JP2735205B2 - Fluorescence analysis method - Google Patents

Fluorescence analysis method

Info

Publication number
JP2735205B2
JP2735205B2 JP62324016A JP32401687A JP2735205B2 JP 2735205 B2 JP2735205 B2 JP 2735205B2 JP 62324016 A JP62324016 A JP 62324016A JP 32401687 A JP32401687 A JP 32401687A JP 2735205 B2 JP2735205 B2 JP 2735205B2
Authority
JP
Japan
Prior art keywords
fluorescence
measurement
fluorescence intensity
substance
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62324016A
Other languages
Japanese (ja)
Other versions
JPH01165937A (en
Inventor
恭子 今井
真澄 鈴木
汎 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62324016A priority Critical patent/JP2735205B2/en
Publication of JPH01165937A publication Critical patent/JPH01165937A/en
Application granted granted Critical
Publication of JP2735205B2 publication Critical patent/JP2735205B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は蛍光分析方法に係り、特に蛍光直接測光方式
を採用した自動分析装置により蛍光分析を行なうに好適
な蛍光分析方法に関する。 〔従来の技術〕 従来、免疫測定などを行なう自動分析装置は、測定液
の吸光度を測定する方式のものが主体であつた。しかし
ながら近年、測定液中に含まれる微量成分を分析する要
求が高まつており、高感度分析が可能であるといわれて
いる蛍光測光が注目されている。 この蛍光測光方式を自動分析装置に採用する手段とし
ては、反応液を装置に固定されたフローセルに吸い上げ
て測光するフローセル方式が最も簡便である。しかしな
がらこのフローセル方式によると、複数種類のサンプル
を順次フローセルに供給排出をくりかえして測光を行な
うため、サンプル間のキヤリオーバ率が高くなり、この
キヤリオーバ率を低くするためには多量のサンプル、ま
たは洗浄用水で洗う必要がある。さらに、フローセルへ
の反応液吸引機構が必要となり、コスト高になることが
予想される。しかもフローセルの外周は臨床分析に必要
な高精度の温度制御が困難であるため、分析結果のデー
タ精度が低下するという問題があつた。 これらの問題を解決する手段として蛍光直接測光方式
がある。この方式はサンプルをそれぞれ異なるキユベツ
トに充填して測光するものである。また他の蛍光直接測
光方式としては、蛍光偏光を測定するものや、サンプル
の励起光入射液面と同じ液面から蛍光をとり出す、いわ
ゆるトツプ/トツプ測光方式などが知られている。 〔発明が解決しようとする問題点〕 しかしながら、前記キユベツトを用いて測光する方式
では、多数の検体を連続分析する場合にキユベツトを洗
浄して繰り返して使用することが多い。このため、使用
回数が増すに従つてキユベツトに傷が生じる。またキユ
ベツト供給段階でも全てのキユベツトを完全に無傷で供
給することは難しい。そして、これらのキユベツトに生
じた傷は、蛍光強度に大きく影響する。さらに多数のキ
ユベツトを用いて連続測定する場合には、測定時のセル
に対して光源は一定位置、一定角度で照射するように配
設されることが要求される。しかし、キユベツトまた
は、光源が移動する自動分析装置においては、キユベツ
トと光源を常に一定の位置関係に置くことは難しく、キ
ユベツトによつては光源に対して僅かにずれが生ずるこ
とが多い。この両者の位置ずれは蛍光強度に影響を与え
る。また、キユベツト成形時のキユベツト表面のゆがみ
や肉厚の僅かな違いも測定結果に影響する。 また前述した蛍光偏光を測定する方式の場合には、測
定結果としては蛍光強度の比で計算されることになるた
め、上記のキユベツトに起因する問題は少ない。しかし
ながら、蛍光偏光方式を原理として分析することのでき
る測定対象成分は、分子量的にみて低分子に限られてお
り、臨床分析において要求の大きい大分子成分の測定に
は適さない。また、前述したトツプ/トツプ測光方式で
は、データの精度を高めるためにキユベツトを動かしな
がら測定しているために、測定液面にゆらぎが生じる結
果となる。この液面のゆらぎによつてデータの精度が実
際上低下する問題があり、さらに従来の自動分析機への
適用が困難であるという問題もあつた。すなわち、光が
キユベツトを横切るタイプの測光方式で通常の蛍光分析
を行なう従来の蛍光直接測光方法では、前述したような
問題点があるため、自動分析装置への適用が困難であつ
た。 本発明の目的は、各キュベット内で生成された蛍光性
物質に基づく蛍光強度を測定する際に、キュベットの違
いに基づく測定誤差を低減できる蛍光分析方法を提供す
ることにある。 〔問題点を解決するための手段〕 本発明は、キュベット内でサンプル中の測定対象物質
の濃度に応じた蛍光性物質を生成させ、励起光の照射に
よって生ずる蛍光を測定する蛍光分析方法において、上
記蛍光性物質を生成させるために用いた蛍光性基質が上
記蛍光性物質と共存している反応液を含むキュベット毎
に励起光を照射し、上記蛍光性物質に対する波長の蛍光
強度及び蛍光性基質に対応する波長の蛍光強度をキュベ
ット毎に測定し、キュベット毎に、上記蛍光性物質対応
の蛍光強度測定値を蛍光性基質対応の蛍光強度測定値を
用いて補正することを特徴とする。 〔作用〕 上記の方法によると、測定対象物質とは異なる測定補
助物質の一定量を測定液中に含ませて分析し、この測定
結果をもとに測定対象物質の測定値を補正するようにし
たので、補正のための余分な測定時間やキユベツトの洗
浄が不要となる。このとき測定補助物質は、測定対象物
質の濃度の相違によつて蛍光強度が影響を受けずに一定
値を示すように、測定補助物質及びその測定波長を選択
する。 今、例えば測定対象物質をA、測定補助物質をBと
し、傷などがない理想的なキユベツトに入れられた状態
におけるAの蛍光強度をF1,Bの蛍光強度をF2とする。ま
た別の通常使用しているキユベツトで測定した前記A及
びBの蛍光強度をそれぞれF3及びF4とする。このとき両
方のキユベツトには等濃度、等量のBが存在しているの
であるから、F2=F4であるはずである。このためF3はキ
ユベツトによる誤差を補正した後には、F3×F2/F4とな
る。このように、1個のキユベツトについてAと同様に
Bの蛍光強度を測定することにより、キユベツト差を補
正して精度の高い蛍光直接測光が可能となる。 〔実施例〕 本発明に基づく望ましい実施例では、測定対象物質と
共に、測定液中に一定量含まれる測定対象物質とは異な
る物質を同時に測定して、後者の測定結果をもとにして
前者の測定結果を補正する。測定対象物質である生成さ
れた蛍光性物質は、補正のための成分としての測定補助
物質の共存状態で励起光が照射される。補正のための成
分が反応の基質である場合には、反応生成物の蛍光強度
を、反応成分である基質の蛍光強度で補正できるので、
効果が大きい。 以下、本発明に係る蛍光分析方法の一実施例を説明す
る。 まず、異なる20個のキユベツトに、それぞれ2mlずつ1
0-7MのFITC(Fluorescein isothiocyanate)溶液を分注
し、蛍光強度を測定した。励起は480nm、蛍光は530nmに
て測定した。また傷やゆがみのないキユベツトを蛍光光
度計のキユベツトホルダに固定して、前記と同一のサン
プルをくり返して測定した。この測定結果を第1表と第
2表に示す。 第1表は傷やゆがみのないキユベツトでの測定値であ
り、 第2表は異なるキユベツトでの測定値である。 上記各測定には、励起光及び蛍光がそれぞれキユベツ
ト壁を通過し、励起光入射方向と蛍光出射方向とが垂直
方向の普及型の蛍光光度計を使用した。上記各表から明
白のように、キユベツトのちがいにより測定結果は大き
くばらついており、蛍光直接測光のためにはキユベツト
差の補正が必要であることがわかる。 次に測定対象物質の薬物テオフイリンを含むサンプル
50μと、これに対する抗体液500μ、酵素液(β−
ガラクトシダーゼ)500μと、基質誘導体(ガラクト
ース)で標識したウンベリフエロン・テオフイリン結合
体50μ及びBieine緩衝液(pH8.5)400μとを37℃で
20分間反応させた。このサンプル中のテオフイリン基質
誘導体標識ウンベリフエロン・テオフイリン結合体が競
合して抗体と反応する。そして抗体に結合できなかつた
基質誘導体標識ウンベリフエロン・テオフイリン結合体
が、酵素(β−ガラクトシダーゼ)」の触媒作用により
加水分解した結果生成する蛍光物質の蛍光強度を測定し
た。テオフイリン濃度は、あらかじめ作成した標準曲線
にあてはめて求めた。測定には、励起波長400nm、蛍光
波長450nmを用いた。このときの蛍光強度の測定再現性
を下記第3表に示す。 また、反応時に反応には直接関与しないが、テキサス
レツド(1mg/5ml溶液)を10μずつ反応液に加え、前
記と同様に37℃で20分間反応させた。測定にはテオフイ
リン濃度測定のために励起400nm、蛍光450nmで第1の測
光を行ない。つづいて同じ反応液に対して励起590nm、
蛍光630nmで第2の測光を行なつた。このとき第2の結
果を1つを基にして第1の結果を補正して、測定の再現
性を求めた。その結果を下記第4表に示す。 以上の結果から、テキサスレツド測定値を利用してキ
ユベツト差を補正することにより、測定再現性が著しく
向上したことがわかる。しかし、この方法ではサンプル
の反応に関与しない物質をキユベツトに添加しなければ
ならない。 次に測定対象物質のα−フエトプロテイン(AFP)を
含むサンプル50μと、抗AFP抗体を結合させたガラス
ビーズと、アルカリフオスフアターゼ(ALP)標識抗AFP
抗体液50μと、10mMトリス塩酸緩衝液(pH7.4)100μ
を加えて37℃で20分間反応させた。この後ガラスビー
ズを十分に緩衝液で洗浄した。このガラスビーズをキユ
ベツトに移して、これに測定補助物質であり、基質でも
あるウンベリフエロンリン酸(MUP)10mM50μと、1.5
Mジエタノールアミン緩衝液(pH9.0)を加えて37℃で20
分間反応させた。測定にはMUPの酵素反応の結果生成す
るウンベリフエロン(MUB)のために、励起375nm、蛍光
450nmを用いた。測定対象のMUB濃度は、サンプル中に含
まれるAFP濃度に応じて変化するため、MUBの蛍光強度を
もとにしてサンプル中のAFPの定量が可能である。これ
に対しMUPは基質であるため、全反応に対して常に一定
量ずつ加えられ、しかも基質大過剰域において酵素反応
を進行させるうえに、生成するMUBは濃度としてみるとM
UPの3桁下の微量である。このため酵素反応の進行度合
の程度によらず、反応液中のMUP量は一定であるとみな
すことができる。 MUPは蛍光性基質であり、生成物MUBとは異なる蛍光ス
ペクトルを示す。また励起及び蛍光の測光波長を適当に
選択することにより、反応液中のMUB濃度に左右されず
にMUP測定値が一定値を示す。このためこのMUP測定値を
補正のために使用して、 MUB測光の再現性測定を行な
つた。この測定補助物質としてのMUPの測定のために、
励起356nm、蛍光410nmを用いた。この結果を下記第5表
に示す。 上記のように、MUPの測定値をもとにしてMUBを補正す
ると、著しく測定再現性が向上することがわかる。第1
図にMUB濃度が異なる場合のMUPの蛍光スペクトルを示
す。 〔発明の効果〕 本発明によれば、サンプルの反応とは無関係な余分な
物質の添加操作が不要であるにもかかわらず、サンプル
が反応処理されるキュベット間の差(キュベットの傷や
汚れの違い等)を補正できるので、自動分析装置による
蛍光直接測光方式の測定を実用化することが可能にな
る。
Description: FIELD OF THE INVENTION The present invention relates to a fluorescence analysis method, and more particularly to a fluorescence analysis method suitable for performing a fluorescence analysis by an automatic analyzer employing a direct fluorescence photometry method. [Prior Art] Conventionally, an automatic analyzer for performing an immunoassay or the like has mainly been a system for measuring the absorbance of a measurement solution. However, in recent years, there has been an increasing demand for analyzing trace components contained in a measurement solution, and attention has been paid to fluorescence photometry, which is said to be capable of high-sensitivity analysis. As a means for adopting this fluorescence photometry method in an automatic analyzer, a flow cell method in which a reaction solution is sucked into a flow cell fixed to the apparatus and photometry is performed is the simplest. However, according to this flow cell method, the photometry is performed by repeatedly supplying and discharging a plurality of types of samples to and from the flow cell, so that the carry-over rate between the samples is high. Need to be washed. Further, a reaction liquid suction mechanism to the flow cell is required, which is expected to increase the cost. In addition, it is difficult to control the temperature of the outer periphery of the flow cell with high accuracy required for clinical analysis. As a means for solving these problems, there is a direct fluorescence photometry system. In this method, the samples are filled into different husks and photometry is performed. Other known direct fluorescence photometry methods include a method of measuring fluorescence polarization and a so-called top / top photometry method in which fluorescence is extracted from the same liquid surface as the liquid surface on which the sample enters the excitation light. [Problems to be Solved by the Invention] However, in the method of photometry using the above-mentioned hubet, when a large number of samples are continuously analyzed, the hubet is often washed and used repeatedly. For this reason, as the number of times of use increases, the cover is damaged. Also, it is difficult to supply all the huskets completely intact even in the husk supply stage. And, the scratches generated on these kits greatly affect the fluorescence intensity. Further, in the case of performing continuous measurement using a large number of packets, it is required that the light source be arranged to irradiate the cell at the time of measurement at a fixed position and a fixed angle. However, in an automatic analyzer in which the light source and the light source move, it is difficult to always keep the light source and the light source in a fixed positional relationship, and the light source often shifts slightly depending on the light source. The displacement between the two affects the fluorescence intensity. In addition, the distortion and the slight difference in the wall thickness of the velvet surface during the velvet molding also affect the measurement results. In the case of the above-described method of measuring the fluorescence polarization, since the measurement result is calculated based on the ratio of the fluorescence intensities, there are few problems caused by the above-mentioned huette. However, the components to be measured that can be analyzed based on the fluorescence polarization method are limited to low molecules in terms of molecular weight, and are not suitable for measuring large molecular components, which are highly required in clinical analysis. In addition, in the above-described top / top photometry method, since the measurement is performed while moving the covert in order to improve the accuracy of data, a fluctuation occurs in the measurement liquid level. The fluctuation of the liquid level causes a problem that the accuracy of data is actually reduced, and also has a problem that it is difficult to apply the data to a conventional automatic analyzer. That is, the conventional direct fluorescence measurement method of performing normal fluorescence analysis by a light measurement method of a type in which light crosses a filter is difficult to apply to an automatic analyzer because of the above-described problems. An object of the present invention is to provide a fluorescence analysis method capable of reducing a measurement error due to a difference between cuvettes when measuring a fluorescence intensity based on a fluorescent substance generated in each cuvette. (Means for solving the problem) The present invention is a fluorescence analysis method for generating a fluorescent substance according to the concentration of a measurement target substance in a sample in a cuvette, and measuring fluorescence generated by irradiation with excitation light, The fluorescent substrate used to generate the fluorescent substance is irradiated with excitation light for each cuvette containing a reaction solution coexisting with the fluorescent substance, and the fluorescence intensity and the fluorescent substrate at a wavelength for the fluorescent substance Is measured for each cuvette, and the measured fluorescence intensity corresponding to the fluorescent substance is corrected for each cuvette using the measured fluorescence intensity corresponding to the fluorescent substrate. [Action] According to the above method, a certain amount of a measurement auxiliary substance different from the measurement target substance is included in the measurement solution and analyzed, and the measured value of the measurement target substance is corrected based on the measurement result. This eliminates the need for extra measurement time for correction and cleaning of the kit. At this time, the measurement auxiliary substance and the measurement wavelength thereof are selected such that the fluorescence intensity is not affected by the difference in the concentration of the measurement target substance and shows a constant value. Now, for example, assume that the substance to be measured is A, the auxiliary substance for measurement is B, and the fluorescence intensity of A in the state of being put in an ideal non-scratched cover is F 1 , and the fluorescence intensity of B is F 2 . Also the fluorescence intensity of the A and B were measured in cuvette that further normal use and F 3 and F 4, respectively. At this time, since there is an equal concentration and an equal amount of B in both the cubes, F 2 = F 4 should be satisfied. For this reason, F 3 becomes F 3 × F 2 / F 4 after correcting the error due to the packet. As described above, by measuring the fluorescence intensity of B in a manner similar to that of A for one of the kits, it is possible to correct the kitt difference and perform direct fluorescence measurement with high accuracy. [Example] In a preferred embodiment according to the present invention, together with the substance to be measured, a substance different from the substance to be measured contained in the measurement solution in a certain amount is simultaneously measured, and the former is determined based on the measurement result of the latter. Correct the measurement result. The generated fluorescent substance, which is the substance to be measured, is irradiated with the excitation light in the coexistence state of the measurement auxiliary substance as a component for correction. When the component for correction is a substrate for the reaction, the fluorescence intensity of the reaction product can be corrected by the fluorescence intensity of the substrate that is the reaction component.
Great effect. Hereinafter, an embodiment of the fluorescence analysis method according to the present invention will be described. First, add 2 ml each to 20 different kibet
A 0-7 M FITC (Fluorescein isothiocyanate) solution was dispensed, and the fluorescence intensity was measured. Excitation was measured at 480 nm and fluorescence was measured at 530 nm. Further, a sample with no scratches or distortion was fixed to a sample holder of a fluorometer, and the same sample as above was repeatedly measured. The measurement results are shown in Tables 1 and 2. Table 1 shows the measured values in a kibet without scratches and distortion. Table 2 shows the measured values for the different cubes. For each of the above measurements, a popular fluorometer in which the excitation light and the fluorescence respectively passed through the wall of the cube and the excitation light incidence direction and the fluorescence emission direction were perpendicular was used. As is evident from the above tables, the measurement results vary greatly due to differences in the cubes, indicating that correction of the cube difference is necessary for direct fluorescence photometry. Next, the sample containing the drug to be measured, theophylline
50μ, antibody solution 500μ, enzyme solution (β-
(Galactosidase) 500μ, 50μm of umbelliferone / theophylline conjugate labeled with a substrate derivative (galactose) and 400μ of Bieine buffer (pH 8.5) at 37 ° C.
The reaction was performed for 20 minutes. The theophylline substrate derivative-labeled umbelliferone theophylline conjugate in this sample competes with the antibody to react. Then, the fluorescence intensity of the fluorescent substance produced as a result of hydrolysis of the substrate derivative-labeled umbelliferone-theophylline conjugate that could not bind to the antibody by the catalytic action of the enzyme (β-galactosidase) was measured. Theophylline concentration was determined by fitting to a previously prepared standard curve. For the measurement, an excitation wavelength of 400 nm and a fluorescence wavelength of 450 nm were used. The measurement reproducibility of the fluorescence intensity at this time is shown in Table 3 below. Although not directly involved in the reaction at the time of the reaction, Texas Red (1 mg / 5 ml solution) was added to the reaction solution in 10 μl portions, and the reaction was carried out at 37 ° C. for 20 minutes as described above. For the measurement, the first photometry is performed at 400 nm for excitation and 450 nm for fluorescence to measure the theophylline concentration. Next, excitation 590 nm for the same reaction solution,
A second photometry was performed at 630 nm fluorescence. At this time, the first result was corrected based on one of the second results, and the reproducibility of the measurement was obtained. The results are shown in Table 4 below. From the above results, it can be seen that the measurement reproducibility was significantly improved by correcting the difference of the Cubeto using the Texas Red measurement value. However, in this method, substances that do not participate in the reaction of the sample must be added to the cube. Next, 50 μl of a sample containing α-phytoprotein (AFP) as a substance to be measured, glass beads to which an anti-AFP antibody is bound, and alkaline phosphatase (ALP) -labeled anti-AFP
Antibody solution 50μ, 10mM Tris-HCl buffer (pH7.4) 100μ
Was added and reacted at 37 ° C. for 20 minutes. Thereafter, the glass beads were sufficiently washed with a buffer. The glass beads were transferred to a kubet, and 10 mM 50 μm of umbelliferone phosphate (MUP), which is an auxiliary substance for measurement and a substrate,
Add M diethanolamine buffer (pH 9.0) and add
Allowed to react for minutes. Excitation 375 nm, fluorescence for umbelliferone (MUB) generated as a result of MUP enzyme reaction
450 nm was used. Since the concentration of MUB to be measured changes according to the concentration of AFP contained in the sample, AFP in the sample can be quantified based on the fluorescence intensity of MUB. On the other hand, since MUP is a substrate, it is always added in a fixed amount to the entire reaction.Moreover, the enzymatic reaction proceeds in a large excess region of the substrate, and the generated MUB is expressed in terms of concentration.
A trace three orders of magnitude lower than UP. Therefore, the MUP amount in the reaction solution can be considered to be constant regardless of the degree of progress of the enzyme reaction. MUP is a fluorescent substrate and shows a different fluorescence spectrum from the product MUB. Also, by appropriately selecting the photometric wavelength of excitation and fluorescence, the MUP measurement value shows a constant value regardless of the MUB concentration in the reaction solution. Therefore, the reproducibility measurement of MUB photometry was performed using the MUP measurement value for correction. For the measurement of MUP as this measurement auxiliary substance,
Excitation 356 nm and fluorescence 410 nm were used. The results are shown in Table 5 below. As described above, when MUB is corrected based on the measured value of MUP, measurement reproducibility is significantly improved. First
The figure shows the MUP fluorescence spectrum for different MUB concentrations. [Effects of the Invention] According to the present invention, although there is no need to add an extra substance unrelated to the reaction of the sample, the difference between cuvettes in which the sample is subjected to the reaction treatment (the scratches and dirt on the cuvette). Difference) can be corrected, so that the measurement by the direct fluorescence photometry method using the automatic analyzer can be put to practical use.

【図面の簡単な説明】 第1図はMUPの蛍光スペクトルを示すグラフである。[Brief description of the drawings] FIG. 1 is a graph showing the fluorescence spectrum of MUP.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−105036(JP,A) 特開 昭62−59842(JP,A) 特開 昭63−177038(JP,A) 特開 昭62−12837(JP,A) 特開 昭50−106693(JP,A) 特公 昭59−30215(JP,B1) Anal.Chem.(1982) Vo l.54,No.4 P.634−637 Anal.Chem.(1977) Vo l.49,No.4 P.667−668   ────────────────────────────────────────────────── ─── Continuation of front page    (56) References JP-A-62-105036 (JP, A)                 JP-A-62-59842 (JP, A)                 JP-A-63-177038 (JP, A)                 JP-A-62-12837 (JP, A)                 Japanese Patent Laid-Open No. Sho 50-106993 (JP, A)                 Tokiko Sho 59-30215 (JP, B1)                 Anal. Chem. (1982) Vo               l. 54, No. 4P. 634-637                 Anal. Chem. (1977) Vo               l. 49, no. 4P. 667-668

Claims (1)

(57)【特許請求の範囲】 1.キュベット内でサンプル中の測定対象物質の濃度に
応じた蛍光性物質を生成させ、励起光の照射によって生
ずる蛍光を測定する蛍光分析方法において、 上記蛍光性物質を生成させるために用いた蛍光性基質
が、上記蛍光性物質と共存している反応液を含むキュベ
ット毎に励起光を照射し、上記蛍光性物質に対応する波
長の蛍光強度及び上記蛍光性基質に対応する波長の蛍光
強度を上記キュベット毎に測定し、上記キュベット毎
に、上記蛍光性物質対応の蛍光強度測定値を上記蛍光性
基質対応の蛍光強度測定値を用いて補正することを特徴
とする蛍光分析方法。
(57) [Claims] In a fluorescence analysis method for generating a fluorescent substance according to the concentration of a substance to be measured in a sample in a cuvette and measuring fluorescence generated by irradiation with excitation light, the fluorescent substrate used for generating the fluorescent substance However, the excitation light is irradiated for each cuvette containing the reaction solution coexisting with the fluorescent substance, and the cuvette changes the fluorescence intensity at the wavelength corresponding to the fluorescent substance and the fluorescence intensity at the wavelength corresponding to the fluorescent substrate. A fluorescence analysis method comprising: measuring the fluorescence intensity for each cuvette; and correcting the fluorescence intensity measurement value corresponding to the fluorescent substance using the fluorescence intensity measurement value corresponding to the fluorescent substrate for each cuvette.
JP62324016A 1987-12-23 1987-12-23 Fluorescence analysis method Expired - Fee Related JP2735205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62324016A JP2735205B2 (en) 1987-12-23 1987-12-23 Fluorescence analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62324016A JP2735205B2 (en) 1987-12-23 1987-12-23 Fluorescence analysis method

Publications (2)

Publication Number Publication Date
JPH01165937A JPH01165937A (en) 1989-06-29
JP2735205B2 true JP2735205B2 (en) 1998-04-02

Family

ID=18161197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62324016A Expired - Fee Related JP2735205B2 (en) 1987-12-23 1987-12-23 Fluorescence analysis method

Country Status (1)

Country Link
JP (1) JP2735205B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3966322A (en) * 1973-11-08 1976-06-29 Vickers Limited Device for use in producing a scanning beam of radiation and apparatus for use in investigating specimens
GB8513538D0 (en) * 1985-05-29 1985-07-03 Mackay C D Electrophoresis
JPS6259842A (en) * 1985-09-11 1987-03-16 Hitachi Ltd Flame photometer using internal standard method
JPS62105036A (en) * 1985-11-01 1987-05-15 Hitachi Ltd Wavelength scanning type emission spectrochmical analyzing instrument

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Anal.Chem.(1977) Vol.49,No.4 P.667−668
Anal.Chem.(1982) Vol.54,No.4 P.634−637

Also Published As

Publication number Publication date
JPH01165937A (en) 1989-06-29

Similar Documents

Publication Publication Date Title
Willis The determination of metals in blood serum by atomic absorption spectroscopy—I: calcium
US5431880A (en) Light transmittance type analytical system and variable transmittance optical component and test device for use therein
EP0198513A2 (en) Analytical method and apparatus for determining fluorescence or phosphorescence
EP0751388A2 (en) Method of optically measuring a component in solution
Rathkolb et al. Clinical chemistry and other laboratory tests on mouse plasma or serum
JPH0259671A (en) Immunoassay
US20200333337A1 (en) Method for re-using test probe and reagents in an immunoassay
O'Haver Development of luminescence spectrometry as an analytical tool
CN114624197A (en) Method for detecting blood concentration of small molecule drug
JP2735205B2 (en) Fluorescence analysis method
JPH0979982A (en) Method for measuring constituent in humor optically and simultaneously
JPS6238346A (en) Fluorescent polarized light measuring instrument
WO1997003347A1 (en) Light transmittance type analytical system, variable transmittance optical component, and test device
EP2092340B1 (en) Measuring multiple analytes over a broad range of concentrations using optical diffraction
US20010039005A1 (en) Method for determining drug-serum protein binding
JPH09504603A (en) Direct Cholesterol Analysis
Tiffany et al. Fluorometric fast analyzer: some applications to fluorescence measurements in clinical chemistry
JP2004514906A (en) Analytical methods and reagents used for analysis
JPH06118000A (en) Clinically inspecting method
West et al. An evaluation of the Gemsaec 3E centrifugal analyser
JPH09119932A (en) Method for avoiding effect of hemoglobin
AU2014364401A1 (en) Lp(a) subform size identification using zonal gel immuno-fixation electrophoresis
Palekar et al. Quantitative analysis for detection of cholesterol using colorimetric platform
JP3086890B2 (en) Method for detecting alkaline phosphatase
JPH08210978A (en) Quantitative determining method of fluorescent material and enzyme activity measuring method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees