JP2722573B2 - Manufacturing method of high purity quartz glass - Google Patents

Manufacturing method of high purity quartz glass

Info

Publication number
JP2722573B2
JP2722573B2 JP63310122A JP31012288A JP2722573B2 JP 2722573 B2 JP2722573 B2 JP 2722573B2 JP 63310122 A JP63310122 A JP 63310122A JP 31012288 A JP31012288 A JP 31012288A JP 2722573 B2 JP2722573 B2 JP 2722573B2
Authority
JP
Japan
Prior art keywords
quartz glass
vitrification
glass
absorption
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63310122A
Other languages
Japanese (ja)
Other versions
JPH02157132A (en
Inventor
英司 塩田
俊 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP63310122A priority Critical patent/JP2722573B2/en
Publication of JPH02157132A publication Critical patent/JPH02157132A/en
Application granted granted Critical
Publication of JP2722573B2 publication Critical patent/JP2722573B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高純度石英ガラスの製造方法に関し、特に
波長200nmから2,500nmの広範囲の波長領域で、透過率が
88%以上でかつOH伸縮振動に基づく2,730nmの吸収がな
い、高純度石英ガラスの製造方法に関するものである。
高純度石英ガラスは理化学器具,照明管,ゲルマニウム
やシリコン半導体製造の炉心管,光学用素材として広く
使用されている。また高純度石英ガラスの特性を生かし
た電子産業,光産業から宇宙産業等の高度科学技術産業
の高機能材料としての利用分野が期待される。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing high-purity quartz glass, and particularly, to a method for producing a high-purity quartz glass having a transmittance in a wide wavelength range from 200 nm to 2,500 nm.
The present invention relates to a method for producing high-purity quartz glass which is 88% or more and has no absorption at 2,730 nm based on OH stretching vibration.
High-purity quartz glass is widely used for physics and chemistry equipment, lighting tubes, furnace tubes for the production of germanium and silicon semiconductors, and optical materials. In addition, it is expected to be used as a high-performance material in advanced science and technology industries such as the electronics industry, the optical industry, and the space industry, which make use of the characteristics of high-purity quartz glass.

〔従来の技術〕[Conventional technology]

従来、石英ガラスを得る方法としては天然水晶粉を原
料として、酸水素炎にて溶融するベルヌイ法が知られて
いる。この方法で得られる溶融石英ガラスは、主に半導
体用に使用されているが、天然水晶粉を原料として用い
るので高純度の物は得られにくい。石英ガラスを光学材
料として使用する場合、ガラス中に含まれる不純物は紫
外透過率に影響する。また酸水素炎で溶融を行うのでOH
基をガラス中に含有している。ガラス中にOH基が存在す
ると、光学素材として使用する場合OH伸縮振動に基づく
2,730nmの吸収を生じ、又半導体用として使用する場
合、耐熱性に劣るという欠点がある。
Conventionally, as a method for obtaining quartz glass, the Bernoulli method of melting natural quartz powder as a raw material in an oxyhydrogen flame is known. The fused quartz glass obtained by this method is mainly used for semiconductors, but it is difficult to obtain a high-purity product because natural quartz powder is used as a raw material. When quartz glass is used as an optical material, impurities contained in the glass affect ultraviolet transmittance. In addition, OH
Groups are contained in the glass. When OH group is present in glass, it is based on OH stretching vibration when used as an optical material
Absorption of 2,730 nm occurs, and when used for semiconductors, there is a disadvantage that heat resistance is poor.

酸水素炎の代りに天然水晶粉を電気抵抗,高周波など
の電熱により加熱溶融する方法も知られている。この方
法で得られるいわゆる電融品は、ガラス中にOH基を含有
せず、耐熱性が良好な為半導体用として使用され、また
OH伸縮振動に基づく2,730nmの吸収が生じないので赤外
透過用のガラスとしても使用される。しかしながら電融
品は、天然水晶粉を原料とするので溶融石英ガラスと同
様に、低純度で紫外部の透過率が悪く、紫外用の光学材
としては使用されていない。
There is also known a method in which natural quartz powder is heated and melted by electric heat such as electric resistance and high frequency instead of oxyhydrogen flame. The so-called electrofused product obtained by this method does not contain OH groups in the glass and is used for semiconductors because of its good heat resistance.
Since absorption at 2,730 nm due to OH stretching vibration does not occur, it is also used as a glass for infrared transmission. However, since the electrofused product uses natural quartz powder as a raw material, it has low purity and poor ultraviolet transmittance similarly to fused silica glass, and is not used as an optical material for ultraviolet.

高純度で紫外透過率が良好な石英ガラスを得る方法と
しては、SiCl4を原料として酸水素炎で加水分解し石英
ガラスを得られる方法が知られている。
As a method for obtaining quartz glass having high purity and good ultraviolet transmittance, there is known a method in which SiCl 4 is used as a raw material and hydrolyzed with an oxyhydrogen flame to obtain quartz glass.

この方法で得られる合成石英ガラスは、原料として高
純度化可能なSiCl4を使用することが出来るので高純度
の石英ガラスが得られ紫外透過率も良好であるが、合成
に酸水素塩を使用するのでOH基を多量にガラス中に含有
しOH伸縮振動に基づく2,730nmの吸収が生じ、赤外透過
用のガラスとして使用することが出来ない。
Synthetic quartz glass obtained by this method can use high-purity SiCl 4 as a raw material, so high-purity quartz glass can be obtained and UV transmittance is good, but oxyhydrogen salts are used for synthesis. As a result, a large amount of OH groups are contained in the glass, and absorption at 2,730 nm occurs due to OH stretching vibration, so that the glass cannot be used as a glass for infrared transmission.

紫外透過率が良好で2,730nmの吸収が生じない石英ガ
ラスを得る方法としては、SiCl4をプラズマ加熱により
熱酸化反応させて合成石英ガラスを得る方法が有るが、
この方法は装置が複雑なうえ合成時の収率が低く得られ
る合成石英ガラスは高価な物となっている。
As a method of obtaining quartz glass having good ultraviolet transmittance and not causing absorption at 2,730 nm, there is a method of obtaining a synthetic quartz glass by thermally oxidizing SiCl 4 by plasma heating.
In this method, the synthetic quartz glass, which has a complicated apparatus and a low yield during synthesis, is expensive.

従って、通常は紫外透過用には合成石英ガラス、赤外
透過用には電融品がそれぞれ別々に使用されている。
Therefore, synthetic quartz glass is usually used separately for ultraviolet transmission, and electrofused products are used separately for infrared transmission.

一方、上記の方法以外で石英ガラスを得る方法とし
て、光ファイバー用母材の製造方法であるVAD法が知ら
れている。VAD法とは酸水素炎内でハロゲン化ケイ素を
加水分解して、SiO2微粒子を形成し、該SiO2微粒子を堆
積させて、多孔質母材を形成させた後、該多孔質母材を
脱水処理及びガラス化して光ファイバー用母材を得る方
法である。この方法の特徴は、光ファイバーとして問題
となるOH基伸縮振動の吸収損失を低下させるため、塩素
化剤を用いて脱水処理を行うことにあり、この処理によ
ってOH伸縮振動に基づく2,730nmの吸収がないものが得
られている。
On the other hand, as a method of obtaining quartz glass by a method other than the above method, a VAD method, which is a method of manufacturing a preform for an optical fiber, is known. Hydrolyzing silicon halide in the oxyhydrogen flame to the VAD method, to form the SiO 2 fine particles, depositing the SiO 2 fine particles, after forming a porous preform, a porous preform This is a method of obtaining a preform for an optical fiber by dehydration treatment and vitrification. The feature of this method is to perform a dehydration treatment using a chlorinating agent in order to reduce the absorption loss of the OH group stretching vibration, which is a problem as an optical fiber, and this treatment reduces the absorption at 2,730 nm based on the OH stretching vibration. Not what has been obtained.

特開昭54−103058号公報には、SOCl2を用いてOH基をC
lと置換させることによりOHを含まない光ファイバー用
無水石英ガラス母材を得る方法が記載されている。
The JP 54-103058 discloses the OH groups using SOCl 2 C
There is described a method of obtaining an anhydrous quartz glass preform for an optical fiber containing no OH by substituting with l.

しかし、VAD法で得られる石英ガラスは、光ファイバ
ーを使用目的とするので屈折率分布を形成することを目
的にGe等の添加剤が加えられ純度的に低下しており、伝
送効率を高める為OHの吸収、使用波長である赤外での透
過率が重要視され、石英ガラスの特性の一つである紫外
透過率については不明であった。
However, since quartz glass obtained by the VAD method is intended for optical fiber use, additives such as Ge are added to form a refractive index distribution for the purpose of forming a refractive index distribution. Importance was placed on the absorption in the infrared region, which is the absorption wavelength, and the ultraviolet transmittance, which is one of the characteristics of quartz glass, was unknown.

特開昭58−176134号公報には、多孔質母材を塩素化剤
含有ガス雰囲気中で熱処理をして透明ガラス化を行なう
方法が記載されている。この方法はロッドレンズの解像
度を上げる為おこなわれ、OH基の伸縮振動に基づく2,73
0nmの吸収は生じていないが紫外透過率は不明であっ
た。また特開昭54−134128号公報には、多孔質母材を脱
水処理部分と透明ガラス化部分とが上下に連続した加熱
炉の上方にセットし回転させながら徐々に下降させ、脱
水処理部分で400℃〜500℃に加熱し、CCl4等をHeガスと
ともに送り込み脱水処理を行ない、次にガラス化をHe等
の不活性ガス中でガラス化部分で行なう方法が記載され
ている。この方法は光ファイバーとして使用する際に、
ガラス中にCl2が残留し、波長700nm〜1,100nmに吸収損
失が生じる事を防ぐ為におこなわれており、波長700nm
〜1,100nmに吸収損失の無いガラスが得られていたが紫
外透過率は不明であった。
Japanese Patent Application Laid-Open No. 58-176134 describes a method in which a porous base material is heat-treated in a chlorinating agent-containing gas atmosphere to perform vitrification. This method is used to increase the resolution of the rod lens, based on the stretching vibration of the OH group.
Although no absorption at 0 nm occurred, the ultraviolet transmittance was unknown. In Japanese Patent Application Laid-Open No. 54-134128, a porous base material is set above a heating furnace in which a dewatering treatment part and a transparent vitrification part are vertically continuous, and gradually lowered while rotating. It describes a method of heating to 400 ° C. to 500 ° C., sending CCl 4 or the like together with He gas to perform a dehydration treatment, and then performing vitrification in an inert gas such as He at a vitrification portion. When this method is used as an optical fiber,
This is done to prevent Cl 2 from remaining in the glass and causing absorption loss at wavelengths from 700 nm to 1,100 nm.
Although a glass having no absorption loss at 1,100 nm was obtained, the ultraviolet transmittance was unknown.

本発明者らが塩素化剤含有ガス雰囲気中2段方式によ
り、あるいは連続式により脱水処理後連続して不活性ガ
ス中でガラス化を行ったところ、OH基の伸縮振動に基づ
く2,730nmの吸収の無い石英ガラスは得られたが、紫外2
40nm〜280nmにしばしば吸収を生じていた。
When the present inventors performed vitrification in an inert gas after dehydration treatment by a two-stage method or a continuous method in a chlorinating agent-containing gas atmosphere, the absorption at 2,730 nm based on the stretching vibration of the OH group was observed. Quartz glass without
Absorption often occurred between 40 nm and 280 nm.

以上の様に従来の方法では、波長200nmから2,500nmの
広範囲の波長領域で透過率が88%以上でかつOH伸縮振動
に基づく2,730nmの吸収がない高純度石英ガラスを容易
に得ることは困難であった。
As described above, with the conventional method, it is difficult to easily obtain high-purity quartz glass having a transmittance of 88% or more in a wide wavelength range from 200 nm to 2,500 nm and no absorption at 2,730 nm based on OH stretching vibration. Met.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

本発明の目的は、波長200nmから2,500nmの広範囲の波
長領域で透過率が88%以上でかつOH伸縮振動に基づく2,
730nmの吸収がない高純度石英ガラスを、複雑な装置を
使用することなく容易に製造する方法を提供することに
ある。
An object of the present invention is that the transmittance is 88% or more in a wide wavelength range from 200 nm to 2,500 nm and based on OH stretching vibration,
An object of the present invention is to provide a method for easily producing high-purity quartz glass having no absorption at 730 nm without using a complicated apparatus.

〔課題を解決するための手段〕[Means for solving the problem]

本発明者らは紫外の吸収を抑える為に種々の検討を行
った結果、塩素化剤により脱水処理を行った後、ガラス
化を行う前に多孔質母材内に残留している塩素化剤をガ
ラス化雰囲気ガスで除去することにより、波長200nmか
ら2,500nmの広範囲の波長領域で透過率が88%以上でか
つ、OH伸縮振動に基づく2,730nmの吸収がない高純度石
英ガラスを得ることを見い出した。
The present inventors have conducted various studies in order to suppress the absorption of ultraviolet light, and as a result, after performing a dehydration treatment with a chlorinating agent, the chlorinating agent remaining in the porous base material before performing vitrification. By using a vitrification atmosphere gas to obtain high-purity quartz glass with a transmittance of 88% or more in a wide wavelength range from 200 nm to 2,500 nm and no absorption at 2,730 nm based on OH stretching vibration. I found it.

本発明の要旨は、ハロゲン化ケイ素を火炎内で加水分
解して、SiO2微粒子を形成し、該SiO2微粒子を堆積させ
多孔質母材を形成させた後、該多孔質母材を塩素化剤と
反応させて脱水処理を行った後、ガラス化することによ
り石英ガラスを4得る方法において、ガラス化を行う前
に多孔質母材内に残留している塩素化剤をガラス化雰囲
気ガスで除去することを特徴とする高純度石英ガラスの
製造方法にあり、以下その詳細について説明する。
Gist of the present invention, a silicon halide is hydrolyzed in the flame, after forming the SiO 2 particles to form a porous preform by depositing the SiO 2 particles, chlorination of porous preform In a method of obtaining quartz glass by reacting with a dehydrating agent and performing dehydration treatment, the chlorinating agent remaining in the porous base material before vitrification is removed using a vitrification atmosphere gas. A method for producing high-purity quartz glass characterized by being removed is described below in detail.

本発明において使用する原料ハロゲン化ケイ素として
はSiCl4,SiHCl3等が挙げられるがSiCl4が一般的であ
る。
Examples of the raw material silicon halide used in the present invention include SiCl 4 , SiHCl 3 and the like, and SiCl 4 is generally used.

多孔質母材を合成する為のバーナーは特に限定はしな
いが、石英製同心円多重管バーナー,石英製角型多重管
バーナー等が使用できる。大型の多孔質母材を高速で合
成する為には複数のバーナーを使用したり、多重管数を
多く用いたりすること等が必要であり、それらバーナー
の構造,合成方法により使用するガス流量は変化する。
Although the burner for synthesizing the porous base material is not particularly limited, a quartz concentric multiple tube burner, a quartz square multiple tube burner, or the like can be used. In order to synthesize a large-sized porous base material at high speed, it is necessary to use a plurality of burners or use a large number of pipes. Change.

使用するガスは特に限定しないが、H2ガス,O2ガス及
びArガスが使用できる。これら使用するガスの流量は、
火炎温度,バーナーの構造,使用本数等に基づいて各管
からのガス流量の適性化を図り、バーナー中心よりSiCl
4を流し周辺の酸水素炎で包む状態で合成を行い多孔質
母材を形成する。通常使用されるH2,O2の流量比及びH2,
SiCl4流量比は各々H2/O2=0.5〜2.0,H2/SiCl4=10〜100
が適当である。この様な条件で40mmφ〜230mmφ×200mm
L〜1200mmLの多孔質母材を得ることができる。
The gas used is not particularly limited, but H 2 gas, O 2 gas and Ar gas can be used. The flow rates of these gases used are
Optimize the gas flow rate from each pipe based on the flame temperature, burner structure, number of tubes used, etc.
4 is passed and synthesis is performed in a state of being wrapped in a surrounding oxyhydrogen flame to form a porous base material. Usually used H 2 , O 2 flow ratio and H 2 ,
The SiCl 4 flow ratios are respectively H 2 / O 2 = 0.5 to 2.0, H 2 / SiCl 4 = 10 to 100
Is appropriate. Under these conditions, 40mmφ ~ 230mmφ × 200mm
A porous base material of L to 1200 mmL can be obtained.

得られた多孔質母材を、次に脱水処理及びガラス化す
ることにより、高純度石英ガラスを得ることができる。
この時、脱水処理,ガラス化を行う加熱炉は特に限定し
ないが、脱水処理,ガラス化を連続で行う連続式又は、
脱水処理後ガラス化を行う2段方式等が用いられ、加熱
源のヒーターはSiC,カーボン等を使用することができ
る。
By subjecting the obtained porous base material to a dehydration treatment and vitrification, high-purity quartz glass can be obtained.
At this time, the heating furnace for performing the dehydration treatment and vitrification is not particularly limited, but a continuous type in which the dehydration treatment and vitrification are continuously performed, or
A two-stage method of performing vitrification after dehydration treatment is used, and SiC, carbon, or the like can be used as a heater of a heating source.

脱水処理工程で使用する塩素化剤としては、例えばCl
2,CCl4,SOCl2等を挙げることが出来る。しかしながら、
Cl2以外の化合物、例えばCCl4あるいはSOCl2を使用した
場合、各々CあるいはSがガラス中に残留する事がある
ので、Cl2が望ましい。Cl2を使用して脱水処理を行う場
合、処理温度は1,000℃未満では塩素とOHの置換反応が
進みにくく、1,300℃を越えると多孔質母材の収縮が進
行し脱水及び後工程の多孔質母材内に残留するCl2とガ
ラス化雰囲気ガスとの置換が困難となる。従って1,000
〜1,300℃でCl2と反応させなければならない。
As the chlorinating agent used in the dehydration treatment step, for example, Cl
2 , CCl 4 , SOCl 2 and the like. However,
When a compound other than Cl 2 , for example, CCl 4 or SOCl 2 is used, C 2 or S may remain in the glass, so Cl 2 is preferable. When the dehydration treatment is performed using Cl 2 , if the treatment temperature is less than 1,000 ° C, the substitution reaction of chlorine and OH does not proceed easily.If the treatment temperature exceeds 1,300 ° C, the porous base material shrinks and the dehydration and the post-process porous It becomes difficult to replace Cl 2 remaining in the base material with a vitrification atmosphere gas. Therefore 1,000
Must react with Cl 2 at 1,1,300 ° C.

脱水処理を行なった後、ガラス化を行なう。 After performing the dehydration treatment, vitrification is performed.

本発明においては、脱水処理後ガラス化を行なう前に
多孔質母材内に残留している塩素化剤を、ガラス化雰囲
気ガスで除去することが必須であり、例えば脱水処理後
ガラス化を行う2段方式においてはガラス化前に、塩素
化剤の流入を止めガラス化温度よりも低い温度で、多孔
質母材が開孔状態で多孔質母材内に残留する塩素化剤を
ガラス化雰囲気ガスで除去すればよい。また脱水処理後
連続してガラス化を行う連続式においては、脱水処理部
分とガラス化部分との間に、ガラス化温度によりも低い
温度で、多孔質母材が開孔状態となっている加熱帯部分
をもうけ、この部分で多孔質母材内に残留する塩素化剤
をガラス化雰囲気ガスで除去する事も可能である。
In the present invention, it is essential to remove the chlorinating agent remaining in the porous base material with a vitrification atmosphere gas before performing the vitrification after the dehydration treatment, for example, performing the vitrification after the dehydration treatment. In the two-stage method, before the vitrification, the inflow of the chlorinating agent is stopped, and the chlorinating agent remaining in the porous preform in an open state at a temperature lower than the vitrification temperature is reduced to a vitrification atmosphere. What is necessary is just to remove with gas. In a continuous method in which vitrification is performed continuously after dehydration treatment, the porous base material is in an open state at a temperature lower than the vitrification temperature between the dehydration treatment part and the vitrification part. It is also possible to form a tropical part and remove the chlorinating agent remaining in the porous base material with a vitrification atmosphere gas in this part.

Cl2を使用して脱水処理を行う場合の処理温度1,000〜
1,300℃では、多孔質母材は開孔状態となっているの
で、脱水処理後多孔質母材内のCl2をガラス化雰囲気ガ
スで容易に除去出来る。1,300℃を越えると多孔質母材
の収縮が進み閉孔状態となるので多孔質母材内のCl2
除去が困難となり、Cl2がガラス中に残留する。
Processing temperature of 1,000 to dehydration using Cl 2
At 1,300 ° C., since the porous base material is in an open state, Cl 2 in the porous base material can be easily removed by a vitrification atmosphere gas after the dehydration treatment. Since it exceeds 1,300 ° C. shrinkage of the porous preform progresses a closed porosity state removal of porous Cl 2 in the base material it becomes difficult, Cl 2 remains in the glass.

従って除去は、多孔質母材が閉孔状態となる1,300℃
を越える温度で行なう事は好ましくなく、また脱水処理
温度より低い温度ではOH基による汚染,ガラス処理の長
時間化等から脱水処理温度と同じ1,000℃〜1,300℃の温
度で行なうのが適当である。
Therefore, the removal is performed at 1,300 ° C where the porous base material is closed.
It is not preferable to perform at a temperature higher than the dehydration temperature, and at a temperature lower than the dehydration temperature, it is appropriate to perform at a temperature of 1,000 to 1,300 ° C, which is the same as the dehydration temperature because of contamination by OH groups and prolonged glass treatment .

多孔質母材内の塩素化剤をガラス化雰囲気ガスで除去
を行った後、ガラス化を行う。
After removing the chlorinating agent in the porous base material with a vitrification atmosphere gas, vitrification is performed.

ガラス化は、ガラス化雰囲気ガスを用いて1,450℃〜
1,550℃で行う。ガラス化雰囲気ガスとしては例えば乾
燥したHe,O2,H2,空気などが用いられるが、特にHeガス
を用いると石英ガラスの透過性が良好で、ガラス中の脱
泡が容易に行える事が知られている。N2等の透過性が低
いガスでは閉孔状態からの脱泡が困難となりガラス中に
泡が残留する。ガラス化温度は1,450℃未満では透明な
ガラスとならず、1,550℃を越えると使用している炉心
管の消耗が激しく好ましくない。
Vitrification is performed at 1,450 ° C using vitrification atmosphere gas.
Perform at 1,550 ° C. As the vitrification atmosphere gas, for example, dried He, O 2 , H 2 , air, etc. are used, but in particular, the use of He gas has good permeability of quartz glass, and degassing in glass can be easily performed. Are known. With a gas having low permeability such as N 2, it is difficult to remove bubbles from the closed state, and bubbles remain in the glass. When the vitrification temperature is lower than 1,450 ° C., the glass does not become transparent. When the vitrification temperature exceeds 1,550 ° C., the furnace tube used is greatly consumed, which is not preferable.

以上の方法により、波長200nmから2,500nmの広範囲の
波長領域で透過率が88%以上でかつOH伸縮振動に基づく
2,730nmの吸収がない高純度石英ガラスを得ることが出
来る。
By the above method, the transmittance is 88% or more in a wide wavelength range from 200 nm to 2,500 nm, and it is based on OH stretching vibration.
High-purity quartz glass without absorption at 2,730 nm can be obtained.

また本発明における高純度石英ガラスはVAD法の高収
率,高速合成という特徴を生かしているので、プラズマ
法と比較して安価に高純度石英ガラスを得る事が出来
る。
Further, the high-purity quartz glass of the present invention makes use of the features of the high yield and high-speed synthesis of the VAD method, so that high-purity quartz glass can be obtained at lower cost than the plasma method.

〔発明の効果〕〔The invention's effect〕

以上の説明から明らかな様に本発明によれば、プラズ
マ法の様な煩雑な操作及び高価な設備を要せず簡単な方
法で安価に、波長200nmから2,500nmの広範囲の波長領域
で透過率が88%以上でかつ、OH伸縮振動に基づく2,730n
mの吸収がない高純度石英ガラスを得る事が出来る。
As is apparent from the above description, according to the present invention, the transmittance can be reduced over a wide wavelength range from 200 nm to 2,500 nm by a simple method at a low cost without complicated operations and expensive equipment such as a plasma method. Is more than 88% and 2,730n based on OH stretching vibration
High purity quartz glass without absorption of m can be obtained.

〔実施例〕〔Example〕

次に本発明を実施例によりさらに具体的に説明する。
しかし本発明はこれら実施例にのみ限定されるものでは
ない。
Next, the present invention will be described more specifically with reference to examples.
However, the present invention is not limited to only these examples.

実施例1 石英製多重管バーナー中央にSiCl4を導入し、酸水素
炎中で加水分解を行ないSiO2微粒子を形成し、該SiO2
粒子を堆積させて寸法60mmφ×250mmLの多孔質母材を形
成した。
Introducing Example 1 quartz multi-tube burner center SiCl 4, the hydrolysis is performed to form the SiO 2 particles in an oxyhydrogen flame, a porous preform dimensions 60 mm × 250 mmL by depositing the SiO 2 particles Formed.

得られた多孔質母材をSiCヒーター電気炉均熱帯部分
に入れ昇温を開始した。1,200℃に到達後、Cl2ガスを35
ml/minで流し、1,200℃一定で2時間脱水処理を行なっ
た。
The obtained porous base material was placed in a tropical zone of a SiC heater electric furnace, and heating was started. After reaching 1,200 ° C, Cl 2 gas
The solution was flowed at a rate of ml / min and dehydrated at 1,200 ° C. for 2 hours.

2時間後Cl2ガスの流入を止め、次いでHeガスを流量
3リットル/minで流し15分間1200℃を保持し多孔質母材
内のCl2ガスの除去を行った。
After 2 hours, the flow of Cl 2 gas was stopped, and then He gas was flowed at a flow rate of 3 L / min, and the temperature was kept at 1200 ° C. for 15 minutes to remove Cl 2 gas from the porous base material.

その後、昇温速度を0.6℃/secにして1,500℃まで上昇
し、1,500℃到達後1,500℃で一時間保持し、透明ガラス
化を行った。
Thereafter, the temperature was raised to 1,500 ° C. at a heating rate of 0.6 ° C./sec, and after reaching 1,500 ° C., the temperature was maintained at 1,500 ° C. for 1 hour to perform transparent vitrification.

第1図に得られた高純度石英ガラス(t=10mm)の透
過率曲線を示した。
FIG. 1 shows a transmittance curve of the obtained high-purity quartz glass (t = 10 mm).

得られた高純度石英ガラスは、波長200nmから2,500nm
の範囲で透過率が88%以上であり、OH伸縮振動に基づく
2,730nmの吸収も生じなかった。
The obtained high-purity quartz glass has a wavelength of 200 nm to 2,500 nm.
Is 88% or more in the range of
No absorption at 2,730 nm occurred.

実施例2 実施例1と同様の方法で寸法60mmφ×250mmLの多孔質
母材を得た。得られた多孔質母材を脱水処理部分,加熱
帯部分,ガラス化部分が上から順に連続している加熱炉
の上部にセットし4mm/minの速度で徐々に引下げた。長
さ250mmLの脱水処理部分は、1,200℃に加熱し、Cl2ガス
を35ml/min流入し脱水処理を行った。長さ100mmLの加熱
帯部分は脱水処理部分と同様に1,200℃に加熱し、Heガ
ス3リットル/minで流し多孔質母材内に残留しているCl
2の除去を行った。長さ250mmLの透明ガラス化部分は1,5
00℃に加熱し、Heガス3リットル/min中でガラス化を行
った。
Example 2 A porous base material having a size of 60 mmφ × 250 mmL was obtained in the same manner as in Example 1. The obtained porous base material was set on the upper part of a heating furnace in which the dewatering treatment part, the heating zone part, and the vitrification part were successively arranged from the top, and gradually lowered at a speed of 4 mm / min. The dewatering treatment part having a length of 250 mmL was heated to 1200 ° C., and the dehydration treatment was performed by flowing Cl 2 gas at a flow rate of 35 ml / min. The heating zone with a length of 100 mmL is heated to 1,200 ° C. in the same manner as the dehydration treatment part, and He gas is flowed at 3 liter / min.
2 was removed. 250mmL transparent vitrified part 1,5
It was heated to 00 ° C. and vitrified in He gas at 3 L / min.

得られた高純度石英ガラスは、波長200nmから2,500nm
の範囲で透過率が88%以上であり、OH伸縮振動に基づく
2,730nmの吸収は生じなかった。
The obtained high-purity quartz glass has a wavelength of 200 nm to 2,500 nm.
Is 88% or more in the range of
No absorption at 2,730 nm occurred.

〔比較例〕(Comparative example)

実施例1と同様にして、多孔質母材を形成し、脱水処
理を行った。これをCl2ガスの除去を行わず、直ちに実
施例1と同様にして透明ガラス化を行った。
In the same manner as in Example 1, a porous base material was formed, and a dehydration treatment was performed. This was immediately vitrified in the same manner as in Example 1 without removing the Cl 2 gas.

得られた石英ガラスは、OH基伸縮振動に基づく2,730n
mの吸収は生じなかったが、紫外240〜280nmに吸収を生
じた。
The obtained quartz glass has 2,730n based on OH-based stretching vibration.
m did not occur, but did absorb at 240-280 nm.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、実施例1で得られた高純度石英ガラスの透過
率曲線を示す図である。
FIG. 1 is a view showing a transmittance curve of the high-purity quartz glass obtained in Example 1.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ハロゲン化ケイ素を火炎内で加水分解し
て、SiO2微粒子を形成し、該SiO2微粒子を堆積させて、
多孔質母材を形成させた後、該多孔質母材を塩素化剤と
反応させて脱水処理を行った後、ガラス化することによ
り石英ガラスを得る方法において、ガラス化を行う前
に、多孔質母材内に残留している塩素化剤を、ガラス化
雰囲気ガスで除去することを特徴として、波長200nmか
ら2,500nmの波長領域で透過率が88%以上でかつOH伸縮
振動に基づく2,730nmの吸収がない高純度石英ガラスの
製造方法。
We claim: 1. The silicon halide is hydrolyzed in a flame to form fine particles of SiO 2, it is deposited the SiO 2 particles,
After forming the porous preform, the porous preform is subjected to a dehydration treatment by reacting with a chlorinating agent, and then, in a method of obtaining quartz glass by vitrification, before performing vitrification, The chlorinating agent remaining in the base metal is removed with a vitrification atmosphere gas. The transmittance is 88% or more in the wavelength range of 200 to 2,500 nm, and the wavelength is 2,730 nm based on OH stretching vibration. For producing high-purity quartz glass without absorption of water.
JP63310122A 1988-12-09 1988-12-09 Manufacturing method of high purity quartz glass Expired - Fee Related JP2722573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63310122A JP2722573B2 (en) 1988-12-09 1988-12-09 Manufacturing method of high purity quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63310122A JP2722573B2 (en) 1988-12-09 1988-12-09 Manufacturing method of high purity quartz glass

Publications (2)

Publication Number Publication Date
JPH02157132A JPH02157132A (en) 1990-06-15
JP2722573B2 true JP2722573B2 (en) 1998-03-04

Family

ID=18001442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63310122A Expired - Fee Related JP2722573B2 (en) 1988-12-09 1988-12-09 Manufacturing method of high purity quartz glass

Country Status (1)

Country Link
JP (1) JP2722573B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6011644A (en) * 1994-07-29 2000-01-04 Corning Incorporated Hybrid fiber amplifier
US5656057A (en) * 1995-05-19 1997-08-12 Corning Incorporated Method for drying and sintering an optical fiber preform
EP0744383B1 (en) * 1995-05-22 1999-09-08 Corning Incorporated Method for drying and sintering an optical fiber preform
JP2014101236A (en) * 2012-11-16 2014-06-05 Sumitomo Electric Ind Ltd Production method of optical fiber preform, and optical fiber
JP7074711B2 (en) * 2019-04-01 2022-05-24 信越化学工業株式会社 Moldable composition for transparent silica glass, transparent silica glass and its manufacturing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6317229A (en) * 1986-07-10 1988-01-25 Sumitomo Electric Ind Ltd Production of preform for optical fiber
JPH07112932B2 (en) * 1986-08-20 1995-12-06 日本電信電話株式会社 Method for producing functional quartz optical fiber base material

Also Published As

Publication number Publication date
JPH02157132A (en) 1990-06-15

Similar Documents

Publication Publication Date Title
JP2004203736A (en) Method of manufacturing high purity fused silica
JP7195441B2 (en) Method for preparing high-purity quartz glass with low hydroxyl groups
JPH07507034A (en) Heat treatment equipment for synthetic vitreous silica molded bodies
JPS60239337A (en) Preparation of parent glass material for optical fiber
DK158940B (en) PROCEDURE FOR MANUFACTURING FRAME FOR OPTICAL FIBERS
JPS6038345B2 (en) Manufacturing method of glass material for optical transmission
JPS61247633A (en) Production of glass base material for optical fiber
JPH1053423A (en) Production of synthetic silica glass
JPH05351B2 (en)
JP2722573B2 (en) Manufacturing method of high purity quartz glass
JPS6081033A (en) Manufacture of optical fiber
JPH05178632A (en) Optical quartz glass having high heat resistance and its production
JPS6143290B2 (en)
JP3188517B2 (en) Manufacturing method of quartz glass
JPS62153130A (en) Production of parent material for optical fiber glass
JP2000026125A (en) Transparent quartz glass and its production
JP2004338992A (en) Method for manufacturing glass preform
JPH04164836A (en) Production of glass preform for optical fiber
JPS6036343A (en) Production of glass material for optical transmission
JP4565221B2 (en) Optical fiber preform
JPH0450130A (en) Production of preform for optical fiber
JPH0776092B2 (en) Glass manufacturing method
JP2620275B2 (en) Glass manufacturing method
JPH04325433A (en) Production of optical fiber preform
JPS60239339A (en) Preparation of parent material for optical fiber

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees