JP2729615B2 - Composite surface treatment material having high corrosion resistance and high heat resistance and method for producing the same - Google Patents

Composite surface treatment material having high corrosion resistance and high heat resistance and method for producing the same

Info

Publication number
JP2729615B2
JP2729615B2 JP26750384A JP26750384A JP2729615B2 JP 2729615 B2 JP2729615 B2 JP 2729615B2 JP 26750384 A JP26750384 A JP 26750384A JP 26750384 A JP26750384 A JP 26750384A JP 2729615 B2 JP2729615 B2 JP 2729615B2
Authority
JP
Japan
Prior art keywords
layer
frit
alloy
permeated
refractory material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26750384A
Other languages
Japanese (ja)
Other versions
JPS61147868A (en
Inventor
利夫 土方
修 藤岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koshuha Netsuren KK
Original Assignee
Koshuha Netsuren KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koshuha Netsuren KK filed Critical Koshuha Netsuren KK
Priority to JP26750384A priority Critical patent/JP2729615B2/en
Publication of JPS61147868A publication Critical patent/JPS61147868A/en
Application granted granted Critical
Publication of JP2729615B2 publication Critical patent/JP2729615B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高温下の強腐食性ガス雰囲気中で使用するた
めの容器や管材としての高耐食性・高耐熱性を具えた複
合表面処理材に関する。 (従来の技術) 耐食性を具えた容器や管材としてはプラスチツク製品
があるが、熱的および強度的な制約があり、強度的には
満足出来るステンレス製品は強腐食性物質用としては耐
久性に欠ける。高耐食性・高耐熱性が要求される場合に
使用されるものとしては石英製品や黒鉛製品があるが、
極めて高価であり、かつ強度の低いことが難点とされ
る。強度があり、耐食性・耐熱性を具えたものとしてグ
ラスライニング容器や管材があり、一般家庭用として用
いる限り問題はないが、特殊な化学反応を行うような工
程に使用する場合には、高い耐食性と耐熱性が要求され
るので、グラスライニング工程を3〜4回も繰り返すな
ど、製造工程が極めて煩雑となり、これに伴い製造コス
トも高価となる。 このような状況に対して、本出願人は特願昭54−7810
0号(特公昭59−13590号)をもつて、高温下で高耐食性
を示すグラスライニング容器や管材を簡易に製造する方
法を提供し、さらに特願昭54−91687号(特開昭56−166
82号)をもつて、素材金属表面を所定の元素またはその
合金で浸透処理して浸透合金層ならびに被膜を形成した
うえで上記グラスライニング方法を実施するようにした
容器や管材の製造方法を提供した。 上記2出願発明に係る従来技術を綜合すると、例えば
クローム,アルミニウム,珪素あるいはそれ等の合金を
公知固体法,液体法および気体法とある浸透合金形成方
法の何れかを用いて素材金属……例えば安価な低合金鋼
……に浸透処理を施して当該素材表層に浸透合金層なら
びに被膜を形成し、これにより素材金属の表層に耐高温
酸化性を付与するとともに、後工程グラスライニング時
に素材表層から発生するガスの抑制と適当な表面粗さの
形成によるフリツトとの濡れ性を良好となし、ついで水
を加えて泥状としたフリツトを当該浸透処理材表面に塗
布して乾燥し、フリツト・コーテング層を誘導加熱手段
による金属材の予熱と本加熱とを介して当該フリツトコ
ーテング層に含有される蒸気が内部から表面へと脱出し
やすいようにした加熱方法を用いて融解、焼成して得る
二重表面処理材とその製造方法である。 上記方法によつて得られた製品は強度は勿論のこと、
耐ハクリ性にも優れ、例えば管材製品を例に挙げれば、
融点が659℃であるアルミニウムの精錬において、その
溶湯内に挿入して塩素ガスを吹き込む吹精管として用い
た場合、常時溶湯内に先端部が300mmある如く維持しな
がら当該先端部の消耗が500mmに達するまでを耐用時間
の基準とした場合に、20時間以上の耐用時間を確保し得
るが如き耐高温・高耐食性を具えた製品を製造可能であ
る。 (従来技術に存する問題点) 上記従来技術による製品は800℃程度の温度までは前
述の如き耐用時間を保証し得るが、900〜1,000℃の温度
下では耐用時間が大幅に低下するので、さらに耐高温性
の増加が要請されていた。 本発明は上記要請に応えることを目的とするものであ
る。 (発明の構成) 本発明の複合表面処理材の要旨とするところは、 素材金属の表層が耐高温酸化性の元素が浸透した浸透
合金層ならびに当該浸透合金層の表面を覆う前記元素も
しくはその合金の被膜からなる第1層であり、当該第1
層の表面にグラスライニング層が第2層として形成さ
れ、当該第2層上に耐火材層が第3層として形成され、
かつ前記第2層は表面方向が高濃度となる如き分布で耐
火材粉粒が混在し、第2層表層の耐火材粉粒高濃度分布
部と前記第3層の底層とは連続していることを特徴とす
る高耐食性・高耐熱性を具えた複合表面処理材にある。 第1図は本発明にかかる複合表面処理材の表層部の拡
大切断面を模式的に示すもので、Mは金属素材部分であ
り、当該金属材の表層に所定元素またはそれらの合金の
浸透合金層sが形成され、当該浸透合金層sの表面を薄
い元素またはそれらの合金の被膜eが覆つていて、上記
浸透合金層sと被膜eとで第1層(I)を形成し、粗面
となつている当該第1層(I)上に第2層(II)のグラ
スライニング層が、さらに耐火材からなる第3層(II
I)が積層している。上記第2層(II)はGとして示す
下層の純グラスライニング層と上層の表面方向へ向かう
に従つて耐火材粉粒の分布濃度が高くなる混在層uとで
形成されている。 尚、bとして示す球状空洞はグラスライニング層内に
発生・形成された直径10μ以下のボイドである。 本発明は素材金属表層に第1図に示すような状態で第
1層(I)〜第3層(III)をそれぞれ境界を入り込ま
せて積層してなる複合表面処理材である。 而して、上記第3層(III)を形成する耐火材として
はアルミナ,黒鉛,マグネシア等が使用されるが、これ
ら各種耐火材のなかから使用目的に応じて適切な性質を
備えた材質の粉末が選択使用される。例えば温度条件,
接触物との反応し難い等の条件が考慮されなければなら
ない。 また素材金属が細径管材で、後述の製造方法では内周
面に前記第3層の形成が困難でかつ外周面のみが高温物
と接触するような場合には、その内周面は前記第1層と
第2層を有することによりある程度の耐熱性を確保し、
外周面のみに第1層〜第3層を有するものとしてもよ
い。 また本発明においては上記の高耐食性・耐熱性を具え
た複合表面処理材を得るために特に適した製造方法も提
供する。本発明の製造方法は2つあるがその第一の方法
の要旨とするところは、 素材金属の表面に耐高温酸化性の元素を用いた浸透処
理を施して浸透金属層ならびに当該浸透合金層の表面を
覆う前記元素もしくはその合金の被膜を形成し、ついで
当該被膜上に水を加えて泥状としてフリツトを塗布して
フリツト・コーテング層を形成し、当該フリツト・コー
テング層を乾燥する過程中において固化前の状態にある
表面へ耐火材粉粒を高圧噴射し、当該耐火材粉粒の一部
がフリツト・コーテング層内へ侵入する如くこれを被覆
するようにし、上記工程により形成された層部分を誘導
加熱手段による金属材の昇温を介して焼成するようにし
た ことを特徴とする耐耐食性・高耐熱性を具えた複合表面
処理材の製造方法にある。 すなわち本発明の第一の方法は前述した従来技術であ
る二重表面処理材製造工程と第1層(I)の形成工程は
同一であるが、第2層(II)形成以後の工程が従来とは
異なり、第2層(II)形成時におけるフリツト・コーテ
ング層乾燥過程で、泥状フリツトが半乾燥状態時にコー
テング層目がけて耐火材粉粒を吹き付け装置を用いて高
圧噴射する。斯くすることにより、耐火材粉粒の一部は
柔らかい層内に射入されてフリツト・コーテング層の表
層中に表面方向が高濃度・中心方向へ向かうに従つて低
濃度に分布するとともに、フリツトが湿潤しているので
フリツト・コーテング層の表面に薄い層となつて付着し
てこれを被覆する。 上記工程で形成したフリツト・コーテング層および耐
火材粉粒被覆層が乾燥すると加熱工程に付されて焼成さ
れる。当該焼成は前述従来技術の二重表面処理材製造工
程の場合と同様に誘導加熱手段による金属材の予熱と本
加熱とを介して行われる。 本発明の第一の方法は上記のとおりの工程からなり、
先に詳述したように第1層〜第3層がそれぞれ境界を入
り込ませて積層した高耐食性・高耐熱性を具えた複合表
面処理材を得るものである。 なお素材金属が細径の管材であって、当該管材の内周
面のフリットコーテング層に耐火物粉粒の高圧噴射が困
難で、かつ管の外周面のみが溶融金属などの高温物質と
接触するような状況下で使用される場合には、当該管材
の外周面のみに耐火材粉粒の高圧噴射を行なうようにし
てもよい。これにより先に述べたような管の外周面は第
3層まで、内周面は第2層までの複合表面処理材が得ら
れる。 本発明の第二の方法は上記第一の方法とは異なる工程
で実現するもので、その要旨とするところは、 従来技術における素材金属表面を所定の耐高温酸化性
元素またはその合金で浸透処理して浸透合金層ならびに
被膜からなる第1層(I)を形成する工程およびフリツ
ト・コーテング層を形成かつ乾燥するまでの工程は同じ
であるが、誘導加熱手段を用いた金属材の昇温により上
記フリツト・コーテング層を焼成する過程において、当
該フリツト・コーテング層が溶融状態に達した時点で耐
火材粉粒を当該溶融層へ高圧噴射し、当該耐火材粉粒の
一部を溶融層内に射入せしめる如くしてこれを被覆しつ
つ焼成するようにした ことを特徴とする高耐食性・高耐熱性を具えた複合表面
処理材の製造方法にある。 即ち、フリツト・コーテング層を焼成する過程で金属
材を誘導加熱すると、フリツトは当該金属材に接触して
いる内側から順次熱伝導により昇温し、前述の予熱過程
で層内に含まれている水蒸気等を表面方向へ追い出し、
ついで本加熱過程で内側から表面へと順次溶融状態を経
て焼成されるが、表面が上記溶融状態となつた時点で所
定の耐火材粉粒を吹き付け装置を用いて高圧噴射し、当
該耐火材粉粒の一部を溶融層内に射入せしめるようにす
るものである。斯くすることにより、耐火材粉粒の一部
は柔らかい溶融状態にあるフリツト・コーテング層内に
射入され、当該フリツト・コーテング層の表層中に表面
方向が高濃度・中心方向へ向かうに従つて低濃度に分布
し、一部はフリツト・コーテング層の表面に薄い層とな
つて付着してこれを被覆する状態でフリツトとともに焼
成され、第1層(I)上に第2層(II)および第3層
(III)が形成される。 本発明の第二の方法は上記のとおりの工程からなり、
前述第一の方法に詳述したような第1層〜第3層がそれ
ぞれ境界を入り込ませて積層した高耐食性・高耐熱性を
具えた複合表面処理材を得るものである。 なお第二の方法においても素材金属が細径の管材の場
合、先に述べた第一の方法の場合と同様に当該管材の外
周面のみに耐火材粉粒の高圧噴射を行なうようにしても
よい。これにより先に述べたような管の外周面は第3層
まで、内周面は第2層までの複合表面処理材が得られ
る。 (実施例.1) 前記の本発明の第二の方法を容器に実施する場合、ま
ず浸透合金形成方法により容器内外面に浸透合金層なら
びに被覆層からなる第1層(I)を形成する。第2層
(II)および第3層(III)の形成時には誘導加熱手段
が用いられる。容器が小口径なら底面対向方向の巻径を
小とし、外周対向方向の巻径を大とした多巻回加熱コイ
ルが使用され、容器が大口径なら底面に対向可能な端面
型加熱コイルと外周に対向可能な多巻回加熱コイルとが
使用されるなど、コイル形状・数・巻数は設計事項の範
囲で任意に設定される。浸透合金層ならびに被膜からな
る第1層(I)上にフリツト・コーテング層を形成・乾
燥した容器を開口部が上方となる如き状態(加熱時に発
生する水蒸気が発散・上昇するのを促進するため)とし
て加熱コイルと対向せしめ、加熱コイルへ所定時間の通
電停止を挟んだ加熱電流を通電サイクルにより予熱と本
加熱とを施す。上記本加熱は2度に分割された加熱工程
からなり、容器表面のフリツト・コーテング層が溶融状
態となつた時点で容器を加熱コイルとの対向位置から外
して耐火材粉粒を高圧噴射し、その後再び加熱コイルと
対向せしめて本加熱を続行して焼成を完了して第2層
(II)および第3層(III)を形成する。 (実施例.2) 本発明の第二の方法を小径管材に実施する場合は、当
該管材の内外面に浸透合金層ならびに被膜からなる第1
層(I)を浸透合金形成方法を用いて形成し、次いで当
該第1層(I)表面にフリツト・コーテング層を形成・
乾燥したのち、第2図にその一実施例を状態を示す如
く、予熱用のC1,第1本加熱用のC2,第2本加熱用のC3の
構成からなる加熱コイルと、上記第1・第2本加熱用コ
イルC2・C3間に介挿した環状ノズルRからなる耐火材粉
粒噴射器とを懸垂した管材Wの上方端方向から下方端方
向へ相対移動させ(前記実施例.1と同様加熱時に発生す
る水蒸気が発散・上昇するのを促進するとともに、水蒸
気を焼成済み管内周面方向へ上昇せしめることにより未
焼成フリツト・コーテング層への水蒸気の付着・吸収を
防止するため)、予熱用コイルC1内と第1本加熱用コイ
ルC2内とを通過して溶融状態となつた外周面のフリツト
・コーテング層めがけて上記環状ノズルRから耐火材粉
粒を高圧噴射し、ついで第2本加熱用コイルC3内を通過
するようにして焼成を完了し、第2層(II)および第3
層(III)を形成する。 上記方法によれば、耐火材粉粒をフリツト・コーテン
グ層の表層深く射入可能であるが、それほど深く射入す
る必要がない場合には、上記第2本加熱用コイルC3を省
いた構成としてもよい。 第3図は上記製造方法で得た製品から作成した試料の
断面顕微鏡写真を示すものである。下部の白い部分が金
属材で、第1層(I)は当該写真ではあまり明確に表出
していないが、所定の粗面となつており、当該第1層
(I)の粗面に第2層(II)が食い込んで形成され、当
該第2層(II)の表層に耐火材粉粒が射入しているのが
観察される。写真を略上下部分に分けるが如き暗い帯
は、第2層(II)上に存在していた第3層(III)が試
料作成に際して切断片を樹脂に埋めて研磨中に脱落し空
洞となつた部分であり、上半部は樹脂部分を示す。 (実験例) ☆供試体;素材金属として下記の管材を用い、クローム
浸透処理を施したうえA・B各5本づつの2群に分け、
A群にはフリツト・コーテング層を形成後焼成する従来
方法を実施して供試体A群を作成し、B群にはフリツト
・コーテング層を形成して焼成時に耐火材粉粒の高圧噴
射を施す本発明の第二の方法を実施して供試体B群を作
成した。B群に使用した耐火材はアルミナであつた。 素材金属…JIS G3444 寸 法…外径 33mm 内径 25mm 長さ 4000mm ☆実験方法;それぞれの供試体群A・Bをアルミ精錬の
塩素吹精管として下記同一実験条件下で使用して耐用時
間を計測し、各群の平均値を求めた。 実験条件…略800℃のアルミ溶湯に供試体の先端部を常
時300mm浸漬するようにして、溶湯内へ供試体管内を介
して塩素を吹き込み、供試体の先端部が500mm消耗する
までの時間を計測する。 ☆実験結果;供試体A群(従来方法実施)は25時間、供
試体B群(本発明方法実施)は55時間の平均値が得られ
た。 また、実験に付した供試体A群は勿論のこと、供試体
B群にも耐火材層の剥離現象は一切見られなかつた。 (発明の作用) 本発明は、素材金属表層にそれぞれ高耐食性・高耐熱
性のある第1層(I)・第2層(II)および使用目的に
適合したより高い高耐熱性のある第3層(III)が積層
して形成され、しかも上記第1層(I)と第2層(II)
とは従来出願発明の説明において述べたように濡れ性の
良好な積層,第2層(II)と第3層(III)とは境界を
入り込ませるような状態の複合表面処理材であり、また
当該積層状態を齎すことを可能とする製造方法である。 従つて、例えば素材金属表面へ塗布して焼成する泥状
フリツトへ単に耐火材粉粒を混入して均等分布させる場
合と比較すれば、少量の耐火材粉粒を使用して効果的な
高耐熱性・高耐食性を付与可能であり、また従来出願発
明を実施して得た製品の表面に耐火材粉粒を塗布した場
合と比較すれば、従来出願発明が齎した耐高温・高耐食
性にさらに耐熱性を加重するとともに耐火材層剥離の虞
を皆無とするものである。 (発明の効果) 本発明を実施することにより、従来製品に比べてさら
に耐熱性は高まり耐用温度を800℃程度から1,000℃程度
まで引き上げ、耐用時間を2倍に延長することとなり、
製品適用範囲の拡大や当該製品使用者のランニングコス
ト引き下げにも資することとなり、さらには製造設備も
簡易な耐火材粉粒高圧噴射機構を付加するだけであるの
でさしたる設備投資を必要とはせず、また元来安価な金
属材を素材とし、かつ安価な耐火材を少量効率的に使用
するだけであるので材料費は低廉で製造原価の高騰を招
くことなく生産が可能であるなど、齎される効果は多々
あり極めて賞用されるところである。
Description: TECHNICAL FIELD The present invention relates to a composite surface treatment material having high corrosion resistance and high heat resistance as a container or tube for use in a highly corrosive gas atmosphere at a high temperature. . (Prior art) There are plastic products as containers and tubes with corrosion resistance, but due to thermal and strength restrictions, stainless steel products that are satisfactory in strength lack durability for highly corrosive substances. . Quartz products and graphite products are used when high corrosion resistance and high heat resistance are required.
It is extremely expensive and low in strength. There are glass lining containers and tubing materials that are strong and have corrosion resistance and heat resistance.There is no problem as long as they are used for general household use, but if they are used in processes that involve special chemical reactions, they have high corrosion resistance And heat resistance is required, the manufacturing process becomes extremely complicated, for example, the glass lining process is repeated three to four times, and the manufacturing cost is accordingly increased. Under such circumstances, the present applicant has filed a patent application No. 54-7810.
No. 0 (Japanese Patent Publication No. 59-13590), a method for easily producing glass-lined containers and pipes exhibiting high corrosion resistance at high temperatures was provided, and Japanese Patent Application No. 54-91687 (Japanese Unexamined Patent Publication No. 166
No. 82) to provide a method for manufacturing containers and pipes in which the above-mentioned glass lining method is performed after forming a permeated alloy layer and a coating by infiltrating the material metal surface with a predetermined element or its alloy. did. When the prior arts according to the above two inventions are combined, for example, chromium, aluminum, silicon or an alloy thereof is formed by using a known solid method, a liquid method and a gas method and any of a certain infiltration alloy forming method. Inexpensive low-alloy steel is subjected to infiltration treatment to form an infiltrated alloy layer and a coating on the surface of the material, thereby imparting high-temperature oxidation resistance to the surface of the material metal. Suppression of generated gas and formation of appropriate surface roughness ensure good wettability with the frit. Then, water is added to make the mud-like frit on the surface of the infiltration material, dried and coated with the frit coating. The layer is made so that the vapor contained in the frit coating layer easily escapes from the inside to the surface through the preheating of the metal material by the induction heating means and the main heating. Melt using methods, it is baked to be double the surface treatment material and its manufacturing method. The product obtained by the above method has strength, of course,
Excellent peel resistance, for example, for tube products,
In the smelting of aluminum with a melting point of 659 ° C, when used as a blowing pipe for blowing chlorine gas by being inserted into the molten metal, the tip is consumed at 500 mm while always maintaining the tip at 300 mm in the molten metal. When the service life is defined as the standard for the service time, a product having high temperature and high corrosion resistance can be manufactured while ensuring a service time of 20 hours or more. (Problems existing in the prior art) The above-mentioned products according to the prior art can guarantee the service life as described above up to a temperature of about 800 ° C. However, the service life is significantly reduced at a temperature of 900 to 1,000 ° C. There has been a demand for an increase in high temperature resistance. An object of the present invention is to meet the above demand. (Constitution of the Invention) The gist of the composite surface treatment material of the present invention is that a surface layer of a base metal is infiltrated with a high-temperature oxidation-resistant element and that the element or an alloy thereof covers the surface of the infiltrated alloy layer. A first layer comprising a coating of
A glass lining layer is formed as a second layer on the surface of the layer, and a refractory material layer is formed as a third layer on the second layer;
In the second layer, the refractory material particles are mixed in such a distribution that the surface direction becomes high concentration, and the refractory material particle high concentration distribution portion of the surface layer of the second layer and the bottom layer of the third layer are continuous. A composite surface treatment material having high corrosion resistance and high heat resistance. FIG. 1 schematically shows an enlarged cut surface of a surface layer portion of a composite surface treatment material according to the present invention, where M is a metal material portion, and a predetermined element or a permeated alloy of an alloy thereof is formed on the surface layer of the metal material. A layer s is formed, and the surface of the infiltrated alloy layer s is covered with a coating e of a thin element or an alloy thereof. The first layer (I) is formed by the infiltrated alloy layer s and the coating e. A glass lining layer of a second layer (II) is further formed on the first layer (I), which is a surface, and a third layer (II) made of a refractory material.
I) are stacked. The second layer (II) is composed of a lower pure glass lining layer indicated by G and a mixed layer u in which the distribution concentration of the refractory material particles increases toward the surface of the upper layer. Incidentally, the spherical cavity shown as b is a void having a diameter of 10 μm or less generated and formed in the glass lining layer. The present invention is a composite surface treatment material obtained by laminating a first layer (I) to a third layer (III) in a state as shown in FIG. Alumina, graphite, magnesia and the like are used as the refractory material forming the third layer (III). Of these various refractory materials, a material having an appropriate property according to the purpose of use is used. Powder is used selectively. For example, temperature conditions,
Conditions such as difficulty reacting with the contact object must be considered. When the material metal is a small-diameter tube material and it is difficult to form the third layer on the inner peripheral surface by the manufacturing method described later and only the outer peripheral surface comes into contact with a high-temperature material, the inner peripheral surface is Having a certain level of heat resistance by having one layer and a second layer,
The first to third layers may be provided only on the outer peripheral surface. The present invention also provides a manufacturing method particularly suitable for obtaining a composite surface treatment material having the above-mentioned high corrosion resistance and heat resistance. There are two production methods according to the present invention, but the gist of the first method is that the surface of the base metal is subjected to a permeation treatment using a high-temperature oxidation-resistant element to form a permeated metal layer and the permeated alloy layer. During the process of forming a coating of the element or its alloy covering the surface, applying water to the coating to form a mud-like frit, forming a frit coating layer, and drying the frit coating layer. High-pressure refractory material particles are sprayed onto the surface in a state before solidification, and a portion of the refractory material particles is coated so as to penetrate into the frit-coating layer. In a method for producing a composite surface treatment material having corrosion resistance and high heat resistance, characterized in that sintering is performed through heating of a metal material by an induction heating means. That is, the first method of the present invention is the same as the above-mentioned prior art, ie, the step of manufacturing the double surface treatment material and the step of forming the first layer (I), but the steps after the formation of the second layer (II) are the same as those of the prior art. Differently from this, in the process of drying the frit and coating layer at the time of forming the second layer (II), when the muddy frit is in a semi-dry state, the refractory powder is sprayed at a high pressure by using a spraying device for the coating layer. As a result, a part of the refractory material particles are injected into the soft layer, and are distributed in the surface of the frit coating layer at a low concentration as the surface direction is directed toward a high concentration / central direction. Is wet and adheres to and covers the surface of the frit coating layer in a thin layer. When the frit coating layer and the refractory powder coating layer formed in the above step are dried, they are subjected to a heating step and fired. The sintering is performed through preheating of the metal material by the induction heating means and main heating as in the case of the double surface treatment material manufacturing process of the prior art. The first method of the present invention comprises the steps as described above,
As described in detail above, a composite surface treatment material having high corrosion resistance and high heat resistance obtained by laminating the first to third layers so as to enter each boundary is obtained. Note that the material metal is a small-diameter tube material, and it is difficult to inject high-pressure refractory powder particles into the frit coating layer on the inner peripheral surface of the tube material, and only the outer peripheral surface of the tube comes into contact with a high-temperature substance such as a molten metal. When used in such a situation, high-pressure injection of refractory material particles may be performed only on the outer peripheral surface of the pipe material. As a result, a composite surface treatment material having an outer peripheral surface up to the third layer and an inner peripheral surface up to the second layer can be obtained. The second method of the present invention is realized in a step different from that of the first method, and the gist of the present invention is that the surface of the material metal in the prior art is infiltrated with a predetermined high-temperature oxidation-resistant element or an alloy thereof. The steps of forming the first layer (I) composed of the infiltrated alloy layer and the coating and the step of forming the frit coating layer and drying the same are the same, but by increasing the temperature of the metal material using induction heating means. In the process of firing the frit / coating layer, when the frit / coating layer reaches a molten state, refractory material particles are injected at a high pressure into the molten layer, and a part of the refractory material particles is injected into the molten layer. There is provided a method for producing a composite surface treatment material having high corrosion resistance and high heat resistance, characterized in that it is coated and fired while being radiated. That is, when the metal material is induction-heated in the process of firing the frit-coating layer, the frit is sequentially heated from the inside in contact with the metal material by heat conduction, and is contained in the layer in the preheating process described above. Drives water vapor, etc. toward the surface,
Next, in the main heating process, the material is fired sequentially from the inside to the surface through a molten state. When the surface reaches the above-mentioned molten state, predetermined refractory material particles are sprayed with a high pressure using a spraying device to apply the refractory material powder. Part of the grains is caused to enter the molten layer. As a result, a part of the refractory material particles is injected into the frit-coating layer in a soft molten state, and the surface direction of the frit-coating layer in the surface layer of the frit-coating layer increases toward the high concentration / central direction. It is distributed at a low concentration and partly adheres as a thin layer to the surface of the frit coating layer and is baked together with the frit in a state of covering the thin layer, and the second layer (II) and the second layer (II) are formed on the first layer (I). A third layer (III) is formed. The second method of the present invention comprises the steps as described above,
This is to obtain a composite surface treatment material having high corrosion resistance and high heat resistance in which the first to third layers described in detail in the first method described above are laminated with their respective boundaries inserted. In the second method, when the material metal is a small-diameter tube, the high-pressure injection of the refractory material particles may be performed only on the outer peripheral surface of the tube similarly to the case of the first method described above. Good. As a result, a composite surface treatment material having an outer peripheral surface up to the third layer and an inner peripheral surface up to the second layer can be obtained. (Example 1) When the above-mentioned second method of the present invention is applied to a container, first, a first layer (I) composed of a penetrating alloy layer and a coating layer is formed on the inner and outer surfaces of the container by a penetrating alloy forming method. In forming the second layer (II) and the third layer (III), an induction heating means is used. If the container is small in diameter, a multi-turn heating coil with a small winding diameter in the direction facing the bottom and a large winding diameter in the direction facing the outer circumference is used. The shape, number, and number of turns of the coil are arbitrarily set within a range of design items, such as using a multi-turn heating coil capable of facing the coil. A frit coating layer is formed on the first layer (I) composed of the infiltrated alloy layer and the coating, and the dried container is placed in a state where the opening is upward (to promote the diffusion and rise of water vapor generated during heating). In the step (1), the heating coil is opposed to the heating coil, and the heating coil is preheated and main-heated by applying an electric current to the heating coil after stopping the energization for a predetermined time. The main heating includes a heating step divided into two steps, and when the frit / coating layer on the surface of the container is in a molten state, the container is removed from the position facing the heating coil, and high-pressure refractory material particles are injected, After that, the main heating is continued again by facing the heating coil, and the firing is completed to form the second layer (II) and the third layer (III). (Example 2) When the second method of the present invention is carried out on a small-diameter pipe, the first method comprising a permeated alloy layer and a coating on the inner and outer surfaces of the pipe is used.
The layer (I) is formed by using an infiltration alloy forming method, and then a frit coating layer is formed on the surface of the first layer (I).
After the drying, as shown in FIG. 2, the heating coil having the structure of C1 for preheating, C2 for first heating, and C3 for second heating, as shown in FIG. The refractory material powder injector composed of the annular nozzle R interposed between the second main heating coils C2 and C3 is relatively moved from the upper end direction to the lower end direction of the suspended tube W (the same as in Example 1.1). Similarly, in order to prevent the water vapor generated during heating from escaping and rising, and to raise the water vapor toward the inner peripheral surface of the fired pipe to prevent the adhesion and absorption of the water vapor to the unfired frit / coating layer.) The refractory material particles are injected at a high pressure from the annular nozzle R toward the frit coating layer on the outer peripheral surface which has passed through the inside of the heating coil C1 and the inside of the first heating coil C2 and has become molten. Finish firing by passing through heating coil C3 , A second layer (II) and third
Form a layer (III). According to the above method, the refractory material particles can be injected deep into the surface of the frit coating layer. However, if it is not necessary to inject the particles so deeply, the second heating coil C3 is omitted. Is also good. FIG. 3 shows a cross-sectional micrograph of a sample prepared from the product obtained by the above manufacturing method. The lower white portion is a metal material, and the first layer (I) is not so clearly shown in the photograph, but has a predetermined rough surface, and the second layer is formed on the rough surface of the first layer (I). It is observed that the layer (II) is formed by digging in, and the refractory material particles are injected into the surface of the second layer (II). The dark band, which divides the photograph into upper and lower parts, is that the third layer (III), which had existed on the second layer (II), fell into a cavity during polishing because the cut pieces were buried in resin during sample preparation. The upper half shows the resin part. (Experimental example) ☆ Specimen: Using the following tube material as the base metal, chrome infiltration treatment, and divided into 2 groups of 5 each for A and B,
A group A is prepared by forming a frit-coated layer by applying a conventional method of forming a frit-coating layer and then firing. A group B is formed with a frit-coated layer and subjected to high-pressure injection of refractory powder during firing. Specimen B group was prepared by performing the second method of the present invention. The refractory used in Group B was alumina. Material metal: JIS G3444 Dimensions: Outer diameter 33mm Inner diameter 25mm Length 4000mm ☆ Experimental method: Use each specimen group A and B as aluminum smelting chlorine blowing tubing and measure the service life under the same experimental conditions below. Then, the average value of each group was determined. Experimental conditions: The tip of the specimen was immersed in the molten aluminum at approximately 800 ° C at a constant temperature of 300 mm, and chlorine was blown into the molten metal through the specimen tube. measure. ☆ Experimental results: The average value of the specimen A group (performed by the conventional method) was 25 hours, and that of the specimen B group (performed by the method of the present invention) was 55 hours. In addition, not only the specimen A group but also the specimen B group subjected to the experiment did not show any peeling phenomenon of the refractory material layer. (Function of the Invention) The present invention provides a first layer (I) and a second layer (II) each having high corrosion resistance and high heat resistance on a metal surface layer and a third layer having higher heat resistance suitable for the intended use. The layer (III) is formed by laminating the first layer (I) and the second layer (II).
As described in the description of the invention of the prior application, "laminate" has a good wettability and is a composite surface treatment material in which the boundary between the second layer (II) and the third layer (III) is inserted. This is a manufacturing method capable of bringing the laminated state. Therefore, compared with the case where the refractory material particles are simply mixed and evenly distributed into the mud frit which is applied to the material metal surface and fired, the effective high heat resistance can be obtained by using a small amount of the refractory material particles. And high corrosion resistance, and compared to the case where refractory powder is applied to the surface of a product obtained by carrying out the present invention, the high temperature and high corrosion resistance brought by the present invention is further improved. The heat resistance is increased, and the risk of peeling of the refractory material layer is eliminated. (Effect of the Invention) By implementing the present invention, the heat resistance is further increased as compared with the conventional product, the service temperature is raised from about 800 ° C to about 1,000 ° C, and the service time is doubled,
This will contribute to the expansion of the application range of the product and the reduction of the running cost for the user of the product.Furthermore, the manufacturing equipment only needs to add a simple refractory material powder high-pressure injection mechanism, so no significant capital investment is required. In addition, the material cost is low, and the production is possible without incurring the rise of the production cost. The effects are numerous and extremely rewarding.

【図面の簡単な説明】 第1図は本発明に係る高耐食性・高耐熱性を具えた複合
表面処理材を模式に示す拡大断面図、第2図は本発明の
方法の一実施例を示す一部断面正面図、第3図は本発明
実施品の断面顕微鏡写真図である。 (I)……第1層 s……浸透合金層 e……元素または合金の被膜 (II)……第2層 G……純グラスライニング層 u……耐火材粉粒が混在するグラスライニング層の表層 (III)……第3層
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an enlarged sectional view schematically showing a composite surface treatment material having high corrosion resistance and high heat resistance according to the present invention, and FIG. 2 shows one embodiment of the method of the present invention. FIG. 3 is a partially sectional front view, and FIG. 3 is a sectional micrograph of the product of the present invention. (I)... First layer s... Infiltration alloy layer e... Element or alloy coating (II)... Second layer G... Pure glass lining layer u. Surface layer (III) of the third layer

Claims (1)

(57)【特許請求の範囲】 1.素材金属の表層が耐高温酸化性の元素が浸透した浸
透合金層ならびに当該浸透合金層の表面を覆う前記元素
もしくはその合金の被膜からなる第1層であり、当該第
1層の表面にグラスライニング層が第2層として形成さ
れ、当該第2層上に耐火材層が第3層として形成され、
かつ前記第2層は表面方向が高濃度となる如き分布で耐
火材粉粒が混在し、第2層表層の耐火材粉粒高濃度分布
部と前記第3層の底層とは連続していることを特徴とす
る耐耐食性・高耐熱性を具えた複合表面処理材。 2.素材金属で形成された管材の内外周面それぞれの表
層が、耐高温酸化性の元素が浸透した浸透合金層ならび
に当該浸透合金層の表面を覆う前記元素もしくはその合
金の被膜からなる第1層であり、当該内外周面の第1層
の表面にグラスライニング層がそれぞれ第2層として形
成され、当該管材の外周面側の第2層上にのみ耐火材層
が第3層として形成され、かつ前記管材の外周面側の第
2層は表面方向が高濃度となる如き分布で耐火材粉粒が
混在し、第2層表層の耐火材粉粒高濃度分布部と前記第
3層の底層とは連続していることを特徴とする耐耐食性
・高耐熱性を具えた複合表面処理材。 3.素材金属の表面に耐高温酸化性の元素を用いた浸透
処理を施して浸透金属層ならびに当該浸透合金層の表面
を覆う前記元素もしくはその合金の被膜を形成し、つい
で当該被膜上に水を加えて泥状としたフリットを塗布し
てフリット・コーテング層を形成し、当該フリット・コ
ーテング層を乾燥する過程中において固化前の状態にあ
る表面へ耐火材粉粒を高圧噴射し、当該耐火材粉粒の一
部がフリット・コーテング層内へ侵入する如くこれを被
覆するようにし、上記工程により形成された層部分を誘
導加熱手段による金属材の昇温を介して焼成するように
したことを特徴とする耐耐食性・高耐熱性を具えた複合
表面処理材の製造方法。 4.素材金属の表面に耐高温酸化性の元素を用いた浸透
処理を施して浸透金属層ならびに当該浸透合金層の表面
を覆う前記元素もしくはその合金の被膜を形成し、つい
で当該被膜上に水を加えて泥状としたフリットを塗布し
てフリット・コーテング層を形成し、当該フリット・コ
ーテング層を乾燥のうえ、誘導加熱手段を用いて金属材
を昇温せしめることにより上記フリット・コーテング層
を焼成する過程に付し、当該焼成過程においてフリット
・コーテング層が溶融状態に達した時点で耐火材粉粒を
溶融層表面へ高圧噴射し、当該耐火材粉粒の一部が溶融
層内に射入する如くしてこれを被覆しつつ焼成するよう
にしたことを特徴とする耐耐食性・高耐熱性を具えた複
合表面処理材の製造方法。
(57) [Claims] The surface layer of the base metal is a first layer made of a permeated alloy layer impregnated with a high-temperature oxidation-resistant element and a film of the element or its alloy covering the surface of the permeated alloy layer, and the surface of the first layer is glass-lined. A layer is formed as a second layer, a refractory layer is formed as a third layer on the second layer,
In the second layer, the refractory material particles are mixed in such a distribution that the surface direction becomes high concentration, and the refractory material particle high concentration distribution portion of the surface layer of the second layer and the bottom layer of the third layer are continuous. A composite surface treatment material with corrosion resistance and high heat resistance. 2. The surface layer of each of the inner and outer peripheral surfaces of the tube material formed of the material metal is a first layer composed of a permeated alloy layer impregnated with a high-temperature oxidation-resistant element and a film of the element or its alloy covering the surface of the permeated alloy layer. A glass lining layer is formed as a second layer on the surface of the first layer on the inner and outer peripheral surfaces, and a refractory material layer is formed as a third layer only on the second layer on the outer peripheral surface side of the tube material; and In the second layer on the outer peripheral surface side of the pipe material, refractory material particles are mixed in such a distribution that the surface direction becomes high concentration, and the refractory material particle high concentration distribution portion of the second layer surface layer and the bottom layer of the third layer are formed. Is a composite surface treatment material with corrosion resistance and high heat resistance characterized by being continuous. 3. The surface of the base metal is subjected to infiltration treatment using a high-temperature oxidation-resistant element to form a permeated metal layer and a film of the element or its alloy covering the surface of the permeated alloy layer, and then water is added to the film. The frit coating layer is formed by applying a mud-like frit to form a frit coating layer, and during the process of drying the frit coating layer, high-pressure spraying of refractory material particles onto a surface in a state before solidification is performed. It is characterized in that a part of the particles is coated so as to penetrate into the frit coating layer, and the layer formed by the above process is baked through the heating of the metal material by the induction heating means. A method for producing a composite surface treatment material with corrosion resistance and high heat resistance. 4. The surface of the base metal is subjected to infiltration treatment using a high-temperature oxidation-resistant element to form a permeated metal layer and a film of the element or its alloy covering the surface of the permeated alloy layer, and then water is added to the film. A frit-coated layer is formed by applying a frit in a mud-like state, and the frit-coated layer is dried, and then the metal material is heated by using an induction heating means, thereby firing the frit-coated layer. In the firing step, when the frit-coating layer reaches a molten state, the refractory material particles are injected at high pressure onto the surface of the molten layer, and a part of the refractory material particles enter the molten layer. A method for producing a composite surface treatment material having corrosion resistance and high heat resistance, wherein the material is fired while being coated as described above.
JP26750384A 1984-12-20 1984-12-20 Composite surface treatment material having high corrosion resistance and high heat resistance and method for producing the same Expired - Fee Related JP2729615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26750384A JP2729615B2 (en) 1984-12-20 1984-12-20 Composite surface treatment material having high corrosion resistance and high heat resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26750384A JP2729615B2 (en) 1984-12-20 1984-12-20 Composite surface treatment material having high corrosion resistance and high heat resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JPS61147868A JPS61147868A (en) 1986-07-05
JP2729615B2 true JP2729615B2 (en) 1998-03-18

Family

ID=17445748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26750384A Expired - Fee Related JP2729615B2 (en) 1984-12-20 1984-12-20 Composite surface treatment material having high corrosion resistance and high heat resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP2729615B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100293194B1 (en) * 1996-12-13 2001-10-24 이구택 Coating material for preventing surface oxidation of refractory containing carbon

Also Published As

Publication number Publication date
JPS61147868A (en) 1986-07-05

Similar Documents

Publication Publication Date Title
US2161597A (en) Method of bonding powdered metallic material
JP2729615B2 (en) Composite surface treatment material having high corrosion resistance and high heat resistance and method for producing the same
JPS61262625A (en) Protective pipe for thermocouple and its preparation
KR940007853B1 (en) Method of producing bimetal for use as material for plain bearing
US5985186A (en) Method of preparing tubular ceramic articles
JPS62177183A (en) Method for forming metallic lining on inside surface of metallic pipe or the like
KR20110086740A (en) Method for coating a metal crucible member with a glass and ceramic mixture
JP2607088B2 (en) Method of manufacturing curved pipe with inner metal lining
EP0191008B1 (en) Shell or tubular object and method to manufacture the same
JPH024950A (en) Manufacture of surface treated steel sheet having excellent corrosion resistance and wear resistance
JPS6325041B2 (en)
JPH0229740B2 (en) MITSUCHAKUSEINISUGURETAYOSHASONOKEISEIHOHO
JPH0233676B2 (en) TANKAKEISO * KINZOKUFUKUGOKANOYOBISONOSEIZOHOHO
JPS63166954A (en) Method for forming ceramic member
JPH0452208B2 (en)
JPS61286077A (en) Core metal for steel tube rolling mill
JPH0859373A (en) Oxidation preventive coating of carbon material
JPH0718409A (en) Production of corrosion resisting high grade cast iron tube
JPS6389677A (en) Thick ceramic coating method
SU1528623A1 (en) Method of applying two-layer pulverulent coatings
JPH02194183A (en) Ceramic-coated zirconium alloy article and its production
JP2023019367A (en) Repairing method for article having self-fluxing alloy film
SU1016097A1 (en) Tinning method
JPS594903A (en) Production of steel plate coated with self-fluxing alloy
SU235664A1 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees