JP2728900B2 - Partition type catalyst and reactor for the catalyst - Google Patents

Partition type catalyst and reactor for the catalyst

Info

Publication number
JP2728900B2
JP2728900B2 JP63261127A JP26112788A JP2728900B2 JP 2728900 B2 JP2728900 B2 JP 2728900B2 JP 63261127 A JP63261127 A JP 63261127A JP 26112788 A JP26112788 A JP 26112788A JP 2728900 B2 JP2728900 B2 JP 2728900B2
Authority
JP
Japan
Prior art keywords
catalyst
partition
reaction
hydrogen
type catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63261127A
Other languages
Japanese (ja)
Other versions
JPH02107332A (en
Inventor
健一 向井田
俊平 三沢
敬三 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MURORAN KOGYO DAIGAKUCHO
NIPPON SEIKOSHO KK
Original Assignee
MURORAN KOGYO DAIGAKUCHO
NIPPON SEIKOSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MURORAN KOGYO DAIGAKUCHO, NIPPON SEIKOSHO KK filed Critical MURORAN KOGYO DAIGAKUCHO
Priority to JP63261127A priority Critical patent/JP2728900B2/en
Publication of JPH02107332A publication Critical patent/JPH02107332A/en
Application granted granted Critical
Publication of JP2728900B2 publication Critical patent/JP2728900B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はLaNi5−Ni系共晶系合金を1方向凝固により
整列組織成長させた水素貯蔵合金よりなる隔壁型触媒及
び該触媒用反応装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [FIELD OF THE INVENTION The present invention bulkhead type catalyst and the catalyst for the reaction apparatus consisting of hydrogen storage alloys aligned tissue grown by unidirectional solidification of LaNi 5 -Ni eutectic alloy About.

[従来の技術] 今日、化学工業において、その諸反応のうちで触媒を
使用する反応が非常に多い。触媒は各プロセスにおいて
効率良く反応を起こさせるものであり、触媒の選定に当
たっては少ない量で単位時間内にできるだけ多くの目的
製品を生成させることが重要である。すなわち、触媒に
は高活性を有し且つ反応選択性に優れていることが要求
されている。
[Background Art] In the chemical industry today, there are very many reactions using a catalyst among the various reactions. The catalyst causes a reaction efficiently in each process, and it is important to select as many catalysts as possible to produce as many target products as possible within a unit time in a small amount. That is, the catalyst is required to have high activity and excellent reaction selectivity.

一方、工業面では石炭化学から石油化学に及ぶめざま
しい技術革新の波が押し迫り、触媒開発の研究が著しい
影響を受け、新しい触媒の開発による新プロセスの開発
が活発に行なわれている。この趨勢において、従来より
も一層高活性で、反応選択性に優れた触媒の開発は、例
えば石炭液化反応に含まれる一酸化炭素の水素化、アル
キル芳香族化合物の水素化分解、ベンゼン、シクロヘキ
サン、ナフタリンの水素化などの諸反応においてプロセ
スを飛躍的に進展させることができ、その社会的な有用
性は非常に大きい。
On the industrial side, on the other hand, a remarkable wave of technological innovation ranging from coal chemistry to petrochemicals has been imminent, and research on catalyst development has been significantly affected. New catalysts have been actively developed to develop new processes. In this trend, the development of catalysts with higher activity and higher reaction selectivity than before has been developed, for example, hydrogenation of carbon monoxide contained in coal liquefaction, hydrogenolysis of alkyl aromatic compounds, benzene, cyclohexane, The process can be dramatically advanced in various reactions such as hydrogenation of naphthalene, and its social utility is very large.

触媒に必要な性能としては、上述のように触媒活性が
高いこと、反応選択性に優れること、長寿命であること
が挙げられる。現在使用されている触媒を元素別にみる
と、周期表第8族のほかにCuがあり、更に広くみると周
期表第6族、第7族の金属の酸化物や硫化物、更に錯化
合物もある。これらはいずれも金属として用いられる
が、実用上は少量の触媒に大きな表面積を与えて活性を
増大し、また、シンタリングを防止することにより耐熱
性を向上させる必要がある。
The performance required for the catalyst includes high catalytic activity, excellent reaction selectivity, and long life as described above. Looking at the catalysts currently used by element, there is Cu in addition to Group 8 of the Periodic Table, and more broadly, oxides and sulfides of metals of Groups 6 and 7 of the Periodic Table, as well as complex compounds. is there. All of these are used as metals, but in practice, it is necessary to increase the activity by giving a small surface area a large surface area to a small amount of catalyst, and to improve heat resistance by preventing sintering.

そのため、金属線または金属板として使用することは
極めて少なく、ほとんどの場合に、活性炭、アルミナ
(Al2O3)、珪藻土(SiO2)などの粉体表面あるいはそ
の成形体(通常、担体と呼ばれ、5mmφ×5mmH程度の円
筒形態でスポンジ状である)の内外部表面に、化学的方
法(沈着法、含浸法、共沈法など)で、10〜100オング
ストロームのMoやCoなどの金属微粒子(担持物質)を付
着または沈着させたもの(担体付触媒または担持触媒と
呼ばれ、触媒表面積は約200m2/g程度である)を触媒と
している。この触媒では、担持物質上に吸着した水素
(保有水素)が気体または液体不飽和炭化水素の水素化
反応に寄与する。
Therefore, it is rarely used as a metal wire or a metal plate. In most cases, the surface of a powder of activated carbon, alumina (Al 2 O 3 ), diatomaceous earth (SiO 2 ), or a molded product thereof (usually called a carrier) Metal particles such as Mo and Co of 10 to 100 angstroms by chemical method (deposition method, impregnation method, co-precipitation method, etc.) on the inner and outer surfaces of a cylindrical form of about 5 mmφ x 5 mmH. (Supported catalyst or supported catalyst, the catalyst surface area of which is about 200 m 2 / g) on which the (supported substance) is attached or deposited is used as the catalyst. In this catalyst, hydrogen (retained hydrogen) adsorbed on a supported substance contributes to the hydrogenation reaction of a gas or liquid unsaturated hydrocarbon.

[発明が解決しようとする課題] しかし、上述の触媒担体を用いた触媒には下記のよう
な問題点がある: 反応過程で触媒担体の破壊が生じ、10〜100オングス
トロームの担持物質が浮遊または飛散し、これらを反応
生成物と分離するのは不可能である; 内部拡散の作用により、凝集体の表面の担体のみが反
応に作用するだけで、内部の担体は有効に活用されな
い。従って、反応には過剰の触媒が必要である; 触媒形状が細粒状であるために、反応は必然的に装入
原料(未反応物質)が触媒充填層内を通過する方法であ
り、触媒の生産性を高めるためには、装入原料(未反応
物質)の輸送に多量のエネルギーが必要であり、且つ均
一な反応の制御も困難である(圧損失と流れの乱れを生
ずる); 微粒子を充填層にするために、反応に際して出入りす
る熱のコントロールが困難であり、それに伴う副反応が
併発する。また、高温になって触媒を失活させることも
ある。
[Problems to be Solved by the Invention] However, the above-mentioned catalyst using the catalyst carrier has the following problems: The catalyst carrier is destroyed in the course of the reaction, and 10 to 100 angstroms of the supported substance are suspended or suspended. It is not possible to scatter and separate them from the reaction products; by the action of internal diffusion, only the carriers on the surface of the aggregate act on the reaction and the internal carriers are not effectively utilized. Therefore, the reaction requires an excess of catalyst; the reaction is necessarily a method in which the charged material (unreacted substance) passes through the catalyst packed bed due to the fine-grained shape of the catalyst. In order to increase the productivity, a large amount of energy is required for transporting the charged material (unreacted substance), and it is difficult to control the uniform reaction (causing pressure loss and turbulence in the flow); In order to form a packed bed, it is difficult to control the heat flowing in and out during the reaction, and accompanying side reactions occur simultaneously. In addition, the catalyst may be deactivated at a high temperature.

一方、近年水素貯蔵合金を用いた触媒の開発も盛んに
行なわれている。水素貯蔵合金は低温で水素と反応する
と多量の水素を吸蔵し、この吸蔵水素は原子状であるこ
とから、この吸蔵水素を水素化反応に利用できれば高い
反応性が期待できる。水素貯蔵合金の吸蔵水素が、有機
あるいは無機化合物の水素化反応に高活性を示す機能を
利用した触媒材料が開発されれば、その利用分野は広大
である。
On the other hand, in recent years, catalysts using a hydrogen storage alloy have been actively developed. When a hydrogen storage alloy reacts with hydrogen at a low temperature, it absorbs a large amount of hydrogen, and since the stored hydrogen is atomic, high reactivity can be expected if the stored hydrogen can be used for a hydrogenation reaction. If a catalyst material is developed that utilizes the function of the stored hydrogen of the hydrogen storage alloy to exhibit a high activity in the hydrogenation reaction of organic or inorganic compounds, the field of application is vast.

従って、本発明の目的は水素貯蔵合金を利用した従来
にない全く新しいタイプの水素透過型の隔壁型触媒及び
該触媒を使用するための反応装置を提供することによ
り、前述した従来の金属触媒の問題点を解決することに
ある。
Accordingly, an object of the present invention is to provide a completely new type of hydrogen permeation type partition wall type catalyst utilizing a hydrogen storage alloy and a reactor for using the catalyst. Solving the problem.

[課題を解決するための手段] 本発明はLaNi5−Ni共晶系合金が耐微粉化性と水素を
原子状に吸収する機能を有すること、更に共晶相界面を
一方向に整列させると水素拡散性が著しく向上するとい
う一連の研究結果に基づいて完成されたものである。
[Means for Solving the Problems] The present invention provides that the LaNi 5 -Ni eutectic alloy has a resistance to pulverization and a function of absorbing hydrogen in an atomic state, and furthermore, the eutectic phase interface is aligned in one direction. It has been completed based on a series of research results that hydrogen diffusivity is significantly improved.

即ち、本発明はLaNi5−Ni系共晶系合金を1方向凝固
により整列組織成長させた水素貯蔵合金鋳塊を、その組
織の成長方向に対して直角方向に所定の寸法に切断した
板状であることを特徴とする不飽和炭化水素類を水素化
するための隔壁型触媒に係る。
That is, the present invention provides a plate-shaped ingot obtained by cutting a LaNi 5 -Ni-based eutectic alloy into a predetermined size in a direction perpendicular to the growth direction of the structure. The present invention relates to a partition type catalyst for hydrogenating unsaturated hydrocarbons, characterized in that:

更に、本発明は水素供給用導管を備える水素供給室、
装入原料流用導管並びに生成物流用導管を備える反応
室、及び前記水素供給室と反応室を仕切り且つ触媒断面
の一方が水素供給室に他方が反応室にそれぞれ接するよ
うに設置された隔壁型触媒よりなる隔壁型触媒用反応装
置において、隔壁型触媒が前記隔壁型触媒であることを
特徴とする隔壁型触媒用反応装置に係る。
Further, the present invention provides a hydrogen supply chamber having a hydrogen supply conduit,
A reaction chamber provided with a charge material flow conduit and a product flow conduit, and a partition-type catalyst provided so as to partition the hydrogen supply chamber and the reaction chamber and to have one of the catalyst cross sections in contact with the hydrogen supply chamber and the other in contact with the reaction chamber, respectively. The present invention relates to a reactor for partition wall type catalyst, wherein the partition wall type catalyst is the above partition wall type catalyst.

[作 用] 前述した従来の金属触媒の問題点は、 細粒状ではなく、水素透過型の水素貯蔵合金からなる
隔壁型触媒を開発すること; 更に、その断面を他の金属元素で被覆するか、更に、
該被覆上にアルカリ金属またはアルカリ土類金属などを
分散・付与させる助触媒作用を利用してより飛躍的な高
活性、高選択性を有する触媒とすること(表面装飾); により解決できる。
[Operation] The problem of the conventional metal catalyst described above is to develop a partition type catalyst made of a hydrogen-permeable hydrogen storage alloy, not a fine-grained one; And
The use of a co-catalyst function of dispersing and providing an alkali metal or an alkaline earth metal on the coating to provide a catalyst having a remarkably high activity and high selectivity (surface decoration).

本発明触媒に使用する材料はLaNi5−Ni共晶系合金を
1方向凝固により整列組織成長させた水素貯蔵合金であ
る。この水素貯蔵合金は特開昭60−135538号公報に記載
されている。この水素貯蔵合金は、従来の水素貯蔵合金
が脆弱であり、更に、水素の吸脱蔵に伴う体積膨張・収
縮の繰り返しにより微粉化する等の欠点を有していた
が、それを解消したものである。
The material used for the catalyst of the present invention is a hydrogen storage alloy obtained by growing a LaNi 5 -Ni eutectic alloy in an ordered structure by unidirectional solidification. This hydrogen storage alloy is described in JP-A-60-135538. This hydrogen storage alloy has the disadvantage that the conventional hydrogen storage alloy is fragile and has the disadvantage that it is pulverized due to repeated volume expansion and contraction accompanying the absorption and desorption of hydrogen. It is.

本発明の隔壁型触媒は上述のようなLaNi5−Ni系共晶
系合金を1方向凝固により整列組織成長させた水素貯蔵
合金鋳塊を、その鋳塊の組織の成長方向に対して直角に
所定の寸法に切断した板状物である。
The partition wall type catalyst of the present invention is obtained by subjecting a hydrogen storage alloy ingot obtained by growing a LaNi 5 -Ni-based eutectic alloy to an aligned structure by unidirectional solidification as described above, at right angles to the growth direction of the structure of the ingot. It is a plate-like material cut to a predetermined size.

第1図は本発明の隔壁型触媒の断面の概略図である。
第1図から明らかなように本発明触媒は一方向凝固によ
り整列組織成長しているLaNi5(1)とNi(2)が共晶
系で存在するものである。なお、第1図には断面形状が
円形の触媒を示したが、断面形状はこれに限定されるも
のではないことを理解されたい。
FIG. 1 is a schematic view of a cross section of a partition wall type catalyst of the present invention.
As is clear from FIG. 1, the catalyst of the present invention is one in which LaNi 5 (1) and Ni (2) growing in an ordered structure by unidirectional solidification exist in a eutectic system. Although FIG. 1 shows a catalyst having a circular cross-sectional shape, it should be understood that the cross-sectional shape is not limited to this.

本発明の隔壁型触媒は一方向凝固により整列組織成長
させた上述の水素貯蔵合金を、その組織の成長方向に対
して直角の方向に切断することにより得られるが、通
常、厚さは2〜10mm程度である。触媒の厚さが2mm未満
であると機械的強度不足のため取り付け時に破損するこ
とがあるために好ましくなく、また、10mmを超えると水
素透過量の減少が顕著となるために好ましくない。
The partition wall type catalyst of the present invention can be obtained by cutting the above-mentioned hydrogen storage alloy having an aligned structure grown by unidirectional solidification in a direction perpendicular to the growth direction of the structure. It is about 10mm. If the thickness of the catalyst is less than 2 mm, it is not preferable because it may be damaged at the time of installation due to insufficient mechanical strength, and if it exceeds 10 mm, the reduction in the amount of hydrogen permeation becomes remarkable, which is not preferable.

上述のようにして得られた隔壁型触媒は第2図に概略
的に示す反応装置を使用して各種反応を行なわせること
ができる。第2図に記載する反応装置について説明する
と、反応装置は水素供給室(A)と反応室(B)を仕切
るように円板形状の隔壁型触媒(3)が銅製ガスケット
(4)を介して設置されている。なお、隔壁型触媒の上
記切断面が水素供給室(A)と反応室(B)にそれぞれ
接するように設置しなければならない。水素供給室
(A)へは導管(5)により水素が供給される。次に、
水素は水素供給室(A)から隔壁型触媒の水素供給室側
を介して反応室側へ拡散される。この場合に水素の供給
は加圧供給によるか、または電気化学的供給によるもの
であってもよい。
The partition wall type catalyst obtained as described above can be subjected to various reactions using a reactor schematically shown in FIG. The reactor shown in FIG. 2 will be described. In the reactor, a disk-shaped partition wall catalyst (3) is separated via a gasket (4) made of copper so as to partition a hydrogen supply chamber (A) and a reaction chamber (B). is set up. In addition, it is necessary to install the partition wall type catalyst so that the cut surface is in contact with the hydrogen supply chamber (A) and the reaction chamber (B), respectively. Hydrogen is supplied to the hydrogen supply chamber (A) by a conduit (5). next,
Hydrogen is diffused from the hydrogen supply chamber (A) to the reaction chamber side via the hydrogen supply chamber side of the partition type catalyst. In this case, the supply of hydrogen may be by pressurized supply or by electrochemical supply.

また、反応室(B)には装入原料流(例えば不飽和炭
化水素+水素)用の導管(6)と生成物流(例えば飽和
炭化水素)用の導管(7)が設置されている。本発明の
隔壁型触媒を通過して反応室側に拡散された原子状水素
を用いて導管(6)からの装入原料例えば気相または液
相の不飽和炭化水素の水素化反応(例えばエチレンのエ
タンへの転化反応)を行なうことができる。
The reaction chamber (B) is also provided with a conduit (6) for the feed stream (for example, unsaturated hydrocarbon + hydrogen) and a conduit (7) for the product stream (for example, saturated hydrocarbon). The hydrogenation reaction (for example, ethylene or gaseous or liquid phase unsaturated hydrocarbon) from the conduit (6) using atomic hydrogen diffused to the reaction chamber side through the partition type catalyst of the present invention. To ethane).

ここで、不飽和炭化水素類の水素化反応における反応
条件は使用する不飽和炭化水素の種類によって異なる
が、例えばエチレンのエタンへの水素化反応の場合には
0〜50℃の温度である。ここで、温度は反応装置全体を
水浴に没する等の手段により制御することができる。ま
た、水素供給室(A)内の水素は0.1〜0.5MPa(絶対
圧)の圧力に維持することが好ましく、また、反応室
(B)内の装入原料(原料炭化水素)は種類によって異
なるが、例えばエチレンの場合には分圧を0.1〜0.3に、
水素の分圧を0.7〜0.9に維持することが好ましい。ま
た、エチレンと水素の混合ガスは0.1MPa(絶対圧)に維
持することが好ましい。なお、各成分の圧力は圧縮機に
より制御することができる。
Here, the reaction conditions in the hydrogenation reaction of unsaturated hydrocarbons vary depending on the type of unsaturated hydrocarbon used. For example, in the case of hydrogenation reaction of ethylene to ethane, the temperature is 0 to 50 ° C. Here, the temperature can be controlled by means such as immersing the entire reactor in a water bath. The hydrogen in the hydrogen supply chamber (A) is preferably maintained at a pressure of 0.1 to 0.5 MPa (absolute pressure), and the raw material (hydrocarbon) charged in the reaction chamber (B) varies depending on the type. However, for example, in the case of ethylene, the partial pressure is set to 0.1 to 0.3,
Preferably, the partial pressure of hydrogen is maintained between 0.7 and 0.9. Further, it is preferable to maintain the mixed gas of ethylene and hydrogen at 0.1 MPa (absolute pressure). The pressure of each component can be controlled by a compressor.

上述のような反応装置により反応を行なうことにより
下記のような利点が得られる; 生成物と触媒の分離が良く、従来のような生成物中へ
の金属細粒の混在はない; 反応面が付活面であり、原子状水素を保有しているの
でコーキング(炭化)などが生じない。
The following advantages can be obtained by performing the reaction using the above-described reaction apparatus; the product and the catalyst are separated well, and the metal fine particles are not mixed in the conventional product; Since it is an activated surface and has atomic hydrogen, caulking (carbonization) does not occur.

本発明の隔壁型触媒により、従来の反応容器構造を簡
略化することができ、それによって反応ガスの整流化を
容易に行なうことができ、反応効率が向上する; 本発明の隔壁型触媒は高活性、高反応選択性を有する
ことから、通常の金属触媒に比べて少ない活性表面積で
も高生産性が得られる。
The partition type catalyst of the present invention can simplify the structure of a conventional reaction vessel, thereby facilitating the rectification of the reaction gas and improving the reaction efficiency; Since it has activity and high reaction selectivity, high productivity can be obtained even with a small active surface area as compared with ordinary metal catalysts.

得られた生成物の回収方法は蒸留、抽出等の方法によ
って未反応装入原料から生成物を回収することができ
る。
The obtained product can be recovered from the unreacted charge by a method such as distillation or extraction.

しかし、本発明の隔壁型触媒は小表面積で活性点が露
出しているために、触媒毒の影響を直接受け易い欠点を
有している。従って、高活性、高反応選択性の反応シス
テムを実現するために、隔壁型触媒の反応室側を周期表
第8族遷移金属で被覆して触媒毒抵抗性を高めて反応速
度や触媒寿命の低下を防止したり、反応選択性をより高
める目的で、更に、該被覆の上に助触媒としてアルカリ
金属またはアルカリ土類金属を分散・付与することもで
きる。
However, the partition wall type catalyst of the present invention has a drawback that it is directly susceptible to catalyst poisons because the active points are exposed at a small surface area. Therefore, in order to realize a reaction system with high activity and high reaction selectivity, the reaction chamber side of the partition wall type catalyst is coated with a transition metal of Group VIII of the periodic table to increase the resistance to poisoning of the catalyst, thereby reducing the reaction rate and the life of the catalyst. For the purpose of preventing the decrease and increasing the reaction selectivity, an alkali metal or an alkaline earth metal can be further dispersed and provided as a promoter on the coating.

また、本発明の隔壁型触媒の界面の実面積を増大させ
るために、触媒断面の少なくとも一端を凹凸状とするこ
ともできる。
Further, in order to increase the actual area of the interface of the partition wall type catalyst of the present invention, at least one end of the catalyst cross section can be made uneven.

[実 施 例] 以下に実施例を挙げて本発明の隔壁型触媒及び該触媒
用の反応装置を説明する。
[Examples] Hereinafter, examples of the partition wall type catalyst of the present invention and a reactor for the catalyst will be described.

実施例1 LaNi5−Ni共晶組成の原材料(La21重量%、Ni79重量
%)を直径10mm、長さ100mmのアルミナ製るつぼに入
れ、大きな温度勾配をもつ電気炉(中心部最高1400℃)
内で3.9μm/秒の速度で一方向凝固させて整列組織成長
させた水素貯蔵合金鋳塊を得た。この鋳塊を組織の成長
方向と直角の方向に切断し、直径10mm、厚さ5mmの円板
状の隔壁型触媒(有効反応面積0.307cm2)を得た。ここ
に有効反応面積は、銅製ガスケットにより外部と遮蔽さ
れた内部の総面積を言う。
Example 1 A raw material having a LaNi 5 -Ni eutectic composition (La 21% by weight, Ni 79% by weight) was placed in an alumina crucible having a diameter of 10 mm and a length of 100 mm, and an electric furnace having a large temperature gradient (maximum temperature of 1400 ° C.)
A hydrogen storage alloy ingot was obtained, which was unidirectionally solidified at a speed of 3.9 μm / sec in the inside to grow an aligned structure. This ingot was cut in a direction perpendicular to the growth direction of the structure to obtain a disk-shaped partition wall catalyst (effective reaction area: 0.307 cm 2 ) having a diameter of 10 mm and a thickness of 5 mm. Here, the effective reaction area refers to the total internal area shielded from the outside by the copper gasket.

次に、上述のようにして得られた隔壁型触媒を第2図
に示すように反応装置へ取り付け、水素供給室(A)及
び反応室(B)を設定した反応装置全体を水浴内に没し
て80℃とし、両室を30分間真空引きした。次いで、80℃
で水素圧0.5MPaで1時間水素化した。この操作を5回繰
り返すことにより、隔壁型触媒の両面を活性化処理し
た。
Next, the partition wall type catalyst obtained as described above was attached to the reactor as shown in FIG. 2, and the entire reactor in which the hydrogen supply chamber (A) and the reaction chamber (B) were set was immersed in a water bath. The temperature was raised to 80 ° C., and both chambers were evacuated for 30 minutes. Then, at 80 ° C
At a hydrogen pressure of 0.5 MPa for 1 hour. This operation was repeated five times to activate both surfaces of the partition wall type catalyst.

次に、導管(5)より水素供給室(A)に水素を、水
素供給圧0.15〜0.7MPaで供給し、一方、反応室(B)に
はエチレンと水素の混合ガス(水素分圧0.9)を装入原
料として0.1MPa(絶対圧)で導管(6)より装入し、第
1表及び第2表に記載する温度条件下でエチレンの水素
化反応を行なった。なお、触媒の寿命を確認するため
に、使用初期の400分使用後と長期間使用後の12日間使
用後における反応速度を測定した。
Next, hydrogen is supplied from the conduit (5) to the hydrogen supply chamber (A) at a hydrogen supply pressure of 0.15 to 0.7 MPa, while a mixed gas of ethylene and hydrogen (hydrogen partial pressure 0.9) is supplied to the reaction chamber (B). Was charged through a conduit (6) at 0.1 MPa (absolute pressure) as a raw material, and a hydrogenation reaction of ethylene was carried out under the temperature conditions shown in Tables 1 and 2. In order to confirm the life of the catalyst, the reaction rate was measured after 400 minutes of use at the beginning of use and after 12 days of use after long-term use.

得られた生成物流をFIDガスクロ分析により分析して
反応速度を測定した。その結果を第1表及び第2表に示
す。
The resulting product stream was analyzed by FID gas chromatography to determine the reaction rate. The results are shown in Tables 1 and 2.

実施例2 表面修飾による隔壁型触媒の活性改善例を示す。上述
の実施例1で得られたものと同様の隔壁型触媒の1断面
を定電位電解法により処理して断面のNiを優先的に電解
除去し、凹凸のある表面とし、表面積を電解処理前の約
2倍とした。この断面が反応室側となるように隔壁型触
媒を第2図に示す装置に設置し、実施例1と同様の方法
により活性化処理し、また、反応条件も実施例1と同一
にして実施した。
Example 2 An example of improving the activity of a partition wall catalyst by surface modification will be described. One section of a partition wall type catalyst similar to that obtained in Example 1 described above was treated by a potentiostatic electrolysis method to preferentially electrolytically remove Ni on the section, thereby forming a surface with irregularities, and the surface area was changed before electrolytic treatment. About twice as large as The partition wall type catalyst was installed in the apparatus shown in FIG. 2 so that this cross section was on the side of the reaction chamber, activated by the same method as in Example 1, and performed under the same reaction conditions as in Example 1. did.

[発明の効果] 本発明の隔壁型触媒を使用する気相での不飽和炭化水
素及び/または液相の不飽和炭化水素の水素化過程は原
理的には全く同様であり、従って、気相でのエチレンの
エタンへの水素化反応により確認された隔壁型触媒の効
果は液相での不飽和炭化水素の水素化においても同程度
に有効であるものと期待できる。このことから、本発明
の隔壁型触媒を石炭液化及び一次液化石油のアップクレ
ーディング並びに重質油の改質などに利用することによ
り、反応効率の向上並びに反応装置の簡略化(高粘性の
反応物質の反応処理における装置構造の単純化)が可能
である。
[Effect of the Invention] The hydrogenation process of unsaturated hydrocarbons in the gas phase and / or the unsaturated hydrocarbons in the liquid phase using the partition wall type catalyst of the present invention is in principle completely the same, and The effect of the partition wall type catalyst confirmed by the hydrogenation reaction of ethylene to ethane in the above can be expected to be equally effective in the hydrogenation of unsaturated hydrocarbons in the liquid phase. From this fact, it is possible to improve the reaction efficiency and to simplify the reaction apparatus (high-viscosity reaction) by utilizing the partition wall-type catalyst of the present invention for coal liquefaction and up-clading of primary liquefied petroleum and reforming of heavy oil. (Simplification of the device structure in the reaction processing of substances) is possible.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の隔壁型触媒の断面の概略図であり、第
2図は本発明装置の概略図である。図中、 1……LaNi5、2……Ni、3……隔壁型触媒、4……銅
製ガスケット、5……導管、6……導管、7……導管。
FIG. 1 is a schematic view of a cross section of a partition type catalyst of the present invention, and FIG. 2 is a schematic view of a device of the present invention. In the figure, 1 ...... LaNi 5, 2 ...... Ni, 3 ...... partition wall catalyst, 4 ...... copper gaskets, 5 ...... conduit 6 ...... conduit 7 ...... conduit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大西 敬三 北海道室蘭市茶津町4番地 株式会社日 本製鋼所内 (56)参考文献 特開 昭60−135538(JP,A) ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Keizo Onishi 4th Chazu-cho, Muroran-shi, Hokkaido Inside Nihon Steel Works, Ltd. (56) References JP-A-60-135538 (JP, A)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】LaNi5−Ni系共晶系合金を1方向凝固によ
り整列組織成長させた水素貯蔵合金鋳塊を、その組織の
成長方向に対して直角方向に所定の寸法に切断した板状
であることを特徴とする不飽和炭化水素類を水素化する
ための隔壁型触媒。
1. A plate obtained by cutting a hydrogen storage alloy ingot obtained by growing an aligned structure of a LaNi 5 -Ni eutectic alloy by unidirectional solidification to a predetermined size in a direction perpendicular to the growth direction of the structure. A partition-type catalyst for hydrogenating unsaturated hydrocarbons, characterized in that:
【請求項2】隔壁型触媒の断面の少なくとも一端を水素
化反応の活性促進材として周期表第8族の遷移金属で被
覆するか、更に、該被覆上に助触媒としてアルカリ金属
またはアルカリ土類金属を分散・付加させた合金で被覆
してある請求項1記載の不飽和炭化水素類を水素化する
ための隔壁型触媒。
2. The partition catalyst is coated at least at one end with a transition metal of Group 8 of the periodic table as an activity promoter for the hydrogenation reaction, and is further provided with an alkali metal or alkaline earth as a co-catalyst on the coating. 2. A partition type catalyst for hydrogenating unsaturated hydrocarbons according to claim 1, which is coated with an alloy in which a metal is dispersed and added.
【請求項3】隔壁型触媒の断面の少なくとも一端が凹凸
状であり、界面の実面積を増大してある請求項1または
2記載の不飽和炭化水素類を水素化するための隔壁型触
媒。
3. The partition type catalyst for hydrogenating unsaturated hydrocarbons according to claim 1, wherein at least one end of the cross section of the partition type catalyst is uneven, and the actual area of the interface is increased.
【請求項4】水素供給用導管を備える水素供給室、装入
原料流用導管並びに生成物流用導管を備える反応室、及
び前記水素供給室と反応室を仕切り且つ触媒断面の一方
が水素供給室に他方が反応室にそれぞれ接するように設
置された隔壁型触媒よりなる隔壁型触媒用反応装置にお
いて、隔壁型触媒として請求項1ないし3のいずれか1
項記載の不飽和炭化水素類を水素化するための隔壁型触
媒を用いることを特徴とする隔壁型触媒用反応装置。
4. A hydrogen supply chamber equipped with a hydrogen supply conduit, a reaction chamber equipped with a charge material flow conduit and a product flow conduit, and one of the catalyst section which separates the hydrogen supply chamber from the reaction chamber and whose one of the catalyst cross sections serves as a hydrogen supply chamber. 4. A reactor for a partition wall catalyst comprising a partition wall catalyst which is installed so that the other is in contact with the reaction chamber, wherein the partition wall catalyst is used as one of claims 1 to 3.
A reactor for partition type catalysts, comprising using a partition type catalyst for hydrogenating unsaturated hydrocarbons according to the above item.
JP63261127A 1988-10-17 1988-10-17 Partition type catalyst and reactor for the catalyst Expired - Lifetime JP2728900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63261127A JP2728900B2 (en) 1988-10-17 1988-10-17 Partition type catalyst and reactor for the catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63261127A JP2728900B2 (en) 1988-10-17 1988-10-17 Partition type catalyst and reactor for the catalyst

Publications (2)

Publication Number Publication Date
JPH02107332A JPH02107332A (en) 1990-04-19
JP2728900B2 true JP2728900B2 (en) 1998-03-18

Family

ID=17357473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63261127A Expired - Lifetime JP2728900B2 (en) 1988-10-17 1988-10-17 Partition type catalyst and reactor for the catalyst

Country Status (1)

Country Link
JP (1) JP2728900B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2850665B1 (en) * 2003-01-31 2006-06-30 Inst Francais Du Petrole TOTAL HYDROGENATION PROCESS USING HYDROGEN SELECTIVE MEMBRANE CATALYST REACTOR
JP5260128B2 (en) * 2008-04-23 2013-08-14 出光興産株式会社 Organic compound reduction method and reduction treatment apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60135538A (en) * 1983-12-22 1985-07-18 Japan Steel Works Ltd:The Manufacture of hydrogen storing alloy

Also Published As

Publication number Publication date
JPH02107332A (en) 1990-04-19

Similar Documents

Publication Publication Date Title
JP3831821B2 (en) Catalytic hydrogenation process and catalyst usable in this process
EP0120122B1 (en) Hydrogenation of long chain olefinic oils with raney catalyst
US4126645A (en) Selective hydrogenation of highly unsaturated hydrocarbons in the presence of less unsaturated hydrocarbons
CN1130265C (en) Catalyst capable of using on carrier in organic compound conversion reaction
US4493906A (en) Catalyst for the selective hydrogenation of acetylenes
JP3409072B2 (en) Catalyst for selective hydrogenation of highly unsaturated hydrocarbon compounds in olefin compounds
EP1700836B1 (en) Palladium-based catalyst for selective hydrogenation of acetylene
US4088603A (en) Catalyst activation process
EP0029321A1 (en) Hydrogenation catalyst material, a precursor thereto, method of making the latter and use of the catalyst for selective hydrogenation
CN111408370A (en) Supported PtZn intermetallic alloy catalyst and preparation method and application thereof
JPH09173843A (en) Selective hydrogenation catalyst and method using this catalyst
EP0044118A2 (en) A method of preparing a catalyst
US2281924A (en) Executing reactions with the aid of fugitive catalysts
Manning et al. CHO systems in the presence of an iron catalyst
US2775607A (en) Reactivation of catalysts
Gao et al. Effect of oxidation-reduction cycling on C2H6 hydrogenolysis: Comparison of Ru, Rh, Ir, Ni, Pt, and Pd on SiO2
JP2728900B2 (en) Partition type catalyst and reactor for the catalyst
US3651162A (en) Isomerization and disproportionation of alkyl aromatics
US2354892A (en) Dehydrogenation of hydrocarbons
CA2246729C (en) Process for the hydroisomerization of long-chain n-paraffins and catalyst suitable for the purpose
Miura Preparation of supported bimetallic catalysts by means of selective deposition using mobile metal compounds as precursors
CN107970929A (en) A kind of alkynes and alkadienes liquid phase selective hydrogenation catalyst, preparation method and application
US2673189A (en) Preparation of copper-nickel-aluminum catalysts
CN110841650A (en) Non-noble metal catalyst for selective hydrogenation and olefin removal of reformate, and preparation method and application thereof
EP3615497B1 (en) Removal of alkyne impurities from diolefin containing mixtures through cracking over cuo/al2o3 based materials

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 11

EXPY Cancellation because of completion of term