際して通過速度パラメータ指定装置5で指定
された通過速度パラメータrによって算出された加減速
処理後通過速度wcbが指定されることとなる点を加減
速処理後通過点q′(jm)と称する。加減速処理前軌
道において、加減速開始位置q(km−kp)から加減
速処理前通過点q(km)までの平均速度を加減速処理
前前半平均速度wpと称し、加減速処理前通過点q(k
m)から加減速終了位置q(km+kn)までの平均速
度を加減速処理前後半平均速度wnと称する。
FIG. 11 shows the input and output of the acceleration / deceleration processing device 2 in more detail in order to explain the operation of the acceleration / deceleration processing device 2. FIG. 11A shows the acceleration / deceleration processing device 2.
11B is input, and the trajectory after the acceleration / deceleration processing shown in FIG. 11B is output by internal processing. When the acceleration / deceleration processing is performed in the acceleration / deceleration processing apparatus 2 to correct the trajectory before the acceleration / deceleration processing, the position at which the acceleration / deceleration processing is started is set to the acceleration / deceleration start position q (km-kp). Is referred to as an acceleration / deceleration end position q (km + kn). Acceleration / deceleration start position q (km-kp) and acceleration / deceleration end position q
Since (km + kn) can be defined in common with the trajectory before the acceleration / deceleration processing and the trajectory after the acceleration / deceleration processing,
No distinction is made between before and after acceleration / deceleration processing. That is, q '(jm-jp) = q (km-kp) and q'
(Jm + jn) = p (km + kn). Further, at the time of the acceleration / deceleration processing, the point at which the post-acceleration / deceleration-processed passing speed wcb calculated by the passing speed parameter r specified by the passing speed parameter specifying device 5 is designated as the post-acceleration / deceleration-processed passing point q '(jm). ). In the trajectory before acceleration / deceleration processing, the average speed from the acceleration / deceleration start position q (km-kp) to the passing point q (km) before acceleration / deceleration processing is referred to as the first half average velocity before acceleration / deceleration processing wp, and the passing point before acceleration / deceleration processing. q (k
The average speed from m) to the acceleration / deceleration end position q (km + kn) is referred to as the second half average speed before acceleration / deceleration processing wn.

【0035】図12では加減速処理前軌道におけるサン
プル時刻の定義と速度の定義を示す。図12(a)は加
減速処理前軌道を示し、図12(b)及び(c)はそれ
ぞれ図12(a)の加減速処理前軌道に対応するロボッ
トの一つの軸のx方向速度及びx方向加速度を示す。加
減速開始位置q(km−kp)及び加減速終了位置q
(km+kn)及び加減速処理前通過点q(km)を通
過するサンプル時刻をそれぞれ、加減速処理前加減速開
始時刻km−kp、加減速処理前加減速終了時刻km+
kn、加減速処理前通過点通過時刻kmと称する。ここ
で、加減速処理前加減速開始時刻から加減速処理前通過
点通過時刻までの所要時間を加減速処理前前半所要時間
kp、加減速処理前通過点通過時刻から加減速処理前加
減速終了時刻までの所要時間を加減速処理前後半所要時
間knとし、km、kp、及びknを用いて各々の時刻
を記述することとした。さらに、加減速開始位置での速
度を加減速開始時速度w(km−kp)、加減速終了位
置での速度を加減速終了時速度w(km+kn)と称す
る。なお、図12(c)では加減速処理前通過点通過時
刻kmにおいて、x方向の加速度が最高許容加速度を越
えていることを示している。
FIG. 12 shows the definition of the sample time and the definition of the speed in the trajectory before the acceleration / deceleration processing. 12A shows the trajectory before the acceleration / deceleration processing, and FIGS. 12B and 12C show the velocity in the x direction and x of one axis of the robot corresponding to the trajectory before the acceleration / deceleration processing in FIG. Indicates directional acceleration. Acceleration / deceleration start position q (km-kp) and acceleration / deceleration end position q
(Km + kn) and a sample time passing through the pre-acceleration / deceleration processing passing point q (km) are referred to as an acceleration / deceleration processing pre-acceleration start time km-kp and an acceleration / deceleration processing pre-acceleration / deceleration end time km +, respectively.
kn, the passing point before the acceleration / deceleration process passing time km. Here, the required time from the acceleration / deceleration processing pre-acceleration / deceleration processing start time to the acceleration / deceleration processing pre-acceleration deceleration processing pass point is referred to as the acceleration / deceleration processing first half required time kp. The required time up to the time is defined as the required second half of the time before and after the acceleration / deceleration process, and each time is described using km, kp, and kn. Further, the speed at the acceleration / deceleration start position is referred to as acceleration / deceleration start speed w (km-kp), and the speed at the acceleration / deceleration end position is referred to as acceleration / deceleration end speed w (km + kn). FIG. 12C shows that the acceleration in the x direction exceeds the maximum allowable acceleration at the passage point km before the acceleration / deceleration process.

【0036】図13は、図12で示した加減速処理前軌
道を加減速処理した結果得られる加減速処理後軌道を例
として、加減速処理後軌道におけるサンプル時刻の定義
を示す。図13(a),(b)及び(c)はそれぞれ加
減速処理後軌道、加減速処理後のx方向速度及び加減速
処理後のx方向加速度を示す。同図において加減速開始
位置q′(jm−jp)及び加減速終了位置q′(jm
+jn)及び加減速処理後通過点q′(jm)を通過す
るサンプル時刻をそれぞれ、加減速処理後加減速開始時
刻jm−jp、加減速処理後加減速終了時刻jm+j
n、加減速処理後通過点通過時刻jmと称する。ここ
で、加減速処理後加減速開始時刻から加減速処理後通過
点通過時刻までの所要時間を加減速処理後前半所要時間
jp、加減速処理後通過点通過時刻から加減速処理後加
減速処理終了時刻までの所要時間を加減速処理後後半所
要時間jnとし、jm、jp、及びjnを用いて各々の
時刻を記述することとした。なお、図13(c)に示す
ように、加減速処理をした結果、x方向の加速度は最高
許容加速度内に収まっている。
FIG. 13 shows the definition of the sample time in the trajectory after the acceleration / deceleration processing by taking the trajectory after the acceleration / deceleration processing obtained as a result of performing the acceleration / deceleration processing on the trajectory before the acceleration / deceleration processing shown in FIG. 12 as an example. FIGS. 13A, 13B, and 13C show the trajectory after the acceleration / deceleration processing, the x-direction speed after the acceleration / deceleration processing, and the x-direction acceleration after the acceleration / deceleration processing, respectively. In the figure, the acceleration / deceleration start position q '(jm-jp) and the acceleration / deceleration end position q' (jm
+ Jn) and the sample time passing through the passing point q '(jm) after the acceleration / deceleration processing are the acceleration / deceleration start time jm-jp after the acceleration / deceleration processing and the acceleration / deceleration end time jm + j after the acceleration / deceleration processing, respectively.
n, the passing point passing time jm after the acceleration / deceleration processing. Here, the required time from the acceleration / deceleration process start time after the acceleration / deceleration process to the passing point passing time after the acceleration / deceleration process is the first half required time jp after the acceleration / deceleration process, and the acceleration / deceleration process after the acceleration / deceleration process from the passing point passing time. The required time until the end time is defined as the latter half required time jn after the acceleration / deceleration processing, and each time is described using jm, jp, and jn. As shown in FIG. 13C, as a result of the acceleration / deceleration processing, the acceleration in the x direction is within the maximum allowable acceleration.

【0037】図14及び15は加減速処理装置2におけ
る処理手順を示すフローチャートである。同図に従い加
減速処理装置2では、まず、軌道生成装置1の出力であ
る加減速処理前軌道の各点についてロボット各軸の加速
度が算出される(ステップ201)。その結果をもと
に、過加速度検出ステップ202において、どれか一つ
の軸でも予め設定された最高許容加速度を越える場合に
は、その点を加減速処理前通過点q(km)であると判
断する。最高許容加速度を越えると判断される場合、ま
ず、加減速処理前通過点通過時刻kmを算定し(ステッ
プ203)、加減速処理前通過点q(km)を算定し
(ステップ204)、これらを記憶しておく。次に、加
減速処理前通過点通過時刻kmの前後に加減速処理前加
減速開始時刻km−kp及び加減速処理前加減速終了時
刻km+knを設定する(ステップ205)。また、加
減速処理前加減速開始時刻km−kpと加減速処理後加
減速終了時刻km+knより加減速開始位置q(km−
kn)及び加減速終了位置q(km+kn)を算出する
(ステップ206)。次に、加減速処理前加減速開始時
刻km−kp、加減速処理前加減速終了時刻km+k
n、加減速処理前通過点通過時刻km、加減速開始位置
q(km−kp)、加減速終了位置q(km+kn)及
び加減速処理前通過点位置q(km)をもとに、加減速
処理前前半平均速度wp及び加減速処理前後半平均速度
wnを算出する(ステップ207)。これら二つの平均
速度と通過速度パラメータ指定装置3で指定された通過
速度パラメータrをもとに加減速処理後通過速度wcb
を算出する(ステップ208)。
FIGS. 14 and 15 are flowcharts showing the processing procedure in the acceleration / deceleration processing device 2. According to the figure, the acceleration / deceleration processing device 2 first calculates the acceleration of each axis of the robot for each point of the trajectory before the acceleration / deceleration processing, which is the output of the trajectory generation device 1 (step 201). Based on the result, in the over-acceleration detecting step 202, if any one of the axes exceeds the preset maximum allowable acceleration, it is determined that the point is the passing point q (km) before the acceleration / deceleration processing. I do. If it is determined that the acceleration exceeds the maximum allowable acceleration, first, a passing point km before acceleration / deceleration processing is calculated (step 203), and a passing point q (km) before acceleration / deceleration processing is calculated (step 204). Remember. Next, before and after the passing point km before the acceleration / deceleration processing, the acceleration / deceleration processing acceleration / deceleration start time km-kp and the acceleration / deceleration processing acceleration / deceleration end time km + kn are set (step 205). Further, the acceleration / deceleration start position km (km-km) is obtained from the acceleration / deceleration start time km-kp before the acceleration / deceleration processing and the acceleration / deceleration end time km + kn after the acceleration / deceleration processing.
kn) and the acceleration / deceleration end position q (km + kn) are calculated (step 206). Next, the acceleration / deceleration start time km-kp before the acceleration / deceleration processing, the acceleration / deceleration end time before acceleration / deceleration processing km + k
n, acceleration / deceleration start position q (km-kp), acceleration / deceleration end position q (km + kn), and acceleration / deceleration pass point q (km) before acceleration / deceleration processing. The first half average speed wp before the process and the second half average speed wn before the acceleration / deceleration process are calculated (step 207). The passing speed wcb after the acceleration / deceleration processing based on the two average speeds and the passing speed parameter r specified by the passing speed parameter specifying device 3.
Is calculated (step 208).

【0038】この後、加減速処理前前半平均速度wpと
加減速処理後通過速度wcbとロボットの各軸の最高許
容加速度amaxをもとに加減速処理後前半所要時間j
pを、また、加減速処理前後半平均速度wnと加減速処
理後通過速度wcbと各軸の最高許容加速度amaxを
もとに加減速処理後後半所要時間jnを、各々算出する
(ステップ209)。最後に加減速処理後前半所要時間
jp、加減速処理後後半所要時間jn、及び通過速度パ
ラメータrにより、加減速処理前加減速開始時刻及び加
減速処理前加減速終了時刻を再計算する(ステップ21
0)。そして、誤差を算出するステップ211におい
て、ステップ210で最後に算出された加減速処理前加
減速開始時刻の再計算値km−kp′及び加減速処理前
加減速終了時刻の再計算値km+kn′と、ステップ2
07で加減速処理前前半平均速度wp及び加減速処理前
後半平均速度wnを算出する時に用いられた加減速処理
前加減速開始時刻km−kp及び加減速処理後加減速終
了時刻km+knとの各々の差を取り、各々を誤差とす
る。収束判定ステップ212において、ステップ211
で求めた誤差のどちらかが予め設定された許容誤差より
大きいと判断される場合は、加減速処理前加減速開始時
刻km−kp及び加減速処理前加減速終了時刻km+k
nをステップ210で算出された加減速処理前加減速開
始時刻の計算値km−kp′及び加減速処理前加減速終
了時刻の再計算値km+kn′で置き換え(ステップ2
13)、再び加減速処理をする(ステップ206−21
2)。以上を繰り返し、ステップ207で計算に用いた
加減速処理前加減速開始時刻km−kp及び加減速処理
前加減速終了時刻km+knとステップ210で算出し
た再計算値km−kp′及び再計算値km+kn′との
差が設定された誤差以下となったら、加減速処理前加減
速開始時刻km−kp及び加減速処理前加減速終了時刻
km+knを用い加減速開始時速度w(km−kp)、
加減速終了時速度w(km+kn)、加減速処理後前半
所要時間jp、加減速処理後後半所要時間jn及び加減
速処理後通過速度wcbをもとに加減速処理後軌道及び
加減速処理後速度を算出し(ステップ214)、演算を
終了する。
Thereafter, based on the first half average speed wp before the acceleration / deceleration processing, the passing speed wcb after the acceleration / deceleration processing, and the maximum allowable acceleration amax of each axis of the robot, the first half required time j after the acceleration / deceleration processing
p, and the required second half time after acceleration / deceleration processing jn based on the average velocity wn before and after acceleration / deceleration processing, the passing speed wcb after acceleration / deceleration processing, and the maximum allowable acceleration amax of each axis, respectively (step 209). . Finally, the acceleration start time before acceleration / deceleration processing and the acceleration / deceleration end time before acceleration / deceleration processing are recalculated based on the first half required time after acceleration / deceleration processing jp, the second half required time after acceleration / deceleration processing, and the passing speed parameter r (step). 21
0). Then, in step 211 for calculating the error, the recalculated value km-kp ′ of the acceleration / deceleration start time before acceleration / deceleration processing and the recalculated value km + kn ′ of the acceleration / deceleration end time before acceleration / deceleration processing last calculated in step 210 are calculated. , Step 2
07, the acceleration / deceleration processing acceleration / deceleration start time km-kp and the acceleration / deceleration processing acceleration / deceleration end time km + kn used when calculating the acceleration / deceleration processing first half average speed wp and the acceleration / deceleration processing second half average speed wn, respectively. , And each is regarded as an error. At convergence determination step 212, step 211
If it is determined that any of the errors obtained in (1) is larger than the preset allowable error, the acceleration / deceleration processing pre-acceleration / deceleration start time km-kp and the acceleration / deceleration pre-acceleration / deceleration end time km + k
n is replaced with the calculated value km-kp ′ of the acceleration / deceleration start time before acceleration / deceleration processing and the recalculated value km + kn ′ of the acceleration / deceleration end time before acceleration / deceleration processing calculated in step 210 (step 2).
13) Perform acceleration / deceleration processing again (steps 206-21)
2). The above is repeated, and the acceleration / deceleration start time km-kp before acceleration / deceleration processing and the acceleration / deceleration end time km + kn before acceleration / deceleration processing used in the calculation in step 207 and the recalculated value km-kp ′ and the recalculated value km + kn calculated in step 210. When the difference between the acceleration and the deceleration becomes equal to or less than the set error, the acceleration / deceleration start speed w (km-kp) is calculated using the acceleration / deceleration processing pre-acceleration start time km-kp and the acceleration / deceleration processing pre-acceleration / deceleration end time km + kn.
The trajectory after acceleration / deceleration processing and the speed after acceleration / deceleration processing based on the acceleration / deceleration end velocity w (km + kn), the first half required time after acceleration / deceleration processing jp, the second required time after acceleration / deceleration processing jn, and the passing velocity wcb after acceleration / deceleration processing. Is calculated (step 214), and the calculation is terminated.

【0039】図16は、加減速処理前前半平均速度wp
及び加減速処理前後半平均速度wnを算出するステップ
207の処理内容を説明する図である。加減速開始位置
q(km−kp)、加減速処理前通過点q(km)及び
加減速開始前前半処理時間kpより、図16に示す式に
よって加減速処理前前半平均速度wpを算出する。ま
た、加減速開始前通過点q(km)及び加減速終了位置
q(km+kn)及び加減速処理前後半処理時間knよ
り、図16に示す式によって加減速処理前後半平均速度
wnを算出する。
FIG. 16 shows the first half average speed wp before the acceleration / deceleration processing.
FIG. 9 is a diagram for explaining the processing content of step 207 for calculating an average speed wn before and after the acceleration / deceleration process. From the acceleration / deceleration start position q (km-kp), the passing point before acceleration / deceleration processing q (km), and the acceleration / deceleration start first half processing time kp, the acceleration / deceleration processing first half average speed wp is calculated by the equation shown in FIG. Further, from the passing point q (km) before acceleration / deceleration start, the acceleration / deceleration end position q (km + kn), and the latter half processing time kn before acceleration / deceleration processing, the second half average velocity wn before acceleration / deceleration processing is calculated by the formula shown in FIG.

【0040】図17は、加減速処理後通過速度wcbを
算出するステップ208を説明する図である。加減速処
理前前半平均速度wp、加減速処理前後半平均速度wn
及び通過速度パラメータ指定装置3で指定された通過速
度パラメータrを用いて、図17で示す式により加減速
処理後通過速度wcbが算出される。
FIG. 17 is a view for explaining step 208 for calculating the passing speed wcb after the acceleration / deceleration processing. First half average speed wp before acceleration / deceleration processing, second half average speed wn before acceleration / deceleration processing
Using the passing speed parameter r specified by the passing speed parameter specifying device 3 and the passing speed parameter r, the passing speed wcb after the acceleration / deceleration process is calculated by the equation shown in FIG.

【0041】図18は加減速処理後前半所要時間jp及
び加減速処理後後半所要時間jnを算出するステップ2
09を説明する図である。同図に示す式によりベクトル
である加減速処理前前半平均速度wp、加減速処理前後
半平均速度wn、加減速処理後通過速度wcbそれぞれ
のロボットの各軸の成分wp(l)、wn(l)及びw
cb(l)並びに各軸の最大許容加速度amax(l)
から加減速処理後前半所要時間jp及び加減速処理後後
半所要時間jnが得られる。ただし、lはロボットの各
軸を示す1から始まる整数を示し、例えばwp(2)は
加減速処理前前半平均速度wpの2番目の軸の成分を表
し、maxl はすべてのlについての最大値を示す。
FIG. 18 is a step 2 for calculating the first half required time jp after the acceleration / deceleration processing and the second half required time jn after the acceleration / deceleration processing.
FIG. According to the formulas shown in the figure, the first half average speed wp before the acceleration / deceleration processing, the second half average velocity before the acceleration / deceleration processing wn, and the passing velocity wcb after the acceleration / deceleration processing are vectors of the components wp (l) and wn (l) of the respective robots. ) And w
cb (l) and the maximum allowable acceleration amax (l) of each axis
Thus, the first half required time jp after the acceleration / deceleration processing and the second half required time jn after the acceleration / deceleration processing are obtained. Maximum However, l is an integer beginning with 1 indicating the respective axes of the robot, for example, wp (2) represents the component of the second axis of the pre-deceleration processing half the average speed wp, max l for all l of Indicates a value.

【0042】図19は加減速処理前加減速開始時刻、及
び加減速処理前加減速終了時刻を再計算するステップ2
10を説明する図である。同図に示す式により、加減速
処理後前半所要時間jp、加減速処理後後半所要時間j
n及び通過速度パラメータ指定装置2の出力である通過
速度パラメータrによって加減速処理前加減速開始時刻
の再計算値km−kp′及び加減速処理前加減速終了時
刻の再計算値km+kn′が得られる。
FIG. 19 is a step 2 for recalculating the acceleration / deceleration start time before the acceleration / deceleration processing and the acceleration / deceleration end time before the acceleration / deceleration processing.
FIG. The first half required time after acceleration / deceleration processing jp and the second half required time after acceleration / deceleration processing j are obtained by the equations shown in FIG.
The recalculated value km-kp 'of the acceleration / deceleration start time before acceleration / deceleration processing and the recalculated value km + kn' of the acceleration / deceleration end time before acceleration / deceleration processing are obtained from n and the passing velocity parameter r output from the passing velocity parameter specifying device 2. Can be

【0043】図20は加減速処理後軌道を算出するステ
ップ214を説明する図である。同図に示す式により、
加減速処理後前半所要時間jp、加減速処理後後半所要
時間jn、加減速処理後通過速度wcb、加減速開始時
速度w(km−kp)、加減速終了時速度w(km+k
n)、加減速開始位置q(km−kp)及び加減速終了
位置q(km+kn)によって、加減速処理後軌道q′
(j)及び加減速処理後速度w′(j)が得られる。具
体的には、まず、加速の前半、すなわちjm−jp<j
<jmにおける加減速処理後前半加速度ap′をwc
b、w(km−kp)、及びjpを基に、図20内に示
された式にしたがって算出し、加減速処理後前半加速度
ap′を用いて加速の前半における加減速処理後軌道
q′(j)及び加減速処理後速度w′(j)を算出す
る。同様に加速の後半、すなわちjm≦j<jm+jn
における加減速処理後後半加速度an′をwcb、w
(km+kn)、及びjnを基に図19内に示された式
にしたがって算出し、加減速処理後後半加速度an′を
用いて加速の後半における加減速処理後軌道q′(j)
及び加減速処理後速度w′(j)を算出する。このよう
な演算により加減速開始位置q(km−kp)及び加減
速終了位置q(km+kn)において滑らかに接続し、
且つ加減速処理前通過点q(km)付近で加減速処理後
通過速度wcbを達成するような加減速処理後軌道q′
(j)及び加減速処理後速度w′(j)を得る。
FIG. 20 is a diagram for explaining the step 214 for calculating the trajectory after the acceleration / deceleration processing. According to the equation shown in FIG.
First half required time after acceleration / deceleration processing jp, second half required time after acceleration / deceleration processing, passing speed wcb after acceleration / deceleration processing, speed w at acceleration / deceleration start (km-kp), speed w at acceleration / deceleration end w (km + k)
n), the acceleration / deceleration processing trajectory q ′ based on the acceleration / deceleration start position q (km−kp) and the acceleration / deceleration end position q (km + kn).
(J) and the speed w '(j) after the acceleration / deceleration processing are obtained. Specifically, first, the first half of the acceleration, that is, jm-jp <j
<Jm after acceleration / deceleration processing the first half acceleration ap ′ is wc
Based on b, w (km-kp), and jp, the trajectory q 'after acceleration / deceleration processing in the first half of acceleration is calculated using the first half acceleration ap' after acceleration / deceleration processing. (J) and the speed after acceleration / deceleration processing w ′ (j) are calculated. Similarly, the latter half of acceleration, ie, jm ≦ j <jm + jn
The second half acceleration an 'after the acceleration / deceleration processing in wcb, w
Based on (km + kn) and jn, the trajectory q ′ (j) after acceleration / deceleration processing in the latter half of acceleration is calculated using the latter half acceleration an ′ after acceleration / deceleration processing.
And the speed w '(j) after the acceleration / deceleration processing is calculated. By such an operation, the connection is smoothly made at the acceleration / deceleration start position q (km-kp) and the acceleration / deceleration end position q (km + kn),
And the trajectory q ′ after the acceleration / deceleration processing such that the post-acceleration / deceleration processing passage speed wcb is achieved near the passing point q (km) before the acceleration / deceleration processing.
(J) and the speed w '(j) after the acceleration / deceleration processing are obtained.

【0044】以上が本発明の実施例である。同実施例に
よると、通過速度パラメータrを0≦r≦1の範囲でユ
ーザーが指定することで、用途に合わせた加減速プロフ
ァイルが実現される。より具体的には、 ・r=0のときは、加減速処理終了位置の通過時刻が、
加減速処理を行わない場合、すなわち許容加速度が無限
大の場合の同位置の通過時刻に近くなるように制御さ
れ、 ・r=1のときは、加減速処理を行わない場合と同じ、
すなわち当初の指定通りの軌道を通るように制御され
る。
The above is the embodiment of the present invention. According to this embodiment, an acceleration / deceleration profile suited to the application is realized by the user designating the passing speed parameter r in the range of 0 ≦ r ≦ 1. More specifically, when r = 0, the passing time at the acceleration / deceleration processing end position is
When acceleration / deceleration processing is not performed, that is, control is performed so as to be close to the passage time at the same position when the allowable acceleration is infinite. When r = 1, the same as when acceleration / deceleration processing is not performed,
That is, control is performed so as to follow the orbit as originally specified.

【0045】また、本実施例軌道生成装置1と加減速処
理装置2の両方について、関節座標空間で処理しても、
直交座標空間で処理しても、その他任意の座標系で処理
しても、同様の効果が得られることは、加減速処理の仕
方がより明らかである。従って、各々の装置間に適当な
座標変換装置を挿入しても所期の効果が得られる。
Further, even if both the trajectory generating device 1 and the acceleration / deceleration processing device 2 are processed in the joint coordinate space,
It is clear that the same effect can be obtained regardless of whether the processing is performed in the rectangular coordinate space or in any other coordinate system. Therefore, the desired effect can be obtained even if an appropriate coordinate conversion device is inserted between the devices.

【0046】なお、ここまで説明した実施例では、加減
速処理後通過速度を加減速処理前軌道における加減速開
始位置から加減速処理前通過点までの平均速度と加減速
処理前通過点から加減速終了位置までの平均値の定数倍
によって指定したが、以下による方法によって加減速処
理後通過速度を指定しても同様の効果が得られる。すな
わち、加減速開始位置から加減速処理前通過点までの平
均速度と加減速処理前通過点から加減速終了位置までの
平均速度の一般的な線形結合によって指定する方法、加
減速開始位置での速度と加減速終了位置での速度の線形
結合によって指定する方法、加減速処理前通過点直前の
移動速度と加減速処理前通過点直後の移動速度の線形結
合によって指定する方法によっても同様の効果が得られ
る。これらを次の本発明の他の実施例で示す。なお、次
に示す本発明の他の実施例においても図1に示す構成は
同じで、加減速処理装置2における処理手順が図14及
び図15に示すものと異なる。
In the embodiment described so far, the passing speed after the acceleration / deceleration processing is determined by calculating the average speed from the acceleration / deceleration start position on the trajectory before the acceleration / deceleration processing to the passing point before the acceleration / deceleration processing, and the acceleration from the passing point before the acceleration / deceleration processing. Although specified by a constant multiple of the average value up to the deceleration end position, the same effect can be obtained by specifying the passing speed after the acceleration / deceleration processing by the following method. That is, a method in which the average speed from the acceleration / deceleration start position to the passing point before acceleration / deceleration processing and the average speed from the passing point before acceleration / deceleration processing to the acceleration / deceleration end position are specified by a general linear combination. The same effect can be obtained by a method that is specified by a linear combination of the speed and the speed at the acceleration / deceleration end position, or by a method that is specified by a linear combination of the movement speed immediately before the passing point before the acceleration / deceleration processing and the movement speed immediately after the passing point before the acceleration / deceleration processing. Is obtained. These are shown in the following other embodiments of the present invention. The configuration shown in FIG. 1 is the same in other embodiments of the present invention described below, and the processing procedure in the acceleration / deceleration processing device 2 is different from those shown in FIGS.

【0047】本発明の他の実施例は、加減速処理後通過
速度を、加減速開始位置から加減速処理前通過点までの
平均速度と加減速処理前通過点から加減速終了位置まで
の平均速度の一般的な線形結合によって指定する場合
で、図14及び15に示すフローチャート内のステップ
208で図21に示す処理を行い、また同フローチャー
ト内のステップ210で図22に示す処理を行うように
すればよい。すなわち、加減速処理後通過速度wcb
は、加減速処理前前半平均速度wp及び加減速処理前後
半平均速度wn及び通過速度パラメータ指定装置3で指
定された通過速度パラメータr及び予め定められた定数
rp及びrnを用いて、図21で示す手順によって算出
する。また、図22に示す手順にしたがって、加減速処
理後前半所要時間jpと加減速処理後後半所要時間jn
と通過速度パラメータ指定装置2の出力である通過速度
パラメータr及び予め定められた定数rp及びrnによ
って加減速処理前加減速開始時刻の再計算値km−k
p′及び加減速処理前加減速終了時刻の再計算値km+
kn′が得られる。
In another embodiment of the present invention, the passing speed after the acceleration / deceleration process is calculated by calculating the average speed from the acceleration / deceleration start position to the passing point before the acceleration / deceleration process and the average speed from the passing point before the acceleration / deceleration process to the acceleration / deceleration end position. When the speed is designated by a general linear combination, the processing shown in FIG. 21 is performed in step 208 in the flowcharts shown in FIGS. 14 and 15, and the processing shown in FIG. 22 is performed in step 210 in the flowchart. do it. That is, the passing speed wcb after the acceleration / deceleration processing
The first half average speed wp before the acceleration / deceleration processing, the second half average speed wn before the acceleration / deceleration processing, the passing speed parameter r specified by the passing speed parameter specifying device 3 and the predetermined constants rp and rn are used in FIG. It is calculated according to the procedure shown. According to the procedure shown in FIG. 22, the first half required time after acceleration / deceleration processing jp and the second half required time after acceleration / deceleration processing jn
The re-calculated value km-k of the acceleration / deceleration start time before the acceleration / deceleration processing is determined by the passing speed parameter r output from the passing speed parameter specifying device 2 and the predetermined constants rp and rn.
p ′ and recalculated value km + of acceleration / deceleration end time before acceleration / deceleration processing
kn 'is obtained.

【0048】同実施例においてrp=rn=1/2とす
ると、最初に説明した実施例と等しくなる。加減速処理
後通過速度を図17で示すようにwcb=(1−r)・
(wp+wn)/2によって算出する代わりに、図21
で示すように(1−r)・(rp・wp+rn・wn)
によって算出することで、加減速の前半における誤差と
加減速の後半における誤差の量を任意に変更できる、と
いう効果が得られる。あるいは、加減速処理通過点の位
置、または加減速処理通過速度を任意に調整できる、と
いう効果が得られる。例えば、rp=rn=1/2のと
き、r=0として加減速処理すると図29のような軌跡
が得られるとすると、rp=1/2、rn<1/2とし
て加減速処理すると図30のように加減速処理後通過点
の位置が加減速前軌道の前半の部分に近づき、rp<1
/2、rn=1/2として加減速すると、図31のよう
に加減速処理後通過点の位置が加減速処理前軌道の後半
の部分に近づく。
In this embodiment, if rp = rn = 1/2, the result is the same as that of the first embodiment. As shown in FIG. 17, the passing speed after the acceleration / deceleration processing is expressed as wcb = (1-r).
Instead of calculating by (wp + wn) / 2, FIG.
As shown by (1-r) · (rp · wp + rn · wn)
By the calculation, the effect of being able to arbitrarily change the amount of the error in the first half of the acceleration / deceleration and the error in the second half of the acceleration / deceleration can be obtained. Alternatively, an effect is obtained that the position of the acceleration / deceleration processing passing point or the acceleration / deceleration processing passing speed can be arbitrarily adjusted. For example, if rp = rn = 1/2, and if acceleration / deceleration processing is performed with r = 0, a trajectory as shown in FIG. 29 is obtained. If acceleration / deceleration processing is performed with rp = 1/2 and rn <1/2, FIG. And the position of the passing point after the acceleration / deceleration processing approaches the first half of the trajectory before acceleration / deceleration, and rp <1
When acceleration / deceleration is performed at / 2, rn = 1/2, the position of the passing point after the acceleration / deceleration processing approaches the latter half of the trajectory before the acceleration / deceleration processing as shown in FIG.

【0049】本発明のさらに他の実施例は、加減速処理
後通過速度を、加減速開始位置での速度である加減速処
理前開始時速度と加減速終了位置での速度である加減速
処理前終了時速度の線形結合によって指定する場合で、
図1の加減速処理装置2は図23及び24で示すフロー
チャートで加減速処理を実施する。図23及び24のフ
ローチャートは図14及び15のフローチャートと比較
するとステップ201〜206、211〜214は同じ
処理を行い、図23及び24のフローチャートではステ
ップ207がなくステップ208の代わりにステップ2
17を、ステップ209の代わりにステップ219をス
テップ210の代わりにステップ216を行う。ステッ
プ217では図25に示すように加減速処理後通過速度
wcbを加減速処理前開始時速度wp′及び加減速処理
前終了時速度wn′及び通過速度パラメータ指定装置3
で指定された通過速度パラメータr及び予め定められた
定数rp及びrnを用いて算出する。ステップ219で
は加減速処理後前半所要時間jp及び加減速処理後後半
所要時間jnを図15のステップ209とほぼ同様にj
p=maxl (|wcb(l)−wp′(l)|/am
ax(l)),jn=maxl (|wn′(l)−wc
b(l)|/amax(l))より求める。ここでw
p′(l)はベクトルである加減速処理前開始時速度w
p′のl番目の要素であり、wn′(l)はベクトルで
ある加減速処理前終了時速度wn′のl番目の要素であ
る。また、ステップ216では図22に示すように加減
速処理後前半所要時間jpと加減速処理後後半所要時間
jnと通過速度パラメータ指定装置2の出力である通過
速度パラメータr及び予め定められた定数rp及びrn
によって加減速処理前加減速開始時刻の再計算値km−
kp′及び加減速処理前加減速終了時刻の再計算値km
+kn′を得る。
In still another embodiment of the present invention, the passing speed after the acceleration / deceleration processing is set to the acceleration speed before the acceleration / deceleration processing at the acceleration / deceleration start position and the acceleration / deceleration processing at the acceleration / deceleration end position. If specified by a linear combination of pre-end velocities,
The acceleration / deceleration processing device 2 in FIG. 1 performs the acceleration / deceleration processing according to the flowcharts shown in FIGS. The flowcharts of FIGS. 23 and 24 are the same as those of FIGS. 14 and 15 in steps 201 to 206 and 211 to 214. The flowcharts of FIGS. 23 and 24 have no step 207 and step 2 instead of step 208.
Step 17 is performed instead of step 209, and step 216 is performed instead of step 210. In step 217, as shown in FIG. 25, the passing speed wcb after the acceleration / deceleration process is changed to the starting speed wp 'before the acceleration / deceleration process, the ending speed wn' before the acceleration / deceleration process, and the passing speed parameter specifying device 3.
Is calculated using the passing speed parameter r designated by and predetermined constants rp and rn. In step 219, the first half required time after acceleration / deceleration processing jp and the second half required time after acceleration / deceleration processing jn are set to j in substantially the same manner as in step 209 in FIG.
p = max l (| wcb ( l) -wp '(l) | / am
ax (l)), jn = max l (| wn '(l) -wc
b (l) | / amax (l)). Where w
p ′ (l) is a vector of the speed w at the start before the acceleration / deceleration processing which is a vector.
p 'is the l-th element, and wn' (l) is the l-th element of the pre-acceleration / deceleration end speed wn ', which is a vector. In step 216, as shown in FIG. 22, the first half required time after acceleration / deceleration processing jp, the second half required time after acceleration / deceleration processing jn, the passing speed parameter r output from the passing speed parameter designating device 2, and a predetermined constant rp And rn
The recalculated value of the acceleration / deceleration start time before acceleration / deceleration processing is km-
kp 'and recalculated value km of acceleration / deceleration end time before acceleration / deceleration processing
+ Kn ′.

【0050】本発明のさらに他の実施例は、加減速処理
後通過速度を、加減速処理前通過点直前の移動速度であ
る加減速処理前通過点直前速度と加減速前通過点直後の
移動速度である加減速処理前通過点直前速度の線形結合
によって指定する場合で、加減速処理装置2は、図26
で示すフローチャートに従って処理する。同実施例の具
体的な適用は、直線軌道で構成される軌道を追跡する処
理の場合である。図26において、軌道生成装置1の出
力である加減速処理前軌道の各点についてロボット各軸
の加速度が算出される(ステップ201)。その結果を
もとに、過加速度検出ステップ202において、どれか
一つの軸でも予め設定された最高許容加速度を越える場
合には、その点を加減速処理前通過点q(km)である
と判断する。最高許容加速度を越えると判断される場
合、まず、加減速処理前通過点通過時刻kmを算定し
(ステップ203)、加減速処理前通過点q(km)を
算定する(ステップ204)。次に加減速処理後通過速
度wcbを、加減速処理前通過点直前速度wp″及び加
減速処理前通過点直後速度wn″及び通過速度パラメー
タ指定装置3で指定された通過速度パラメータr及び予
め定められた定数rp及びrnを用いて、図28に示す
手順によって算出する(ステップ218)。
In still another embodiment of the present invention, the passing speed after the acceleration / deceleration processing is set to the speed immediately before the passing point before the acceleration / deceleration processing, which is the moving speed immediately before the passing point before the acceleration / deceleration processing, and the movement immediately after the passing point before the acceleration / deceleration processing. In the case where the speed is specified by a linear combination of the speed immediately before the passing point before the acceleration / deceleration processing, the acceleration / deceleration processing device 2
The processing is performed according to the flowchart shown in FIG. A specific application of this embodiment is a case of a process of tracking a trajectory configured by a straight trajectory. In FIG. 26, the acceleration of each axis of the robot is calculated for each point of the trajectory before the acceleration / deceleration processing, which is the output of the trajectory generation device 1 (step 201). Based on the result, in the over-acceleration detecting step 202, if any one of the axes exceeds the preset maximum allowable acceleration, it is determined that the point is the passing point q (km) before the acceleration / deceleration processing. I do. When it is determined that the acceleration exceeds the maximum allowable acceleration, first, a passing point km before acceleration / deceleration processing is calculated (step 203), and a passing point q (km) before acceleration / deceleration processing is calculated (step 204). Next, the passing speed wcb after the acceleration / deceleration process is determined in advance by the speed wp ″ immediately before the passing point before the acceleration / deceleration process, the speed wn ″ immediately after the passing point before the acceleration / deceleration process, the passing speed parameter r specified by the passing speed parameter specifying device 3, and the predetermined value. Using the obtained constants rp and rn, calculation is performed according to the procedure shown in FIG. 28 (step 218).

【0051】次に、加減速処理後前半所要時間jp及び
加減速処理後後半所要時間jnは、加減速処理前通過点
直前速度wp″及び加減速処理前通過点直後速度wn″
及び加減速処理後通過速度wcb及び最大許容加速度a
maxを用いて、図27に示す手順にしたがって算出す
る(ステップ220)。次に加減速処理後前半所要時間
jpと加減速処理後後半所要時間jnと通過速度パラメ
ータ指定装置2の出力である通過速度パラメータr及び
予め定められた定数rp及びrnによって加減速処理前
加減速開始時刻km−kp′及び加減速処理前加減速終
了時刻km+kn′を算出する(ステップ216)。最
後に、加減速開始時速度w(km−kp)、加減速終了
時速度w(km+kn)、加減速処理後前半所要時間j
p、加減速処理後後半所要時間jn及び加減速処理後通
過速度wcbをもとに加減速処理後軌道及び加減速処理
後速度を算出し(ステップ214)。演算を終了する。
Next, the first half required time jp after the acceleration / deceleration processing and the second half required time jn after the acceleration / deceleration processing are the speed wp ″ immediately before the passing point before acceleration / deceleration processing and the speed wn ″ immediately after the passing point before acceleration / deceleration processing.
And the passing speed wcb and the maximum allowable acceleration a after the acceleration / deceleration processing
It is calculated according to the procedure shown in FIG. 27 using max (step 220). Next, acceleration / deceleration before acceleration / deceleration processing is performed based on the first half required time after acceleration / deceleration processing jp, the second half required time after acceleration / deceleration processing, the passing speed parameter r output from the passing speed parameter specifying device 2 and predetermined constants rp and rn. The start time km−kp ′ and the acceleration / deceleration end time km + kn ′ before the acceleration / deceleration processing are calculated (step 216). Finally, acceleration / deceleration start speed w (km-kp), acceleration / deceleration end speed w (km + kn), first half required time j after acceleration / deceleration processing
Based on p, the latter half required time after acceleration / deceleration processing jn and the passing velocity wcb after acceleration / deceleration processing, the trajectory after acceleration / deceleration processing and the velocity after acceleration / deceleration processing are calculated (step 214). The operation ends.

【0052】[0052]

【発明の効果】以上説明したように本発明は、ロボット
の動作軸のうち少なくとも一つの軸において最高許容加
速度を越える加速度を発生するロボット先端軌道上の加
減速処理前通過点について、ロボット先端の同点の付近
を通過する際の速度を通過速度パラメータを使って指定
した上で加減速処理することによって、軌道追従の際の
移動スピードを指定可能なロボット制御装置及び方法が
得られる。すなわち、加減速処理前通過点付近での通過
速度が速くなるように通過速度パラメータを指定する
と、軌道生成装置で生成された軌道に対する追従精度は
下がるが、ロボットの先端の移動速度の均一性が保持さ
れる。反対に、加減速処理前通過点付近での通過速度が
遅くなるように通過速度パラメータを指定すると、移動
スピードの均一性は犠牲になるが、軌道追従精度が向上
する。また、通過速度パラメータを上記の二つの場合の
中間の任意の値に設定することにより、速度の均一性と
軌道追従精度のトレードオフを定量的かつ連続的に指定
することが可能となる。従って、ロボット作業の内容に
よって速度の均一性や軌道追従精度を適当に設定するこ
とが可能な、作業性の高いロボット制御装置が得られ
る。
As described above, according to the present invention, the passing point before the acceleration / deceleration processing on the robot tip trajectory on the robot tip trajectory that generates an acceleration exceeding the maximum allowable acceleration in at least one of the motion axes of the robot is described. By specifying the speed at the time of passing near the same point using the passing speed parameter and performing acceleration / deceleration processing, a robot control apparatus and method capable of specifying the moving speed at the time of following the trajectory can be obtained. In other words, if the passing speed parameter is specified so that the passing speed near the passing point before acceleration / deceleration processing becomes faster, the accuracy of following the trajectory generated by the trajectory generator decreases, but the uniformity of the moving speed of the robot's tip becomes lower. Will be retained. Conversely, if the passing speed parameter is specified so that the passing speed near the passing point before the acceleration / deceleration process becomes slow, the uniformity of the moving speed is sacrificed, but the trajectory following accuracy is improved. Also, by setting the passing speed parameter to an arbitrary value intermediate between the above two cases, it is possible to quantitatively and continuously designate a trade-off between speed uniformity and trajectory following accuracy. Therefore, it is possible to obtain a robot control device with high workability, which can set speed uniformity and trajectory follow-up accuracy appropriately depending on the contents of the robot work.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例のロボット制御装置のブロッ
ク図である。
FIG. 1 is a block diagram of a robot control device according to an embodiment of the present invention.

【図2】従来のロボット制御装置のブロック図である。FIG. 2 is a block diagram of a conventional robot control device.

【図3】図2に示す従来のロボット制御装置のロボット
先端軌道を示す図である。
FIG. 3 is a diagram showing a robot tip trajectory of the conventional robot control device shown in FIG. 2;

【図4】従来の他のロボット制御装置のロボットの関節
の動きを示す図である。
FIG. 4 is a diagram showing movement of a joint of a robot of another conventional robot control device.

【図5】図4にロボットの関節の動きを示した従来のロ
ボット制御装置のロボット先端軌道を示す図である。
FIG. 5 is a diagram showing the robot tip trajectory of the conventional robot control device showing the movement of the joint of the robot in FIG. 4;

【図6】従来の他のロボット制御装置の加減速処理を説
明する図である。
FIG. 6 is a diagram illustrating acceleration / deceleration processing of another conventional robot control device.

【図7】図6で示した加減速処理によるロボット先端軌
道を示す図である。
FIG. 7 is a diagram showing a robot tip trajectory by the acceleration / deceleration processing shown in FIG. 6;

【図8】従来の他のロボット制御装置のロボットの関節
の動きを示す図である。
FIG. 8 is a diagram showing movement of a joint of a robot of another conventional robot control device.

【図9】図1に示す実施例による加減速処理前軌道と加
減速処理後軌道とを示す図である。
9 is a diagram showing a trajectory before acceleration / deceleration processing and a trajectory after acceleration / deceleration processing according to the embodiment shown in FIG. 1;

【図10】図1に示す実施例における加減速処理前通過
点q(km)、加減速処理後通過点q′(jm)及び加
減速処理後通過速度(wcb)を示す図である。
10 is a diagram showing a passing point q (km) before acceleration / deceleration processing, a passing point q '(jm) after acceleration / deceleration processing, and a passing speed (wcb) after acceleration / deceleration processing in the embodiment shown in FIG.

【図11】図1に示す実施例における加減速開始位置q
(km−kp)、加減速終了位置q(km+kp)、加
減速処理前前半平均速度wp及び加減速処理前後半平均
速度wnを示す図である。
11 is an acceleration / deceleration start position q in the embodiment shown in FIG.
(Km-kp), acceleration / deceleration end position q (km + kp), first-half average speed wp before acceleration / deceleration processing, and second-half average speed before acceleration / deceleration processing wn.

【図12】図1に示す実施例における加減速処理前軌道
とロボットの一つの軸のX方向速度及びX方向加速度と
の関係を示す図である。
12 is a diagram showing a relationship between a trajectory before acceleration / deceleration processing and an X-direction speed and an X-direction acceleration of one axis of the robot in the embodiment shown in FIG. 1;

【図13】図1に示す実施例における加減速処理後軌道
とロボットの一つの軸のX方向速度及びX方向加速度と
の関係を示す図である。
13 is a diagram showing a relationship between a trajectory after acceleration / deceleration processing and an X-direction speed and an X-direction acceleration of one axis of the robot in the embodiment shown in FIG. 1;

【図14】図1の加減速処理装置2の処理手順の前半部
分を示すフローチャートである。
FIG. 14 is a flowchart showing a first half of a processing procedure of the acceleration / deceleration processing device 2 of FIG. 1;

【図15】図1の加減速処理装置2の処理手順の後半部
分を示すフローチャートである。
15 is a flowchart showing the latter half of the processing procedure of the acceleration / deceleration processing device 2 in FIG.

【図16】図15中のステップ207での加減速処理前
前半平均速度wp及び加減速処理前後半平均速度wnの
算出を説明する図である。
16 is a diagram illustrating calculation of a first half average speed before acceleration / deceleration processing wp and a second half average speed before acceleration / deceleration processing wn in step 207 in FIG. 15;

【図17】図15中のステップ208での加減速処理通
過速度wcpの算出を説明する図である。
FIG. 17 is a diagram illustrating calculation of an acceleration / deceleration processing passage speed wcp in step 208 in FIG. 15;

【図18】図15中のステップ209での加減速処理後
前半所要時間jp及び加減速処理後後半所要時間jnの
算出を説明する図である。
18 is a diagram illustrating the calculation of the first half required time after acceleration / deceleration processing jp and the second half required time after acceleration / deceleration processing jn in step 209 in FIG. 15;

【図19】図15中のステップ210での加減速処理前
加減速開始時刻km−kp′及び加減速処理前加減速終
了時刻km+kn′の再計算を説明する図である。
FIG. 19 is a diagram for explaining recalculation of the acceleration / deceleration start time km-kp ′ before acceleration / deceleration processing and the acceleration / deceleration end time km + kn ′ before acceleration / deceleration processing in step 210 in FIG. 15;

【図20】図15中のステップ214での加減速処理後
軌道q′(j)及び加減速処理後速度w′(j)の算出
を説明する図である。
20 is a diagram illustrating calculation of a trajectory q ′ (j) after acceleration / deceleration processing and a speed w ′ (j) after acceleration / deceleration processing in step 214 in FIG. 15;

【図21】本発明の他の実施例での加減速処理後通過速
度wcbの算出を説明する図である。
FIG. 21 is a diagram for explaining calculation of a passing speed wcb after acceleration / deceleration processing in another embodiment of the present invention.

【図22】図21で説明した実施例の加減速処理前加減
速開始時刻km−kp′及び加減速処理前加減速終了時
刻km+kn′の再計算を説明する図である。
FIG. 22 is a diagram illustrating recalculation of the acceleration / deceleration start time km-kp ′ before acceleration / deceleration processing and the acceleration / deceleration end time before acceleration / deceleration processing km + kn ′ in the embodiment described with reference to FIG. 21;

【図23】本発明のさらに他の実施例での加減速処理装
置2の処理手順の前半部分を示すフローチャートであ
る。
FIG. 23 is a flowchart showing a first half of a processing procedure of the acceleration / deceleration processing device 2 according to still another embodiment of the present invention.

【図24】図23に前半部分を示す処理手順の後半部分
を示すフローチャートである。
FIG. 24 is a flowchart showing the second half of the processing procedure showing the first half in FIG. 23;

【図25】図24中のステップ217での加減速処理後
通過速度wcbの算出を説明する図である。
25 is a diagram illustrating calculation of a passing speed wcb after acceleration / deceleration processing in step 217 in FIG. 24.

【図26】本発明のさらに他の実施例での加減速処理装
置2の処理手順を示す図である。
FIG. 26 is a diagram showing a processing procedure of the acceleration / deceleration processing device 2 according to still another embodiment of the present invention.

【図27】図26中のステップ220での加減速処理後
前半所要時間jp及び加減速処理後後半所要時間jnの
算出を説明する図である。
27 is a diagram illustrating the calculation of the first half required time after acceleration / deceleration processing jp and the second half required time after acceleration / deceleration processing jn in step 220 in FIG. 26;

【図28】図26中のステップ218での加減速処理後
通過速度wcbの算出を説明する図である。
28 is a diagram illustrating calculation of a passing speed wcb after acceleration / deceleration processing in step 218 in FIG.

【図29】最初の実施例による、加減速処理結果の一例
を示す図である。
FIG. 29 is a diagram illustrating an example of an acceleration / deceleration processing result according to the first embodiment.

【図30】第2の実施例において、rp=1/2、rn
<1/2とした場合の加減速処理結果を示す図である。
FIG. 30 shows rp = 1/2, rn in the second embodiment.
FIG. 9 is a diagram illustrating an acceleration / deceleration processing result when <1/2 is set.

【図31】第2の実施例において、rp>1/2、rn
=1/2とした場合の加減速処理結果を示す図である。
FIG. 31 shows rp> 1 /, rn in the second embodiment.
FIG. 14 is a diagram illustrating an acceleration / deceleration processing result when == 2;

【符号の説明】[Explanation of symbols]

1 軌道生成装置 2 加減速処理指定装置 3 サーボ処理装置 4 ロボットアーム 5 通過速度パラメータ指定装置 11 各軸目標速度発生部 12 加速度検出部 13 軸間協調部 14 目標速度変換部 amax 最高許容加速度 r 通過速度パラメータ rp 加減速処理後通過速度を算出するための定数 rn 加減速処理後通過速度を算出するための定数 k 加減速処理前軌道を指定するサンプル時刻 j 加減速処理後軌道を指定するサンプル時刻 km 加減速処理前通過点を通過するサンプル時刻 jm 加減速処理後通過点を通過するサンプル時刻 kp 加減速処理前軌道における加減速開始位置から加
減速処理前通過点までの移動に要するサンプル時間 kn 加減速処理前軌道における加減速処理前通過点か
ら加減速終了位置までの移動に要するサンプル時間 jp 加減速処理後軌道における加減速開始位置から加
減速処理後通過点までの移動に要するサンプル時間 jn 加減速処理後軌道における加減速処理前通過点か
ら加減速終了位置までの移動に要するサンプル時間 q(k) 加減速処理前軌道 w(k) 加減速処理前速度 q′(j) 加減速処理後軌道 w′(j) 加減速処理後速度 q(km) 加減速処理前通過点 q(km−kp) 加減速開始位置 q(km+kn) 加減速終了位置 q′(jm) 加減速処理後通過点 wcb 加減速処理後通過速度 wp 加減速処理前前半平均速度 wn 加減速処理前後半平均速度 wp′ 加減速処理前開始時速度 wn′ 加減速処理前終了時速度 wp″ 加減速処理前通過点直前速度 wn″ 加減速処理前通過点直後速度 w(km−kp) 加減速開始時速度 w(km+kn) 加減速終了時速度 km−kp′ 加減速処理前加減速開始時刻の再計算値 km+kn′ 加減速処理前加減速終了時刻の再計算値 ap′ 加減速処理後前半加速度 an′ 加減速処理後後半加速度
DESCRIPTION OF SYMBOLS 1 Trajectory generator 2 Acceleration / deceleration processing designation device 3 Servo processing device 4 Robot arm 5 Passing speed parameter designation device 11 Each axis target speed generation unit 12 Acceleration detection unit 13 Inter-axis coordination unit 14 Target speed conversion unit amax Maximum allowable acceleration r Pass Speed parameter rp Constant for calculating the passing speed after acceleration / deceleration processing rn Constant for calculating the passing speed after acceleration / deceleration processing k Sample time to specify the trajectory before acceleration / deceleration processing j Sample time to specify the trajectory after acceleration / deceleration processing km Sample time when passing through the passing point before acceleration / deceleration processing jm Sample time when passing through the passing point after acceleration / deceleration processing kp Sample time required for movement from the acceleration / deceleration start position on the trajectory before acceleration / deceleration processing to the passing point before acceleration / deceleration processing kn Sun required to move from the pre-acceleration / deceleration processing passage point to the acceleration / deceleration end position on the trajectory before acceleration / deceleration processing Pull time jp Sample time required for movement from the acceleration / deceleration start position on the track after acceleration / deceleration processing to the passing point after acceleration / deceleration processing jn Required for movement from the passing point before acceleration / deceleration processing on the trajectory after acceleration / deceleration processing to the acceleration / deceleration end position Sample time q (k) Trajectory before acceleration / deceleration processing w (k) Speed before acceleration / deceleration processing q '(j) Trajectory after acceleration / deceleration processing w' (j) Speed after acceleration / deceleration processing q (km) Passing point before acceleration / deceleration processing q (km-kp) Acceleration / deceleration start position q (km + kn) Acceleration / deceleration end position q '(jm) Pass point after acceleration / deceleration processing wcb Passing speed after acceleration / deceleration processing wp First half average speed before acceleration / deceleration processing wn First half acceleration / deceleration processing Average speed wp 'Speed at start before acceleration / deceleration processing wn' Speed at end before acceleration / deceleration processing wp "Speed immediately before passing point before acceleration / deceleration processing wn" Speed immediately after passing point before acceleration / deceleration processing w (km-kp) Start acceleration / deceleration Speed w (km + kn) Speed at the end of acceleration / deceleration km-kp 'Recalculated value of acceleration / deceleration start time before acceleration / deceleration processing km + kn' Recalculated value of acceleration / deceleration end time before acceleration / deceleration processing ap 'First half acceleration after acceleration / deceleration processing an' Second half acceleration after acceleration / deceleration processing

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ロボット先端軌道及びロボット先端速度で
ある加減速処理前軌道及び加減速処理前速度を生成する
軌道生成装置と、通過速度パラメータを用いて前記加減
速処理前軌道及び前記加減速処理前速度について加減速
処理を行ってロボットの各軸が最高許容速度を越える加
速度を発生しないロボット先端軌道及びロボット先端速
度である加減速処理後軌道及び加減速処理後速度を生成
する加減速処理装置と、前記加減速処理後軌道及び前記
加減速処理後速度に従ってロボットを駆動するサーボ処
理装置とを含み、 前記加減速処理装置は、前記加減速処理前軌道上のロボ
ットのいずれかの軸の加速度が最高許容加速度を越える
加減速処理前通過点及びロボット先端がこの加減速処理
前通過点を通過する時刻である加減速処理前通過点通過
時刻を算定する通過点算定手段と、前記加減速処理前通
過点通過時刻の前後に加減速処理前加減速開始時刻及び
加減速処理前加減速終了時刻並びにこれらに対応する加
減速開始位置及び加減速終了位置の初期値を設定する初
期値設定手段と、前記加減速処理前加減速開始時刻,前
記加減速処理前加減速終了時刻,前記加減速開始位置及
び前記加減速終了位置から加減速処理前前半平均速度及
び加減速処理前後半平均速度を算出する平均速度算出手
段と、前記通過速度パラメータ並びに前記加減速処理前
前半平均速度及び前記加減速処理前後半平均速度を線形
結合したものから加減速処理後通過速度を算出する通過
速度算出手段と、ロボットの各軸の最高許容速度並びに
前記加減速処理前前半平均速度、前記加減速処理前後半
平均速度及び前記加減速処理後通過速度並びに前記通過
速度パラメータから加減速処理後前半所要時間及び加減
速処理後後半所要時間並びに加減速処理前加減速開始時
刻及び加減速処理前加減速終了時刻の再計算値を算出す
る再計算手段と、前記加減速処理前加減速開始時刻及び
前記加減速処理前加減速終了時刻の前記平均速度算出手
段で用いたものと前記再計算値との差が許容誤差を越え
る時は許容誤差以内になるまで前記加減速処理前加減速
開始時刻及び前記加減速処理前加減速終了時刻として前
記再計算値のものを用い対応する前記加減速開始位置及
び前記加減速終了位置を算出して前記平均速度算出手
段、前記通過速度算出手段及び前記再計算手段を実行さ
せることを繰り返し前記加減速処理前加減速開始時刻及
び前記加減速処理前加減速終了時刻の前記平均速度算出
手段で用いたものと前記再計算値との差が許容誤差以内
になった時は、その時に用いた前記加減速処理後前半所
要時間,前記加減速処理後後半所要時間,加減速開始時
速度,加減速終了時速度により加減速処理後前半加速度
及び加減速処理後後半加速度を算出して前記加減速処理
後軌道及び前記加減速処理後速度を求める軌道算出手段
とを有することを特徴とするロボット制御装置。
1. A trajectory generating apparatus for generating a trajectory before acceleration / deceleration processing and a velocity before acceleration / deceleration processing as a robot tip trajectory and a robot tip velocity, and the trajectory before acceleration / deceleration processing and the acceleration / deceleration processing using a passing speed parameter. An acceleration / deceleration processing device that performs acceleration / deceleration processing on the pre-speed and generates a robot tip trajectory in which each axis of the robot does not generate an acceleration exceeding the maximum allowable speed and a trajectory after the acceleration / deceleration processing which is the robot tip speed and a velocity after the acceleration / deceleration processing. And a servo processing device that drives the robot according to the trajectory after the acceleration / deceleration processing and the speed after the acceleration / deceleration processing, wherein the acceleration / deceleration processing apparatus is configured to perform acceleration of any axis of the robot on the trajectory before the acceleration / deceleration processing. Passes the pre-acceleration / deceleration processing pass point, which is the time at which the robot tip passes the pre-acceleration / deceleration processing pass point, which exceeds the maximum allowable acceleration. A passing point calculating means for calculating a time, an acceleration / deceleration start time before the acceleration / deceleration processing, an acceleration / deceleration end time before the acceleration / deceleration processing, and an acceleration / deceleration start position and acceleration / deceleration corresponding to these before and after the passing point before the acceleration / deceleration processing. Initial value setting means for setting an initial value of the deceleration end position; and an acceleration / deceleration process based on the acceleration / deceleration start time before the acceleration / deceleration process, the acceleration / deceleration end time before the acceleration / deceleration process, the acceleration / deceleration start position, and the acceleration / deceleration end position. An average speed calculating means for calculating the first half average speed and the first half average speed of the acceleration / deceleration process; and Passing speed calculating means for calculating the passing speed after the deceleration process, the maximum allowable speed of each axis of the robot, the first half average speed before the acceleration / deceleration process, the second half average speed before and after the acceleration / deceleration process, From the passing speed after deceleration processing and the passing speed parameter, recalculated values of the first half required time after acceleration / deceleration processing, the second required time after acceleration / deceleration processing, the acceleration / deceleration start time before acceleration / deceleration processing, and the acceleration / deceleration end time before acceleration / deceleration processing are calculated. When the difference between the recalculated value used by the average speed calculating means of the acceleration / deceleration start time before acceleration / deceleration processing and the acceleration / deceleration end time before acceleration / deceleration processing exceeds the allowable error. The acceleration / deceleration start position before acceleration / deceleration processing and the acceleration / deceleration end position corresponding to the acceleration / deceleration start position before acceleration / deceleration processing and the acceleration / deceleration end time before acceleration / deceleration processing are calculated using the recalculated values until the error is within the allowable error. The average speed calculating means, the passing speed calculating means, and the recalculating means are repeatedly executed to execute the acceleration / deceleration processing pre-acceleration / deceleration start time and the acceleration / deceleration processing pre-acceleration / deceleration end time. If the difference between the average speed calculation means and the recalculated value is within an allowable error, the first half required time after the acceleration / deceleration processing, the second half required time after the acceleration / deceleration processing used at that time, Trajectory calculating means for calculating a first half acceleration after the acceleration / deceleration processing and a second half acceleration after the acceleration / deceleration processing based on the speed at the start of deceleration and the velocity at the end of acceleration / deceleration processing to obtain the trajectory after the acceleration / deceleration processing and the velocity after the acceleration / deceleration processing. A robot control device characterized by the following.
【請求項2】ロボット先端軌道及びロボット先端速度で
ある加減速処理前軌道及び加減速処理前速度を生成する
軌道生成装置と、通過速度パラメータを用いて前記加減
速処理前軌道及び前記加減速処理前速度について加減速
処理を行ってロボットの各軸が最高許容速度を越える加
速度を発生しないロボット先端軌道及びロボット先端速
度である加減速処理後軌道及び加減速処理後速度を生成
する加減速処理装置と、前記加減速処理後軌道及び前記
加減速処理後速度に従ってロボットを駆動するサーボ処
理装置とを含み、 前記加減速処理装置は、前記加減速処理前軌道上のロボ
ットのいずれかの軸の加速度が最高許容加速度を越える
加減速処理前通過点及びロボット先端がこの加減速処理
前通過点を通過する時刻である加減速処理前通過点通過
時刻を算定する通過点算定手段と、前記加減速処理前通
過点通過時刻の前後に加減速処理前加減速開始時刻及び
加減速処理前加減速終了時刻並びにこれらに対応する加
減速開始位置及び加減速終了位置の初期値を設定する初
期値設定手段と、加減速開始位置及び前記加減速終了位
置における前記加減速処理前速度である加減速処理前開
始時速度及び加減速処理前終了時速度を線形結合したも
の並びに前記通過速度パラメータから加減速処理後通過
速度を算出する通過速度算出手段と、ロボットの各軸の
最高許容速度並びに前記加減速処理開始時速度、前記加
減速処理終了時速度及び前記加減速処理後通過速度並び
に前記通過速度パラメータから加減速処理後前半所要時
間及び加減速処理後後半所要時間並びに加減速処理前加
減速開始時刻及び加減速処理前加減速終了時刻の再計算
値を算出する再計算手段と、前記加減速処理前加減速開
始時刻及び前記加減速処理前加減速終了時刻の前記通過
速度算出手段で用いた加減速処理前開始時速度及び加減
速処理前終了時速度に対応するものと前記再計算値との
差が許容誤差を越える時は許容誤差以内になるまで前記
加減速処理前加減速開始時刻及び前記加減速処理前加減
速終了時刻として前記再計算値のものを用い対応する前
記加減速開始位置及び前記加減速終了位置並びに前記加
減速処理前開始時速度及び前記加減速処理前終了時速度
を算出して前記通過速度算出手段及び前記再計算手段を
実行させることを繰り返し前記加減速処理前加減速開始
時刻及び前記加減速処理前加減速終了時刻の前記通過速
度算出手段で用いた加減速処理前開始時速度及び加減速
処理前終了時速度に対応するものと前記再計算値との差
が許容誤差以内になった時は、その時に用いた前記加減
速処理後前半所要時間,前記加減速処理後後半所要時
間,加減速開始時速度,加減速終了時速度により加減速
処理後前半加速度及び加減速処理後後半加速度を算出し
て前記加減速処理後軌道及び前記加減速処理後速度を求
める軌道算出手段とを有することを特徴とするロボット
制御装置。
2. A trajectory generating apparatus for generating a robot tip trajectory and a robot pre-acceleration / deceleration processing trajectory and a robot pre-acceleration processing velocity, and a trajectory before the acceleration / deceleration processing and the acceleration / deceleration processing using a passing speed parameter. An acceleration / deceleration processing device that performs acceleration / deceleration processing on the pre-speed and generates a robot tip trajectory in which each axis of the robot does not generate an acceleration exceeding the maximum allowable speed and a trajectory after the acceleration / deceleration processing which is the robot tip speed and a velocity after the acceleration / deceleration processing. And a servo processing device that drives the robot according to the trajectory after the acceleration / deceleration processing and the speed after the acceleration / deceleration processing, wherein the acceleration / deceleration processing apparatus is configured to perform acceleration of any axis of the robot on the trajectory before the acceleration / deceleration processing. Passes the pre-acceleration / deceleration processing pass point, which is the time at which the robot tip passes the pre-acceleration / deceleration processing pass point, which exceeds the maximum allowable acceleration. A passing point calculating means for calculating a time, an acceleration / deceleration start time before the acceleration / deceleration processing, an acceleration / deceleration end time before the acceleration / deceleration processing, and an acceleration / deceleration start position and acceleration / deceleration corresponding to these before and after the passing point before the acceleration / deceleration processing. Initial value setting means for setting an initial value of the deceleration end position, and an acceleration / deceleration processing start speed and an acceleration / deceleration processing end speed which are the acceleration / deceleration processing speeds at the acceleration / deceleration start position and the acceleration / deceleration end position. Passing speed calculating means for calculating the passing speed after acceleration / deceleration processing from the linear combination and the passing speed parameter, the maximum allowable speed of each axis of the robot, the acceleration / deceleration processing start speed, the acceleration / deceleration processing end speed, and The first half required time after the acceleration / deceleration processing and the second half required time after the acceleration / deceleration processing from the passing speed after the acceleration / deceleration processing and the passing speed parameter, and the acceleration / deceleration start time before the acceleration / deceleration processing and Recalculating means for calculating a recalculated value of the acceleration / deceleration end time before deceleration processing; and acceleration / deceleration processing used by the passing speed calculation means for the acceleration / deceleration start time before acceleration / deceleration processing and the acceleration / deceleration end time before acceleration / deceleration processing. When the difference between the speed at the previous start and the speed corresponding to the end speed before the acceleration / deceleration processing exceeds the allowable error, the acceleration / deceleration start time before the acceleration / deceleration processing and the acceleration / deceleration until the difference is within the allowable error. The acceleration / deceleration start position and the acceleration / deceleration end position corresponding to the acceleration / deceleration start position and the acceleration / deceleration processing start speed and the acceleration / deceleration processing end speed are calculated using the recalculated value as the pre-processing acceleration / deceleration end time. The acceleration / deceleration processing before opening / closing used in the acceleration / deceleration processing before and after the acceleration / deceleration processing before and after the acceleration / deceleration processing is repeated. When the difference between the time speed and the speed corresponding to the end time before the acceleration / deceleration processing and the recalculated value is within the allowable error, the first half required time after the acceleration / deceleration processing used at that time, Trajectory calculation for calculating the first half acceleration after acceleration / deceleration processing and the second half acceleration after acceleration / deceleration processing based on the required time for the latter half, the acceleration / deceleration start velocity, and the acceleration / deceleration end velocity, to obtain the trajectory after the acceleration / deceleration processing and the velocity after the acceleration / deceleration processing And a means for controlling the robot.
【請求項3】ロボット先端軌道及びロボット先端速度で
ある加減速処理前軌道及び加減速処理前速度を生成する
軌道生成装置と、通過速度パラメータを用いて前記加減
速処理前軌道及び前記加減速処理前速度について加減速
処理を行ってロボットの各軸が最高許容速度を越える加
速度を発生しないロボット先端軌道及びロボット先端速
度である加減速処理後軌道及び加減速処理後速度を生成
する加減速処理装置と、前記加減速処理後軌道及び前記
加減速処理後速度に従ってロボットを駆動するサーボ処
理装置とを含み、 前記加減速処理装置は、前記加減速処理前軌道上のロボ
ットのいずれかの軸の加速度が最高許容加速度を越える
加減速処理前通過点及びロボット先端がこの加減速処理
前通過点を通過する時刻である加減速処理前通過点通過
時刻を算定する通過点算定手段と、ロボット先端の前記
加減速処理前通過点の直前及び直後の速度である加減速
処理前通過点直前速度及び加減速処理前通過点直後速度
並びに前記通過速度パラメータから加減速処理後通過速
度を算出する通過速度算出手段と、前記加減速処理前通
過点直前速度,前記加減速処理前通過点直後速度,前記
加減速処理後通過速度及び前記通過速度パラメータから
加減速処理後前半所要時間及び加減速処理後後半所要時
間を算出する所要時間算出手段と、前記加減速処理後前
半所要時間,前記加減速処理後後半所要時間及び前記通
過速度パラメータから加減速処理前加減速開始時刻及び
加減速処理前加減速終了時刻を算出する時刻算出手段
と、前記加減速処理前加減速開始時刻及び加減速処理前
加減速終了時刻における前記加減速処理前速度である加
減速開始時速度及び加減速終了時速度並びに前記加減速
処理後前半所要時間,前記加減速処理後後半所要時間及
び前記加減速処理後通過速度から加減速処理後前半加速
度及び加減速処理後後半加速度を算出して前記加減速処
理後軌道及び前記加減速処理後速度を求める軌道算出手
段とを有することを特徴とするロボット制御装置。
3. A trajectory generating apparatus for generating a robot tip trajectory and a trajectory before acceleration / deceleration processing as a robot tip speed and a velocity before acceleration / deceleration processing, and the trajectory before acceleration / deceleration processing and the acceleration / deceleration processing using a passing speed parameter. An acceleration / deceleration processing device that performs acceleration / deceleration processing on the pre-speed and generates a robot tip trajectory in which each axis of the robot does not generate an acceleration exceeding the maximum allowable speed and a trajectory after the acceleration / deceleration processing which is the robot tip speed and a velocity after the acceleration / deceleration processing. And a servo processing device that drives the robot according to the trajectory after the acceleration / deceleration processing and the speed after the acceleration / deceleration processing, wherein the acceleration / deceleration processing apparatus is configured to perform acceleration of any axis of the robot on the trajectory before the acceleration / deceleration processing. Passes the pre-acceleration / deceleration processing pass point, which is the time at which the robot tip passes the pre-acceleration / deceleration processing pass point, which exceeds the maximum allowable acceleration. Passing point calculating means for calculating a time, a speed immediately before and after the acceleration point before and after the acceleration / deceleration processing, and a speed immediately after the acceleration point before and after the acceleration / deceleration processing, and the passing speed parameter Means for calculating a passing speed after the acceleration / deceleration process from the speed, a speed immediately before the passing point before the acceleration / deceleration process, a speed immediately after the passing point before the acceleration / deceleration process, a passing speed after the acceleration / deceleration process, and the passing speed parameter. Required time calculating means for calculating the first half required time after the deceleration processing and the second half required time after the acceleration / deceleration processing; and the first half required time after the acceleration / deceleration processing, the second required time after the acceleration / deceleration processing, and the acceleration / deceleration processing based on the passing speed parameter. A time calculating means for calculating an acceleration / deceleration start time and an acceleration / deceleration processing pre-acceleration / deceleration end time; The acceleration / deceleration processing is performed based on the acceleration / deceleration start speed and the acceleration / deceleration end speed which are the speeds before the acceleration / deceleration processing, the first half required time after the acceleration / deceleration processing, the second half required time after the acceleration / deceleration processing, and the passing speed after the acceleration / deceleration processing. And a trajectory calculating means for calculating the first half acceleration after the acceleration and the second half acceleration after the acceleration / deceleration processing to obtain the trajectory after the acceleration / deceleration processing and the velocity after the acceleration / deceleration processing.
【請求項4】加減速処理前速度で移動するロボット先端
の軌道として生成された加減速処理前軌道上のロボット
のいずれかの軸の加速度が最高許容加速度を越える加減
速処理前通過点を通過する時刻である加減速処理前通過
点通過時刻の前後に加減速処理前加減速開始時刻及び加
減速処理前加減速終了時刻並びにこれらに対応する加減
速開始位置及び加減速終了位置の初期値を設定し、前記
加減速処理前加減速開始時刻,前記加減速処理前加減速
終了時刻,前記加減速開始位置及び前記加減速終了位置
から加減速処理前前半平均速度及び加減速処理前後半平
均速度を算出し、通過速度パラメータ並びに前記加減速
処理前前半平均速度及び前記加減速処理前後半平均速度
を線形結合したものから加減速処理後通過速度を算出
し、ロボットの各軸の最高許容速度並びに前記加減速処
理前前半平均速度,前記加減速処理前後半平均速度及び
前記加減速処理後通過速度並びに前記通過速度パラメー
タから加減速処理後前半所要時間及び加減速処理後後半
所要時間並びに加減速処理前加減速開始時刻及び加減速
処理前加減速終了時刻の再計算値を算出し、前記加減速
処理前加減速開始時刻及び前記加減速処理前加減速終了
時刻の前記加減速処理前前半平均速度及び前記加減速処
理前後半平均速度の算出で用いたものと前記再計算値と
の差が許容誤差を越える時は許容誤差以内になるまで前
記加減速処理前加減速開始時刻及び前記加減速処理前加
減速終了時刻として前記再計算値のものを用い対応する
前記加減速開始位置及び前記加減速終了位置を算出して
前記加減速処理前前半平均速度及び加減速処理前後半平
均速度の算出,前記加減速処理後の通過速度の算出及び
前記再計算値の算出を繰り返し前記加減速処理前加減速
開始時刻及び前記加減速処理前加減速終了時刻の前記加
減速処理前前半平均速度及び加減速処理前後半平均速度
の算出で用いたものと前記再計算値との差が許容誤差以
内になった時は、その時に用いた前記加減速処理後前半
所要時間,前記加減速処理後後半所要時間,加減速開始
時速度,加減速終了時速度により加減速処理後前半加速
度及び加減速処理後後半加速度を算出して前記加減速処
理後軌道及び前記加減速処理後速度を求めることを特徴
とするロボット制御方法。
4. A pre-acceleration / deceleration processing passage point in which the acceleration of any axis of the robot on the pre-acceleration / deceleration processing trajectory generated as the trajectory of the robot moving at the pre-acceleration / deceleration processing speed exceeds the maximum allowable acceleration. Before and after the passing point before acceleration / deceleration processing, the acceleration / deceleration processing acceleration / deceleration start time and acceleration / deceleration processing acceleration / deceleration end time, and the corresponding initial values of the acceleration / deceleration start position and acceleration / deceleration end position The acceleration / deceleration start time before the acceleration / deceleration processing, the acceleration / deceleration end time before the acceleration / deceleration processing, the acceleration / deceleration start position, and the acceleration / deceleration end position from the acceleration / deceleration processing first half average speed and the acceleration / deceleration processing first half average speed And calculating the passing speed after the acceleration / deceleration processing from the linear combination of the passing speed parameter and the first half average speed before and after the acceleration / deceleration processing and the second half average speed before and after the acceleration / deceleration processing. From the maximum allowable speed, the first half average speed before the acceleration / deceleration processing, the second half average speed before the acceleration / deceleration processing, the passing speed after the acceleration / deceleration processing, and the required time after the acceleration / deceleration processing, Re-calculating the acceleration / deceleration start time before acceleration / deceleration processing and the acceleration / deceleration end time before acceleration / deceleration processing, and calculating the acceleration / deceleration processing time before and after the acceleration / deceleration processing. When the difference between the first half average speed and the one used in the calculation of the acceleration / deceleration processing first half average speed and the recalculated value exceeds the allowable error, the acceleration / deceleration processing pre-acceleration start time and By using the recalculated value as the acceleration / deceleration processing pre-acceleration / deceleration end time, the corresponding acceleration / deceleration start position and acceleration / deceleration end position are calculated, and the acceleration / deceleration processing first half average speed and acceleration / deceleration end time are calculated. The calculation of the second half average speed before the speed processing, the calculation of the passing speed after the acceleration / deceleration processing, and the calculation of the recalculated value are repeated, and the acceleration / deceleration start time before the acceleration / deceleration processing and the acceleration / deceleration end time before the acceleration / deceleration processing are calculated. When the difference between the one used in the calculation of the first half average speed before the deceleration process and the second half average speed before the acceleration / deceleration process and the recalculated value is within an allowable error, the first half required time after the acceleration / deceleration process used at that time. The first half acceleration after the acceleration / deceleration processing and the second half acceleration after the acceleration / deceleration processing are calculated based on the second half required time after the acceleration / deceleration processing, the speed at the start of acceleration / deceleration, and the speed at the end of acceleration / deceleration processing, and the trajectory after the acceleration / deceleration processing and the acceleration / deceleration processing A robot control method characterized by determining a rear speed.
【請求項5】加減速処理前速度で移動するロボット先端
の軌道として生成された前記加減速処理前軌道上のロボ
ットのいずれかの軸の加速度が最高許容加速度を越える
加減速処理前通過点を通過する時刻である加減速処理前
通過点通過時刻の前後に加減速処理前加減速開始時刻及
び加減速処理前加減速終了時刻並びにこれらに対応する
加減速開始位置及び加減速終了位置の初期値を設定し、
前記加減速開始位置及び前記加減速終了位置における前
記加減速処理速度である加減速処理前開始時速度及び前
記加減速処理前終了時速度を線形結合したもの並びに前
記通過速度パラメータから加減速処理後通過速度を算出
し、ロボットの各軸の最高許容速度並びに前記加減速処
理開始時速度、前記加減速処理終了時速度及び前記加減
速処理後通過速度並びに前記通過速度パラメータから加
減速処理後前半所要時間及び加減速処理後後半所要時間
並びに加減速処理前加減速開始時刻及び加減速処理前加
減速終了時刻の再計算値を算出し、前記加減速処理前加
減速開始時刻及び前記加減速処理前加減速終了時刻の前
記加減速処理後通過速度の算出で用いたものと前記再計
算値との差が許容誤差を越える時は許容誤差以内になる
まで前記加減速処理前加減速開始時刻及び前記加減速処
理前加減速終了時刻として前記再計算値のものを用い対
応する前記加減速開始位置及び前記加減速終了位置並び
に前記加減速処理前開始速度及び前記加減速処理前終了
時速度を算出して前記加減速処理後通過速度の算出及び
前記再計算値の算出を繰り返し前記加減速処理前加減速
開始時刻及び前記加減速処理前加減速終了時刻の前記加
減速処理後通過速度の算出で用いたものと前記再計算値
との差が許容誤差以内になった時は、その時に用いた前
記加減速処理後前半所要時間,前記加減速処理後後半所
要時間,加減速開始時速度,加減速終了時速度により加
減速処理後前半加速度及び加減速処理後後半加速度を算
出して前記加減速処理後軌道及び前記加減速処理後速度
を求めることを特徴とするロボット制御方法。
5. A passing point before acceleration / deceleration processing in which the acceleration of any axis of the robot on the trajectory before acceleration / deceleration processing generated as the trajectory of the robot tip moving at the speed before acceleration / deceleration processing exceeds the maximum allowable acceleration. The acceleration / deceleration start time before acceleration / deceleration processing, the acceleration / deceleration end time before acceleration / deceleration processing, and the initial values of the acceleration / deceleration start position and acceleration / deceleration end position corresponding to these before and after the passing point before acceleration / deceleration processing which is the passing time. And set
The acceleration / deceleration processing speed at the acceleration / deceleration start position and the acceleration / deceleration processing speed at the acceleration / deceleration processing start speed and the acceleration / deceleration processing end speed are linearly combined. Calculate the passing speed and calculate the maximum allowable speed of each axis of the robot, the speed at the start of the acceleration / deceleration process, the speed at the end of the acceleration / deceleration process, the passing speed after the acceleration / deceleration process, and the first half after the acceleration / deceleration process. Time and the second half required time after the acceleration / deceleration processing, and the recalculated values of the acceleration / deceleration start time before the acceleration / deceleration processing and the acceleration / deceleration end time before the acceleration / deceleration processing are calculated. When the difference between the value used in the calculation of the passing speed after the acceleration / deceleration processing at the acceleration / deceleration end time and the recalculated value exceeds the allowable error, the acceleration / deceleration processing is performed until the difference falls within the allowable error. The acceleration / deceleration start position before acceleration / deceleration processing, the acceleration / deceleration end position, the acceleration / deceleration end position, the acceleration / deceleration end position before acceleration / deceleration processing, and the acceleration / deceleration end position before acceleration / deceleration processing. The acceleration / deceleration process of the acceleration / deceleration start time before the acceleration / deceleration process and the acceleration / deceleration end time before the acceleration / deceleration process is repeated by calculating the speed at the time of the previous end and repeating the calculation of the passing speed after the acceleration / deceleration process and the calculation of the recalculated value. If the difference between the value used in the calculation of the post-passing speed and the recalculated value is within an allowable error, the first half required time after the acceleration / deceleration processing, the second required time after the acceleration / deceleration processing, and the A robot for calculating a first half acceleration after the acceleration / deceleration processing and a second half acceleration after the acceleration / deceleration processing based on the speed at the start of deceleration and the velocity at the end of acceleration / deceleration to obtain the trajectory after the acceleration / deceleration processing and the speed after the acceleration / deceleration processing. Your way.
【請求項6】加減速処理前速度で移動するロボット先端
の軌道として生成された加減速処理前軌道上のロボット
のいずれかの軸の加速度が最高許容加速度を越える加減
速処理前通過点を通過する時刻である加減速処理前通過
点通過時刻を算定し、ロボット先端の前記加減速処理前
通過点の直前及び直後の速度である加減速処理前通過点
直前速度及び加減速処理前通過点直後速度並びに通過速
度パラメータから加減速処理後通過速度を算出し、前記
加減速処理前通過点直前速度,前記加減速処理前通過点
直後速度,前記加減速処理後通過速度及び前記通過速度
パラメータから加減速処理後前半所要時間及び加減速処
理後後半所要時間を算出し、前記加減速処理後前半所要
時間,前記加減速処理後後半所要時間及び前記通過速度
パラメータから加減速処理前加減速開始時刻及び加減速
処理前加減速終了時刻を算出し、前記加減速処理前加減
速開始時刻及び加減速処理前加減速終了時刻における前
記加減速処理前速度である加減速開始時速度及び加減速
終了時速度並びに前記加減速処理後前半所要時間,前記
加減速処理後後半所要時間及び前記加減速処理後通過速
度から加減速処理後前半加速度及び加減速処理後後半加
速度を算出して前記加減速処理後軌道及び前記加減速処
理後速度を求めることを特徴とするロボット制御方法。
6. A pre-acceleration / deceleration processing passage point where the acceleration of any axis of the robot on the pre-acceleration / deceleration processing trajectory generated as the trajectory of the robot moving at the pre-acceleration / deceleration processing speed exceeds the maximum allowable acceleration. Calculate the passing point before acceleration / deceleration processing, which is the time before the acceleration / deceleration processing, and the speed immediately before and after the acceleration / deceleration processing passing point immediately before and after the acceleration / deceleration processing passing point at the robot tip. The passing speed after the acceleration / deceleration process is calculated from the speed and the passing speed parameter, and the acceleration is calculated from the speed immediately before the passing point before the acceleration / deceleration process, the speed immediately after the passing point before the acceleration / deceleration process, the passing speed after the acceleration / deceleration process, and the passing speed parameter. The first half required time after deceleration processing and the second half required time after acceleration / deceleration processing are calculated, and acceleration is calculated from the first required time after acceleration / deceleration processing, the second required time after acceleration / deceleration processing, and the passing speed parameter. The acceleration / deceleration start time before acceleration / deceleration processing is calculated at the acceleration / deceleration start time before acceleration / deceleration processing and the acceleration / deceleration start time before acceleration / deceleration processing at the acceleration / deceleration start time before acceleration / deceleration processing. The first half acceleration after the acceleration / deceleration processing and the second half acceleration after the acceleration / deceleration processing are calculated from the speed at the end of the acceleration / deceleration processing, the first half required time after the acceleration / deceleration processing, the second required time after the acceleration / deceleration processing, and the passing speed after the acceleration / deceleration processing. And calculating the trajectory after the acceleration / deceleration processing and the speed after the acceleration / deceleration processing.
JP29657395A 1994-12-27 1995-11-15 Robot control device and method Expired - Fee Related JP2737725B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29657395A JP2737725B2 (en) 1994-12-27 1995-11-15 Robot control device and method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-324564 1994-12-27
JP32456494 1994-12-27
JP29657395A JP2737725B2 (en) 1994-12-27 1995-11-15 Robot control device and method

Publications (2)

Publication Number Publication Date
JPH08234824A JPH08234824A (en) 1996-09-13
JP2737725B2 true JP2737725B2 (en) 1998-04-08

Family

ID=26560736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29657395A Expired - Fee Related JP2737725B2 (en) 1994-12-27 1995-11-15 Robot control device and method

Country Status (1)

Country Link
JP (1) JP2737725B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100836240B1 (en) * 2001-11-01 2008-06-09 현대중공업 주식회사 Method for controlling optimum speed acceleration/decrease of robot

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1044397B1 (en) * 1997-12-02 2005-01-05 Lacent Technologies Inc. Gantry-mounted laser nozzle and method for controlling laser positioning
EP2845696B1 (en) * 2013-09-10 2017-05-17 Siemens Aktiengesellschaft Processing machine with redundant axes and resolution of the redundancy in real time
JP7070114B2 (en) * 2018-06-06 2022-05-18 株式会社Ihi Robot control device and robot control method
CN112638594A (en) 2018-09-10 2021-04-09 发纳科美国公司 Zero teaching of a continuous path of a robot

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100836240B1 (en) * 2001-11-01 2008-06-09 현대중공업 주식회사 Method for controlling optimum speed acceleration/decrease of robot

Also Published As

Publication number Publication date
JPH08234824A (en) 1996-09-13

Similar Documents

Publication Publication Date Title
US4617502A (en) Method and apparatus for controlling a robot hand along a predetermined path
US7039494B2 (en) Controller for machine
JPH0319963B2 (en)
US5373221A (en) Method and system for estimating robot tool center point speed
CN109313429B (en) S-shaped speed planning method, device and system, robot and numerical control machine
US5740327A (en) Method of and apparatus for robot tip trajectory control
JP2737725B2 (en) Robot control device and method
JPH04111006A (en) Path interpolating method for robot
JP2790643B2 (en) Numerical control unit
JP3204042B2 (en) Robot trajectory generator
JPH0764622A (en) Track interpolating device for robot
JP2003076410A (en) Speed control device, speed control method and program for carrying the method with computer
JPH07210233A (en) Interpolating method for robot tracking and device therefor
JPH11231940A (en) Controller for robot
JP2638467B2 (en) Robot controller
KR0183657B1 (en) Acceleration/deceleration trace generation method
JPS6010309A (en) Method for interpolating path of robot hand
JPH11198072A (en) Minimum time speed controller for robot
JP3068381B2 (en) Servo control device
JPH09244725A (en) Method and device for track interpolation, and controller
JP2703099B2 (en) Conveyor tracking method for industrial robots
JP3513989B2 (en) Command interpolation method for positioning control system
JPH09141581A (en) Robot control device
JP3355101B2 (en) Control device
JPH06131018A (en) Control method for robot

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19971209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080116

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090116

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100116

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees