JP2725401B2 - Ash meter - Google Patents

Ash meter

Info

Publication number
JP2725401B2
JP2725401B2 JP1246930A JP24693089A JP2725401B2 JP 2725401 B2 JP2725401 B2 JP 2725401B2 JP 1246930 A JP1246930 A JP 1246930A JP 24693089 A JP24693089 A JP 24693089A JP 2725401 B2 JP2725401 B2 JP 2725401B2
Authority
JP
Japan
Prior art keywords
ash
ray
components
applied voltage
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1246930A
Other languages
Japanese (ja)
Other versions
JPH03223655A (en
Inventor
誠治 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP1246930A priority Critical patent/JP2725401B2/en
Publication of JPH03223655A publication Critical patent/JPH03223655A/en
Application granted granted Critical
Publication of JP2725401B2 publication Critical patent/JP2725401B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は灰分計に関し、更に詳しくは、X線透過型の
灰分計の複数の灰分成分に対する感度の均一化に関す
る。
Description: TECHNICAL FIELD The present invention relates to an ash meter, and more particularly, to equalizing the sensitivity of an X-ray transmission ash meter to a plurality of ash components.

<従来の技術> 抄紙工程において、紙に含まれるタルク(又はクレ
ー),炭酸カルシウム(CaCO3),酸化チタン(TiO2
などの灰分量を測定するために、X線透過型の灰分計が
用いられている。
<Prior art> In the paper making process, talc (or clay), calcium carbonate (CaCO 3 ), titanium oxide (TiO 2 ) contained in paper
In order to measure the amount of ash, for example, an X-ray transmission ash meter is used.

ところで、上述紙における灰分の存在形態として、タ
ルク(又はクレー)と炭酸カルシウムあるいはタルク
(又はクレー)と酸化チタンの2成分が混合する形態
と、タルク(又はクレー)と炭酸カルシウムと酸化チタ
ンの3成分が混合する形態がある。
By the way, as the form of ash content in the above-mentioned paper, there are a form in which two components of talc (or clay) and calcium carbonate or talc (or clay) and titanium oxide are mixed, a form in which talc (or clay), calcium carbonate and titanium oxide are mixed. There is a form in which the components are mixed.

これら灰分の測定にあたっては、各成分のX線の吸収
係数を等しくして各成分に対する感度を等しくし、成分
の存在比に依存することなく測定できることが望まし
い。
In measuring the ash content, it is desirable that the X-ray absorption coefficient of each component is equalized so that the sensitivity to each component is equal, and measurement can be performed without depending on the abundance ratio of the components.

そこで、2成分が混合存在する場合には、X線管のタ
ーゲット印加電圧やターゲットの材質等を変えてX線ス
ペクトルを調整することが行われている。
Therefore, when the two components are mixed, the X-ray spectrum is adjusted by changing the target applied voltage of the X-ray tube, the material of the target, and the like.

<発明が解決しようとする課題> しかし、このようにX線管のターゲット印加電圧やタ
ーゲットの材質等を変えてX線スペクトルを調整する方
法では、3成分が混合存在する場合には各成分のX線の
吸収係数を等しくすることは困難であり、測定結果は各
成分の存在比に依存することになる。
<Problem to be Solved by the Invention> However, in the method of adjusting the X-ray spectrum by changing the target applied voltage of the X-ray tube, the material of the target, and the like, when three components are mixed and present, each component may be used. It is difficult to make the absorption coefficients of X-rays equal, and the measurement result depends on the abundance ratio of each component.

本発明はこのような点に着目してなされたものであ
り、その目的は、複数成分の存在比に影響されることな
く総灰分量の測定が正確に行える灰分計を提供すること
にある。
The present invention has been made in view of such a point, and an object of the present invention is to provide an ash meter capable of accurately measuring the total ash content without being affected by the abundance ratio of a plurality of components.

<課題を解決するための手段> 上記課題を解決する本発明は、X線を発生させる装置
部と、シートを挟んで対向する検出部とを備え、前記シ
ート中の灰分の量を測定する灰分計において、複数の灰
分成分の互いに異なる各2成分の感度が等しくなるよう
に、各2成分に応じてX線管のターゲット印加電圧が切
り換えられるX線発生機構と、これらX線管のターゲッ
ト印加電圧を切り換えることにより得られる測定結果か
ら、前記総灰分量を算出するデータ処理部とで構成さ
れ、各灰分成分の配合比の影響をうけることなく総灰分
量を測定することを特徴とするものである。
<Means for Solving the Problems> The present invention for solving the above problems includes an apparatus unit for generating X-rays, and a detecting unit opposed to the sheet, and measures the amount of ash in the sheet. An X-ray generation mechanism for switching a target application voltage of an X-ray tube in accordance with each of the two ash components so that the sensitivity of each of the two different ash components is equal to each other; A data processing unit for calculating the total ash content from the measurement result obtained by switching the voltage, wherein the total ash content is measured without being affected by the mixing ratio of each ash component. It is.

<作用> 本発明の灰分計では、各2成分に応じてX線管のター
ゲット印加電圧を切り換えることにより各2成分毎に感
度を等しくして各灰分を測定する。そして、それらの測
定結果に基づいて複数成分の存在比の影響を除去する演
算を行う。
<Action> In the ash meter of the present invention, the target applied voltage of the X-ray tube is switched in accordance with each of the two components, and the ash is measured with equal sensitivity for each of the two components. Then, based on the measurement results, an operation for removing the influence of the existence ratio of the plurality of components is performed.

これにより、灰分の存在比の影響を受けない測定結果
が得られる。
As a result, a measurement result that is not affected by the ash content ratio is obtained.

<実施例> 以下、図面を参照して本発明の実施例を詳細に説明す
る。
<Example> Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は、本発明の一実施例を示す構成図である。図
において、X線管1とX線検出部2は紙3を挟むように
して対向して配設されている。X線管1のターゲット4
には、スイッチ5を介して複数の電源6乃至8の出力電
圧がターゲット電圧として選択的に印加される。各ター
ゲット印加電圧毎のX線検出部2の出力信号はデータ処
理部9に加えられる。そして、該データ処理部9は、各
ターゲット電圧毎のX線検出部2の出力信号に基づいて
各灰分量を算出する。
FIG. 1 is a configuration diagram showing one embodiment of the present invention. In the figure, an X-ray tube 1 and an X-ray detection unit 2 are arranged to face each other with a paper 3 therebetween. X-ray tube 1 target 4
, Output voltages of a plurality of power supplies 6 to 8 are selectively applied as target voltages via a switch 5. The output signal of the X-ray detector 2 for each target applied voltage is applied to the data processor 9. Then, the data processing unit 9 calculates each ash content based on the output signal of the X-ray detection unit 2 for each target voltage.

このような装置の動作を説明する。 The operation of such a device will be described.

X線管1のターゲット4として適切な材質を選ぶこと
により、例えば紙に含まれる灰分のタルク(又はクレ
ー),炭酸カルシウム(CaCO3),酸化チタン(TiO2
について、ターゲット印加電圧VTとX線の吸収係数μの
関係は第2図のようになる。第2図において、炭酸カル
シウム(CaCO3)と酸化チタン(TiO2)が等感度になる
ターゲット印加電圧をV1としてX線の吸収係数をμ
し、タルク(又はクレー)と炭酸カルシウム(CaCO3
が等感度になるターゲット印加電圧をV2としてX線の吸
収係数をμとし、タルク(又はクレー)と酸化チタン
(TiO2)が等感度になるターゲット印加電圧をV3として
X線の吸収係数をμとする。そして、ターゲット印加
電圧がV1の時のタルク(又はクレー)のX線の吸収係数
をμとし、ターゲット印加電圧がV2の時の酸化チタン
(TiO2)のX線の吸収係数をμとし、ターゲット印加
電圧がV3の時の炭酸カルシウム(CaCO3)のX線の吸収
係数をμとする。
By selecting an appropriate material for the target 4 of the X-ray tube 1, for example, talc (or clay) of ash contained in paper, calcium carbonate (CaCO 3 ), titanium oxide (TiO 2 )
FIG. 2 shows the relationship between the target applied voltage VT and the X-ray absorption coefficient μ. In Figure 2, the absorption coefficient of X-ray and mu 1 target applied voltage and titanium oxide, calcium carbonate (CaCO 3) (TiO 2) is equal sensitivity as V 1, talc (or clay) and calcium carbonate (CaCO 3 )
There the absorption coefficient of X-ray and mu 2 target applied voltage becomes equal sensitivity as V 2, the absorption of the talc (or clay) and titanium oxide X-ray target applied voltage (TiO 2) is equal sensitivity as V 3 the coefficient is μ 3. Then, the a the absorption coefficient mu of X-ray of talc when applied to the target voltage is V 1 (or clay), the absorption coefficient of X-ray of titanium oxide (TiO 2) when the target applied voltage is V 2 mu and is b, the target applied voltage to the absorption coefficient of X-ray of calcium carbonate (CaCO 3) when the V 3 and mu c.

このような条件において、第3図のフローチャートに
示すように、まずステップで校正を行い、続くステッ
プで測定を行い、その後のステップで演算を行って
灰分量を決定する。
Under such conditions, as shown in the flowchart of FIG. 3, calibration is first performed in a step, measurement is performed in a subsequent step, and calculation is performed in a subsequent step to determine an ash content.

すなわち、校正ステップでは、ターゲット印加電圧VT
をスイッチ5でHV1乃至HV3に順次切換設定して空気層を
測定することにより空気層出力電流I10乃至I30を求め
る。
That is, in the calibration step, the target applied voltage V T
The sequentially switching setting to HV 1 to HV 3 in switch 5 obtains an air layer output current I 10 to I 30 by measuring the air layer.

測定ステップでは、ターゲット印加電圧VTをスイッチ
5でHV1乃至HV3に順次切換設定して紙3の透過出力電流
I1乃至I3を求める。
In the measurement step, the target applied voltage V T sequentially switching setting to HV 1 to HV 3 in the switch 5 transmission output currents of the paper 3
Find I 1 to I 3 .

これら出力電流I1乃至I3,I10乃至I30,吸収係数μ
至μ3乃至μc,灰分量の間には、測定対象である紙
のタルク(又はクレー)量をWTa,炭酸カルシウム(CaCO
3)の量をWCa,酸化チタン(TiO2)の量をWTiとすると、 I1=I10exp[−{μ(WCa+WTi)+μ・wTa +α}] …(1) I2=I20exp[−{μ(WCa+WTa)+μ・wTi +β}] …(2) I3=I30exp[−{μ(WTi+WTa)+μ・wCa +γ}] …(3) の関係が成立する。ここで、α,β,γは、紙のパルプ
及び水分による吸収の項であり、これら吸収項は、同時
にまたは予め測定を行って決定しておくものとする。
Among these output currents I 1 to I 3 , I 10 to I 30 , absorption coefficient μ 1 to μ 3 , μ a to μ c , and ash content, the amount of talc (or clay) of the paper to be measured is W Ta , calcium carbonate (CaCO
Assuming that the amount of 3 ) is W Ca and the amount of titanium oxide (TiO 2 ) is W Ti , I 1 = I 10 exp [− {μ 1 (W Ca + W Ti ) + μ a · w Ta + α}] (1) ) I 2 = I 20 exp [− {μ 2 (W Ca + W Ta ) + μ b · w Ti + β}] (2) I 3 = I 30 exp [−Δμ 3 (W Ti + W Ta ) + μ c. w Ca + γ}] (3) Here, α, β, and γ are terms of absorption by paper pulp and moisture, and these absorption terms are determined simultaneously or in advance by performing measurement.

これら(1)〜(3)式から、求める灰分量AW(=W
Ta+WCa+WTi)の間には、 AW{μ1/(μ−μ)+μ2/(μ−μ) +μc/(μ−μ)}=A/(μ−μ) +β/(μ−μ)+C/(μ−μ) …(4) A=l n(I10/I1)−α B=l n(I20/I2)−β C=l n(I30/I3)−γ の関係が成立して灰分が決定されることになる。
From these equations (1) to (3), the ash content AW (= W
Between the Ta + W Ca + W Ti) , AW {μ 1 / (μ a -μ 1) + μ 2 / (μ b -μ 2) + μ c / (μ c -μ 3)} = A / (μ a −μ 1 ) + β / (μ b −μ 2 ) + C / (μ c −μ 3 ) (4) A = ln (I 10 / I 1 ) −α B = ln (I 20 / I 2 ) −β The relationship C = ln (I 30 / I 3 ) −γ is established, and the ash content is determined.

なお、紙のパルプ及び水分による吸収項α,β,γ
は、一般に紙の全坪量BWと水分率MPの形で与えられる。
そのため、BW中にはAWも含まれており、各X線エネルギ
ーにおける紙のパルプ及び水分の吸収係数も変化するの
で、実際には(4)式よりも複雑になる。VT=HV1の時
のパルプ及び水分の吸収係数をそれぞれμP1M1とす
ると、αは、 α=μP1(BW−AW−BW・MP)+μM1・BM・MP =μP1・BM−(μP1−μM1)BM・MP−μP1・AW で表され、β,γも同様に、 β=μP2・BM−(μP2−μM2)BM・MP−μP2・AW γ=μP3・BM−(μP3−μM3)BM・MP−μP3・AW になる。
Note that the absorption terms α, β, and γ due to paper pulp and moisture
Is generally given in the form of the total basis weight BW and the moisture percentage MP of the paper.
For this reason, BW includes AW, and the absorption coefficient of paper pulp and moisture at each X-ray energy also changes. Assuming that the absorption coefficients of pulp and water when V T = HV 1 are μ P1 and μ M1 , respectively, α is α = μ P1 (BW−AW−BW · MP) + μ M1 · BM · MP = μ P1 · BM− (μ P1 −μ M1 ) BM ・ MP−μ P1・ AW, β and γ are similarly β = μ P2・ BM− (μ P2 −μ M2 ) BM ・ MP−μ P2・ AW γ = become μ P3 · BM- (μ P3 -μ M3) BM · MP-μ P3 · AW.

これらα,β,γを(4)式に代入することにより、
AWを求めることができる。なお、μP2M2はVT=HV2
時のパルプ及び水分の吸収係数であり、μP3M3はVT
=HV3の時のパルプ及び水分の吸収係数である。
By substituting these α, β, and γ into equation (4),
AW can be requested. Note that μ P2 and μ M2 are pulp and moisture absorption coefficients when V T = HV 2 , and μ P3 and μ M3 are V T
= The absorption coefficient of the pulp and moisture when the HV 3.

これら一連の演算はデータ処理部9において実行され
ることになり、複数成分の存在比に影響されることなく
各成分が正確に測定される。
These series of operations are performed in the data processing unit 9, and each component is accurately measured without being affected by the abundance ratio of a plurality of components.

なお、上述の実施例では、紙の灰分量を測定する例に
ついて説明したが、X線管1のターゲット材及びターゲ
ット印加電圧を適切に選択選定することにより、フィル
ム材や合金膜の測定にも適用できる。
In the above-described embodiment, an example in which the ash content of the paper is measured has been described. However, by appropriately selecting and selecting the target material and the target applied voltage of the X-ray tube 1, the film material and the alloy film can be measured. Applicable.

また、電源の切換点数は3点に限るものではなく、混
合成分数に応じて適宜増減すればよい。
Further, the number of power supply switching points is not limited to three, and may be appropriately increased or decreased according to the number of mixed components.

<発明の効果> 以上詳細に説明したように、本発明によれば、複数成
分の存在比に影響されることなく各成分の測定が正確に
行える灰分計を提供することができる。
<Effects of the Invention> As described in detail above, according to the present invention, it is possible to provide an ash meter that can accurately measure each component without being affected by the abundance ratio of a plurality of components.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例の構成図、第2図はターゲッ
ト印加電圧VTとX線の吸収係数μの関係説明図、第3図
は第1図の動作の流れを示すフローチャートである。 1……X線管、2……X線検出部 3……紙、4……ターゲット 5……スイッチ、6〜8……電源 9……データ処理部
FIG. 1 is a block diagram of one embodiment of the present invention, FIG. 2 is a diagram illustrating the relationship between a target applied voltage VT and an absorption coefficient μ of X-rays, and FIG. 3 is a flowchart showing the flow of the operation of FIG. is there. DESCRIPTION OF SYMBOLS 1 ... X-ray tube, 2 ... X-ray detection part 3 ... Paper, 4 ... Target 5 ... Switch, 6-8 ... Power supply 9 ... Data processing part

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】X線を発生させる装置部と、シートを挟ん
で対向する検出部とを備え、前記シート中の灰分の量を
測定する灰分計において、 複数の灰分成分の互いに異なる各2成分の感度が等しく
なるように、各2成分に応じてX線管のターゲット印加
電圧が切り換えられるX線発生機構と、 これらX線管のターゲット印加電圧を切り換えることに
より得られる測定結果から、前記総灰分量を算出するデ
ータ処理部とで構成され、 各灰分成分の配合比の影響をうけることなく総灰分量を
測定することを特徴とする灰分計。
1. An ash meter for measuring an amount of ash in a sheet, comprising: a device for generating X-rays; and a detection unit opposed to the sheet, wherein each of two different ash components is different from each other. The X-ray generation mechanism in which the target applied voltage of the X-ray tube is switched in accordance with each of the two components so that the sensitivity of the X-ray tube becomes equal, and the measurement results obtained by switching the target applied voltage of these X-ray tubes, An ash meter comprising a data processing unit for calculating the ash content, and measuring the total ash content without being affected by the mixing ratio of each ash component.
JP1246930A 1989-09-22 1989-09-22 Ash meter Expired - Fee Related JP2725401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1246930A JP2725401B2 (en) 1989-09-22 1989-09-22 Ash meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1246930A JP2725401B2 (en) 1989-09-22 1989-09-22 Ash meter

Publications (2)

Publication Number Publication Date
JPH03223655A JPH03223655A (en) 1991-10-02
JP2725401B2 true JP2725401B2 (en) 1998-03-11

Family

ID=17155867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1246930A Expired - Fee Related JP2725401B2 (en) 1989-09-22 1989-09-22 Ash meter

Country Status (1)

Country Link
JP (1) JP2725401B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109765291A (en) * 2019-03-08 2019-05-17 陕西科技大学 Paper total ash and component rapid measurement device and measurement method based on filter method
CN109765290A (en) * 2019-03-08 2019-05-17 陕西科技大学 Standard Method paper total ash and component rapid measurement device and its measurement method

Also Published As

Publication number Publication date
JPH03223655A (en) 1991-10-02

Similar Documents

Publication Publication Date Title
JPH01193634A (en) X ray inspection method and apparatus
JP2725401B2 (en) Ash meter
JPH06121791A (en) X-ray determination device and x-ray determination method
JP2004329938A (en) Modification method of error produced by time-lag signal regeneration in x-ray detector, x-ray detector, and computer tomography apparatus
JP4980862B2 (en) X-ray measuring device
JP2000258306A (en) Evaluation technique for creep life by maximum void grain boundary occupation rate method
JP2003052687A5 (en)
JPH04334861A (en) Electron spectroscopic image measuring method
JP3204036B2 (en) X-ray device and K-edge filter
JPH04263842A (en) Ct device having dexa function
JPH05217689A (en) Method and device for x-ray photographing
JPH0676984A (en) Automatic x-ray exposure device for mammography
JP3320463B2 (en) X-ray inspection apparatus and X-ray inspection method
JP3308629B2 (en) X-ray line sensor fluoroscope
JP2732460B2 (en) X-ray fluorescence analysis method
US5760404A (en) Method and an apparatus for determining the field size and the field form of the radiation cone of ionizing radiation source
JP3030950B2 (en) Calibration phantom and data calibration method
JPH08338819A (en) Method and apparatus for x ray analysis
JPS61172002A (en) Infrared ray type coating film thickness measuring device
JPS6170444A (en) Concentration analyzing method in electron ray micro-analysis instrument
RU2037773C1 (en) X-ray method of measurement of thickness of material
JP2725346B2 (en) Ash meter with equal sensitivity for three components
JP2003207467A (en) X-ray analyzer
JPS59103260A (en) Detecting sensitivity correction unit for microanalyzer
JPH1043171A (en) Instrument for measuring bone-salt

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees