JP2723950B2 - Iron-based electroplating solution management method - Google Patents

Iron-based electroplating solution management method

Info

Publication number
JP2723950B2
JP2723950B2 JP1909689A JP1909689A JP2723950B2 JP 2723950 B2 JP2723950 B2 JP 2723950B2 JP 1909689 A JP1909689 A JP 1909689A JP 1909689 A JP1909689 A JP 1909689A JP 2723950 B2 JP2723950 B2 JP 2723950B2
Authority
JP
Japan
Prior art keywords
catalyst
plating solution
iron
ions
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1909689A
Other languages
Japanese (ja)
Other versions
JPH0277600A (en
Inventor
徹 本庄
忠男 藤永
肇 木村
敏郎 市田
晋 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Publication of JPH0277600A publication Critical patent/JPH0277600A/en
Application granted granted Critical
Publication of JP2723950B2 publication Critical patent/JP2723950B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は鉄系電気めっき液の管理方法に関する。The present invention relates to a method for managing an iron-based electroplating solution.

<従来の技術> 鉄系電気めっき浴中にはFe2+、Fe3+イオンが存在す
る。Fe2+イオンは酸化によりFe3+イオンに変化するが、
この酸化の原因としては、空気酸化およびアノード電極
上における酸化が考えられる。特に、不溶性陽極を用い
た場合、陽極反応として下記式および式の反応が考
えられる。
<Conventional Technology> Fe 2+ and Fe 3+ ions are present in an iron-based electroplating bath. Fe 2+ ion changes to Fe 3+ ion by oxidation,
The oxidation may be caused by air oxidation and oxidation on the anode electrode. In particular, when an insoluble anode is used, the following formula and the reaction of the formula can be considered as the anodic reaction.

Fe2+→Fe3++e- …… H2O→2H++1/2O2+2e- …… 上記式の反応で生成したO2は、下記式のようにFe
2+を酸化してFe3+を生成する。
Fe 2+ → Fe 3+ + e - ...... H 2 O → 2H + + 1 / 2O 2 + 2e - ...... O 2 produced in the above reaction formula is as shown in Equation Fe
Oxidizes 2+ to produce Fe 3+ .

Fe2++1/4O2+H+→Fe3++1/2H2O …… 従って、上記式および式の反応で生成するFe3+
合量がアノード酸化量と考えられる。
Fe 2+ + 1 / 4O 2 + H + → Fe 3+ + 1 / 2H 2 O Therefore, the total amount of Fe 3+ formed by the above formula and the reaction of the formula is considered to be the anodic oxidation amount.

一方、空気酸化はめっき液と空気の触媒の状態によっ
て起こるため、その酸化量は一定ではないが、本発明者
の実験によると、アノード酸化量は、空気酸化量の8〜
15倍の値となり、不溶性陽極を使用する鉄系電気めっき
においてFe3+の増加は、著しい。
On the other hand, the amount of oxidation is not constant because air oxidation is caused by the state of the plating solution and the catalyst of air. However, according to the experiment of the present inventors, the amount of anodic oxidation is 8 to 10% of the amount of air oxidation.
The value is 15 times, and the increase of Fe 3+ is remarkable in the iron-based electroplating using the insoluble anode.

Fe3+の増加は、鉄系電気めっき品質に次のような問題
を引起す。
The increase in Fe 3+ causes the following problems in iron-based electroplating quality.

(1)陰極析出効果が低下する。(1) The cathode deposition effect is reduced.

(2)めっき外観が劣化する。(2) Plating appearance deteriorates.

(3)めっき密着性が劣化する。(3) Plating adhesion deteriorates.

従って、品質のよい鉄系電気めっきを安定した得るた
めには、Fe3+が低濃度になるよう管理することが不可欠
である。
Therefore, in order to stably obtain high-quality iron-based electroplating, it is essential to control Fe 3+ to have a low concentration.

Fe3+の還元方法としては、金属溶解による還元方法
(例えば、特開昭59−126799号および特開昭59−170299
号公報参照)、電解還元法(例えば、特開昭59−1688号
および特公昭61−36600号公報参照)および水素による
還元方法(例えば、特開昭59−76888号公報参照)か開
示されている。
As a method for reducing Fe 3+, a reduction method by dissolving a metal (for example, JP-A-59-126799 and JP-A-59-170299)
JP-A-59-1688 and JP-B-61-36600) and a reduction method using hydrogen (see JP-A-59-76888). I have.

<発明が解決しようとする課題> 金属溶解による還元方法は、めっき液中にその金属を
溶解してFe3+を還元するため、金属イオンの濃度維持の
観点から、系外に取り出された金属イオンの量以上に金
属を溶解することができない。従って、Fe3+濃度を一定
金属イオン濃度下で任意に管理することができない。
<Problem to be Solved by the Invention> The reduction method by dissolving the metal dissolves the metal in the plating solution to reduce Fe 3+, and therefore, from the viewpoint of maintaining the concentration of metal ions, the metal taken out of the system is reduced. Inability to dissolve metals beyond the amount of ions. Therefore, the Fe 3+ concentration cannot be arbitrarily controlled under a constant metal ion concentration.

電解還元法は、Fe3+を電気的に還元するため、めっき
液中には不純物が混入せず、従ってその還元能力を大き
くすることにより、Fe3+濃度を任意にコントロールでき
る。しかし、このシステムはイオン交換膜、電極などが
高価なためそのイニシャルコストが高く、また電気を用
い、かつFe3+の還元効率が低いためランニングコストも
高いという問題点がある。
In the electrolytic reduction method, since Fe 3+ is electrically reduced, impurities are not mixed in the plating solution. Therefore, the concentration of Fe 3+ can be arbitrarily controlled by increasing the reducing ability. However, this system has a problem that the initial cost is high due to the expensive ion exchange membranes and electrodes, and the running cost is high because electricity is used and the reduction efficiency of Fe 3+ is low.

水素による還元方法は、 H2→2H2+2e- 上記アノード反応によりFe3+の還元を行うため、めっ
き液中にH+が増加するだけで不純物は混入せず、浴バラ
ンスに影響を与えることなくFe3+濃度を任意にコントロ
ールできる。
Reduction process according hydrogen, H 2 → 2H 2 + 2e - for performing the reduction of Fe 3+ by the anode reaction, impurities not mixed just H + increases in the plating solution, affecting the bath balance And the Fe 3+ concentration can be controlled arbitrarily.

しかし、特開少59−76888号公報によると、Pdもしく
はPd合金の細管を使用する(A法)か、Pd黒をアルミナ
担体につけて、水素を送り込み活性化し、その後Fe3+
送りこみ還元の操作をくりかえすとにより還元する(B
法)方法が開示されている。A法によると、Pdの細管を
使用するため、大量のPdが必要となり、B法によると水
素を送りこむ際は還元がおこなわれず、連続的に操業す
るためには少なくとも2台以上の反応器が必要となる。
また、アルミナ担体は、強酸性のめっき浴中では劣化が
激しく、頻繁にPd黒をアルミナ担体に保持した触媒の交
換が必要となる。従ってこれらの方法は、非効率的でコ
スト高になる。
However, according to Japanese Unexamined Patent Publication No. 59-76888, a method of using Pd or a Pd alloy thin tube (Method A) or attaching Pd black to an alumina carrier, sending hydrogen for activation, and then sending Fe 3+ for reduction is used. By repeating the operation of (B)
Method) A method is disclosed. According to the method A, a large amount of Pd is required because a thin tube of Pd is used. According to the method B, reduction is not performed when hydrogen is supplied, and at least two or more reactors are required for continuous operation. Required.
Further, the alumina carrier is severely deteriorated in a strongly acidic plating bath, and it is necessary to frequently replace the catalyst holding Pd black on the alumina carrier. Therefore, these methods are inefficient and costly.

本発明は、上記問題点に対処するため、めっき液中に
不純物を混入させることなく、しかも安価にFe3+をFe2+
に還元する鉄系電気めっき液の管理方法を提供すること
を目的としている。
The present invention, in order to address the above problems, without mixing impurities in the plating solution, yet inexpensively Fe 3+ Fe 2+
It is an object of the present invention to provide a method for managing an iron-based electroplating solution that is reduced to a minimum.

<課題を解決するための手段> 上記目的を達成するために、本発明によれば高水素吸
着性の金属またはその化合物を活性炭もしくはシリカに
担持させた触媒を含む反応器へ、Fe3+イオンを含む電気
めっきラインのめっき液の一部を導入し、連続的にH2
スを供給しながら該めっき液中のFe3+イオンを還元する
ことを特徴とする鉄系電気めっき液の管理方法が提供さ
れる。
<Means for Solving the Problems> To achieve the above object, according to the present invention, Fe 3+ ions are introduced into a reactor containing a catalyst in which a highly hydrogen-adsorbing metal or a compound thereof is supported on activated carbon or silica. A method for managing an iron-based electroplating solution, which comprises introducing a part of a plating solution of an electroplating line containing Fe and reducing Fe 3+ ions in the plating solution while continuously supplying H 2 gas. Is provided.

以下に本発明をさらに詳細に説明する。 Hereinafter, the present invention will be described in more detail.

本発明でいう鉄系電気めっき液は、Fe2+イオンおよび
Fe3+イオンを含むものであって鉄めっきおよび微量の他
の元素を含むFe−Pめっきなど、あるいは他のめっき金
属を含む例えばZn−Fe、Zn−Ni−Fe、Ni−Feなどの電気
めっき液をさす。
The iron-based electroplating solution referred to in the present invention contains Fe 2+ ions and
Electricity such as Zn-Fe, Zn-Ni-Fe, Ni-Fe etc. containing Fe 3+ ions and containing iron plating and trace amounts of other elements, or Fe-P plating containing other plating metals Refers to plating solution.

本発明で用いる反応器としては、気−液−固を効率的
に接触することができるものであればよく、撹拌槽、気
泡塔、充填塔などの反応器を挙げることができる。
The reactor used in the present invention may be any reactor that can efficiently contact gas-liquid-solid, and examples thereof include a reactor such as a stirring tank, a bubble column, and a packed column.

前記反応器での反応温度は40〜90℃が望ましい。40℃
未満であると、反応速度が遅いため実用的ではない。90
℃を超えると、反応速度は速くなるが、めっき液温度が
50〜60℃であるため、還元処理後の液をラインへもどす
ときに十分に冷却することが必要であり、めっき浴量が
大量となりイニシャルのコストが高くなる。
The reaction temperature in the reactor is preferably from 40 to 90 ° C. 40 ℃
If it is less than 10%, the reaction rate is low, so that it is not practical. 90
If the temperature exceeds ℃, the reaction speed will increase, but the plating solution temperature
Since the temperature is 50 to 60 ° C., it is necessary to sufficiently cool the solution after the reduction treatment to return to the line, so that the amount of the plating bath is large and the initial cost is high.

前記反応器での圧力は高いほど反応速度は速くなるの
で好ましい。圧力は、反応温度と異なり高くすることに
よる弊害はないが、高圧力で使用する反応器はイニシャ
ルコストが高くなるため1〜10atmで行うことが望まし
い。
The higher the pressure in the reactor, the higher the reaction rate, which is preferable. Although the pressure is different from the reaction temperature, there is no adverse effect due to the increase in the pressure, but it is desirable that the reaction is performed at a pressure of 1 to 10 atm because the initial cost of a reactor used at a high pressure increases.

本発明でいう金属またはその化合物を担持させた触媒
とは、水素の吸着性の高い金属、例えばPd、Rh、Ru、P
t、Ir、Ni、Co、Ca、Sr、Ba、Ti、Zr、Hf、V、Nb、T
a、Cr、Mo、W、Fe、Reなどの1種または2種以上の金
属あるいはその化合物、他とえばPtCl2、PtCl4、IrC
l3、PdCl2、RhCl3、NiCl2、RuCl3、IrO2、PdO、RuO2、C
oO、NiOなどの化合物を担持させた触媒をさしている。
この触媒の使用環境は、pHが0.5〜3の酸性であるた
め、担体としては、耐酸性を有する活性炭またはシリカ
を用いる必要性があり、またこれらの担体に担持するこ
とにより、その反応速度は相乗効果により大きくなる。
The catalyst supporting a metal or a compound thereof according to the present invention refers to a metal having a high adsorptivity of hydrogen, such as Pd, Rh, Ru, and P.
t, Ir, Ni, Co, Ca, Sr, Ba, Ti, Zr, Hf, V, Nb, T
a, one or more metals such as Cr, Mo, W, Fe, Re or compounds thereof, for example, PtCl 2 , PtCl 4 , IrC
l 3, PdCl 2, RhCl 3 , NiCl 2, RuCl 3, IrO 2, PdO, RuO 2, C
It refers to a catalyst that supports compounds such as oO and NiO.
Since the environment in which the catalyst is used is acidic with a pH of 0.5 to 3, it is necessary to use activated carbon or silica having acid resistance as a carrier. By supporting the catalyst on such a carrier, the reaction rate is increased. Increased due to synergy.

次に、前記触媒とH2ガスの共存方法について述べる。Next, a method of coexistence of the catalyst and H 2 gas will be described.

反応器が撹拌槽の場合は、槽内へ触媒とH2ガスを導入
し、槽内の液を撹拌しながらH2ガスを循環すればよい。
気泡塔の場合は、塔内に触媒とH2ガスを導入し、バブリ
ングによって塔内の液を撹拌しながらH2ガスを循環すれ
ばよい。また、充填塔の場合は、塔内に触媒を充填しH2
ガスを塔内に導入し、循環すればよい。なお、上記の各
共存方法によらないで、任意の方法で共存させてもよ
い。
When the reactor is a stirring tank, a catalyst and H 2 gas may be introduced into the tank, and the H 2 gas may be circulated while stirring the liquid in the tank.
In the case of a bubble column, a catalyst and H 2 gas may be introduced into the column, and the H 2 gas may be circulated while stirring the liquid in the column by bubbling. In the case of a packed tower, the catalyst is packed in the tower and H 2
The gas may be introduced into the tower and circulated. In addition, you may coexist by arbitrary methods, without depending on each coexistence method mentioned above.

本発明は、前述したように、Pd細管の如き高価な装置
を用いずとも高水素吸着性の金属またはその化合物を活
性炭もしくはシリカに担持させた触媒を用いることによ
って、還元されるべきFe3+イオンを含むめっき液存在下
に直に水素を供給しても、十分に高活性の水素が得ら
れ、これによって、1工程でFe3+イオンの還元を行わせ
ることを可能とする。
As described above, the present invention is to reduce the amount of Fe 3+ to be reduced by using a catalyst in which a metal or a compound thereof having high hydrogen adsorption property is supported on activated carbon or silica without using an expensive apparatus such as a Pd capillary. Even if hydrogen is supplied directly in the presence of a plating solution containing ions, sufficiently high-activity hydrogen can be obtained, thereby making it possible to reduce Fe 3+ ions in one step.

<実施例> 以下に本発明を実施例に基づき具体的に説明する。<Example> Hereinafter, the present invention will be specifically described based on examples.

(実施例1) 第1図に示す撹拌槽1を用いてめっき液を還元するに
あたり、Fe3+イオン8g/、Fe2+イオン35g/を含むpH
2、浴温50℃の硫酸塩Fe−Pめっき液をめっき液導入管
2より、撹拌槽1(容量100)に導入した。3は撹拌
子である。水素ガスは供給管4より撹拌槽1に供給し、
未反応ガスは循環系5で2Nm3/hr循環させ、撹拌槽1内
の圧力を1.5atmとした。触媒としては担体活性炭にPtを
5wt%担持した平均粒径5〜100μmの微粒触媒を75gを
用いた。
Example 1 In reducing the plating solution using the stirring tank 1 shown in FIG. 1, a pH containing 8 g / Fe 3+ ions and 35 g / Fe 2+ ions was used.
2. A sulfate Fe-P plating solution having a bath temperature of 50 ° C. was introduced into the stirring tank 1 (capacity 100) from the plating solution introduction pipe 2. 3 is a stir bar. Hydrogen gas is supplied from the supply pipe 4 to the stirring tank 1,
The unreacted gas was circulated in the circulation system 5 at 2 Nm 3 / hr, and the pressure in the stirring tank 1 was adjusted to 1.5 atm. As catalyst, Pt on activated carbon
75 g of a 5% by weight fine catalyst having an average particle size of 5 to 100 μm was used.

還元処理されためっき液は触媒分離装置6を経てめっ
き槽(図示せず)へ戻される。
The plating solution subjected to the reduction treatment is returned to a plating tank (not shown) through the catalyst separating device 6.

めっき液戻管7におけるめっき液流量は500/時で
そのFe3+イオン濃度は4g/に低下した。なお、前記触
媒分離装置6で分離された触媒は触媒再生装置8を経て
撹拌槽1へ再び供給される。
The flow rate of the plating solution in the plating solution return pipe 7 was 500 / hour, and the Fe 3+ ion concentration was reduced to 4 g / hour. The catalyst separated by the catalyst separation device 6 is supplied again to the stirring tank 1 through the catalyst regeneration device 8.

(実施例2) 第2図に示す反応器9を用いてめっき液を還元するに
あたり、Fe3+イオン5g/、Fe2+イオン50g/、Zn2+
オン40g/を含むpH1.5、浴温60℃の硫酸塩Zn−Feめっ
き液を反応器9に導入した。水素ガスは供給管4より反
応器9に供給し、未反応ガスは循環系5で循環させ、反
応器9内の圧力を3atmとした。反応器9は潅液充填塔反
応器を用い気液向流操作を行った。固定触媒層10には、
シリカ担体にPdを0.03wt%担持させた平均粒径5mm触媒
粒を0.5m3充填した。めっき液戻管7におけるめっき液
流量は1000/時でそのFe3+イオン濃度は3g/に低下
した。なお、11はめっき液循環系、12はめっき液溜であ
る。
Example 2 In reducing the plating solution using the reactor 9 shown in FIG. 2, a bath containing 5 g of Fe 3+ ions, 50 g of Fe 2+ ions, and 40 g of Zn 2+ ions at a pH of 1.5 and a bath was used. A sulfate Zn—Fe plating solution at a temperature of 60 ° C. was introduced into the reactor 9. Hydrogen gas was supplied to the reactor 9 from the supply pipe 4, and unreacted gas was circulated in the circulation system 5, and the pressure inside the reactor 9 was set to 3 atm. The reactor 9 was a gas-liquid countercurrent operation using an irrigation packed tower reactor. In the fixed catalyst layer 10,
0.5 m 3 of catalyst particles having an average particle size of 5 mm and 0.03 wt% of Pd supported on a silica carrier were filled. The flow rate of the plating solution in the plating solution return pipe 7 was 1000 / hour, and the Fe 3+ ion concentration was reduced to 3 g / hour. In addition, 11 is a plating solution circulation system, and 12 is a plating solution reservoir.

(実施例3) 実施例1と同様の条件下において、本発明例として活
性炭担体にPdを担持した触媒(a)およびシリカ担体に
Ptを担持した触媒(b)、比較例としてアルミナ担体に
Pd黒を担持した触媒(C)を用いて、連続還元実験を行
った。
(Example 3) Under the same conditions as in Example 1, a catalyst (a) in which Pd was supported on an activated carbon support and a silica support were used as examples of the present invention.
Pt-supported catalyst (b) on alumina support as comparative example
A continuous reduction experiment was performed using the catalyst (C) supporting Pd black.

担持した金属量は、触媒に体し(a)、(c)は5wt
%、(b)は2.5wt%とし、充填触媒量は等しくした。
結果を第3図に示す。
(A) and (c) were 5 wt.
%, (B) was 2.5 wt%, and the charged catalyst amounts were equal.
The results are shown in FIG.

本発明例である(a)、(b)触媒の△Fe3+は初期値
が大きく経時による減少量は少ない。一方比較例である
(c)触媒の△Fe3+は初期値が小さく経時による減少量
が大きい。
ΔFe 3+ of the catalysts (a) and (b) of the present invention has a large initial value and a small decrease with time. On the other hand, ΔFe 3+ of the catalyst (c), which is a comparative example, has a small initial value and a large decrease with time.

なお、前記△Fe3+は反応器入側におけるFe3+濃度(g/
)と反応器出側におけるFe3+濃度(g/)の差であり
還元量を示す。
The above-mentioned ΔFe 3+ is the Fe 3+ concentration (g /
) And the Fe 3+ concentration (g /) at the outlet of the reactor, and indicates the amount of reduction.

<発明の効果> 本発明は、以上説明したように構成されているので、
H2ガスで効率的、かつ連続してにFe3+の還元が実現で
き、安価に、しかも安定してめっき液の管理ができると
いう効果を奏する。また、H2ガスを用いて還元するた
め、めっき液中に不純物が含まれず、そのめっき品質が
極めて安定するという効果を奏する。
<Effects of the Invention> Since the present invention is configured as described above,
The present invention has the effect that Fe 3+ can be efficiently and continuously reduced with H 2 gas, and the plating solution can be stably managed at low cost. In addition, since the reduction is performed using H 2 gas, there is an effect that the plating solution contains no impurities and the plating quality is extremely stable.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の1例を示すフロー図である。 第2図は、本発明の他の例を示すフロー図である。 第3図は、△Feの経時変化を示すグラフである。 符号の説明 1……撹拌槽、 2……めっき液導入管、 3……撹拌子、 4……水素ガス供給管、 5……水素ガス循環系、 6……触媒分離装置、 7……めっき液戻管、 8……触媒再生装置、 9……反応器、 10……固定触媒層、 11……めっき液循環系、 12……めっき液溜 FIG. 1 is a flowchart showing an example of the present invention. FIG. 2 is a flowchart showing another example of the present invention. FIG. 3 is a graph showing a change over time of ΔFe. DESCRIPTION OF SYMBOLS 1... Stirring tank 2... Plating solution introduction pipe 3... Stirrer 4. Hydrogen gas supply pipe 5. Hydrogen gas circulation system 6. Catalyst separation device 7. Liquid return tube, 8: Catalyst regeneration device, 9: Reactor, 10: Fixed catalyst layer, 11: Plating solution circulation system, 12: Plating solution reservoir

───────────────────────────────────────────────────── フロントページの続き (72)発明者 市田 敏郎 千葉県千葉市川崎町1番地 川崎製鉄株 式会社技術研究所内 (72)発明者 中島 晋 千葉県千葉市川崎町1番地 川崎製鉄株 式会社千葉製鉄所内 (56)参考文献 特開 昭59−83799(JP,A) 特開 昭59−76888(JP,A) ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Toshiro Ichida 1 Kawasaki-cho, Chiba-shi, Chiba Kawasaki Steel Corporation In-house Research Institute of Technology (72) Inventor Susumu Nakajima 1 Kawasaki-cho, Chiba-shi, Chiba Kawasaki Steel Corp. (56) References JP-A-59-83799 (JP, A) JP-A-59-76888 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】高水素吸着性の金属またはその化合物を活
性炭もしくはシリカに担持させた触媒を含む反応器へ、
Fe3+イオンを含む電気めっきラインのめっき液の一部を
導入し、連続的にH2ガスを供給しながら該めっき液中の
Fe3+イオンを還元することを特徴とする鉄系電気めっき
液の管理方法。
1. A reactor containing a catalyst in which a metal or a compound thereof having a high hydrogen adsorption property is supported on activated carbon or silica,
A part of the plating solution of the electroplating line containing Fe 3+ ions is introduced, and while continuously supplying H 2 gas,
A method for managing an iron-based electroplating solution, characterized by reducing Fe 3+ ions.
JP1909689A 1988-06-07 1989-01-27 Iron-based electroplating solution management method Expired - Lifetime JP2723950B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP14012988 1988-06-07
JP63-140129 1988-06-07

Publications (2)

Publication Number Publication Date
JPH0277600A JPH0277600A (en) 1990-03-16
JP2723950B2 true JP2723950B2 (en) 1998-03-09

Family

ID=15261571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1909689A Expired - Lifetime JP2723950B2 (en) 1988-06-07 1989-01-27 Iron-based electroplating solution management method

Country Status (1)

Country Link
JP (1) JP2723950B2 (en)

Also Published As

Publication number Publication date
JPH0277600A (en) 1990-03-16

Similar Documents

Publication Publication Date Title
CA1051088A (en) Production of a metal alloy electrode using chemical reduction
US4490219A (en) Method of manufacture employing electrochemically dispersed platinum catalysts deposited on a substrate
Gilroy et al. Kinetic theory of inhibition and passivation in electrochemical reactions
US8617375B2 (en) Method for reducing carbon dioxide
EP3269449A1 (en) Method for manufacturing platinum catalyst, and fuel cell using same
JPS6360115B2 (en)
JP6116000B2 (en) Method for producing platinum core-shell catalyst and fuel cell using the same
JPH07256112A (en) Reformed gas oxidation catalyst and oxidation of carbon monoxide in reformed gas using the same
EP0117290B1 (en) Fuel cell catalysts
CN102639233B (en) Method for producing catalyst
EP1739208B1 (en) Electrode for hydrogen generation, process for producing the same and method of electrolysis therewith
JP2019141792A (en) Hydrogen generation catalyst, hydrogen generation device, hydrogen generation method
JP4882218B2 (en) Electrode for hydrogen generation, method for producing the same, and electrolysis method using the same
JP2016131964A (en) Production method and production device of catalyst
JP2018031034A (en) Electrode carrying metal-containing nanoparticles and carbon dioxide reduction apparatus
EP3857632B1 (en) Method of treating a platinum-alloy catalyst, a treated platinum-alloy catalyst, and device for carrying out the method of treating a platinum-alloy catalyst
JP2723950B2 (en) Iron-based electroplating solution management method
US8597488B2 (en) Method for reducing carbon dioxide
EP0225659B1 (en) A process for producing catalysts
US4306950A (en) Process for forming sulfuric acid
US6099914A (en) Electrolytic process and apparatus
JP6403046B2 (en) Method for producing catalyst for fuel cell, catalyst using the same and fuel cell
JPWO2005030416A1 (en) Alloy colloid particles, alloy colloid solution and method for producing the same, and carrier having alloy colloid particles fixed thereon
JP4128638B2 (en) Electrolysis method and electrolysis apparatus
Wendt et al. Electrode kinetics and electrocatalysis