JP2720966B2 - Recycling method of parts with thin film attached - Google Patents

Recycling method of parts with thin film attached

Info

Publication number
JP2720966B2
JP2720966B2 JP62172947A JP17294787A JP2720966B2 JP 2720966 B2 JP2720966 B2 JP 2720966B2 JP 62172947 A JP62172947 A JP 62172947A JP 17294787 A JP17294787 A JP 17294787A JP 2720966 B2 JP2720966 B2 JP 2720966B2
Authority
JP
Japan
Prior art keywords
thin film
reaction
parts
component
chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62172947A
Other languages
Japanese (ja)
Other versions
JPS6417857A (en
Inventor
稔 荒牧
久治 中野
隆 末永
清志 楊井
博通 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP62172947A priority Critical patent/JP2720966B2/en
Publication of JPS6417857A publication Critical patent/JPS6417857A/en
Application granted granted Critical
Publication of JP2720966B2 publication Critical patent/JP2720966B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • ing And Chemical Polishing (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、CVD・真空蒸着・スパッタリング、溶射な
どの薄膜形成プロセスにより薄膜を形成した物品あるい
はその際に薄膜が付着した治具から付着した金属および
その化合物を高速度で除去し、清浄な表面を露出させる
方法に関するものである。 (従来の技術) 半導体工業を中心に薄膜形成プロセスが普及し、CVD
や真空蒸着、スパッタリングなどの装置が多数稼働して
いる。しかし、このような薄膜形成装置においては薄膜
を形成すべき目的物以外に装置の内壁、目的物を担持す
るための治具などに多量の堆積物が生成し、この堆積物
を除去するために長時間装置の運転を停止するなどの問
題を起こしている。また、現状では強酸・強アルカリな
どの水溶液を用いた化学研磨や電解研磨や、機械的研磨
などの方法で堆積物の除去を行うために装置や治具の傷
みが大きく、数回の使用で交換しなければならない場合
も多く、また、操作も煩雑である。 また、超硬被覆をおこなう目的で種々の機械部品等に
炭化チタン、炭化タングステン、窒化チタン、窒化ケイ
素などの薄膜を被覆する方法がとられているが、これら
部品への薄膜形成の不良品は再生利用が困難であり、廃
棄されているのが現状である。 (課題点を解決するための手段) 本発明者らは、鋭意検討の結果、真空薄膜形成法によ
り形成された超硬被覆等の薄膜付着物(特に不良品)や
治具から薄膜を効率的に除去できる優れたクリーニング
方法を見いだし本発明に至ったものである。 すなわち本発明は、真空薄膜形成法により金属または
その化合物の薄膜が付着した部品を反応炉の中に載置
し、炉内に50〜100容量%の高濃度の−フッ化塩素、三
フッ化塩素、五フッ化塩素のうちの少なくとも1種のガ
スを導入し、400℃未満の低温において、該金属または
その化合物の薄膜とガス化反応させ、600A/分以上の高
速度で薄膜を除去することにより部品の表面をガスの侵
食により傷つけることなくクリーニング、すなわち、清
浄な表面を露出させることを特徴とする薄膜を付着した
部品から薄膜を除去して部品を再生利用する方法を提供
するものである。 金属またはその化合物の種類、厚みおよび治具、薄膜
形成装置の素材の種類等を考慮して、フッ化塩素のもの
を用いるか、あるいは窒素、アルゴン、ヘリウム等の不
活性ガスで希釈して用いるかを選択すればよい。また、
できるだけ低温の反応条件で、高速度で薄膜を除去し、
前記のとおり対象材料を考慮して適宜高濃度を選択す
る。またガス流通方式は、静置式、流通式のいずれで行
ってもよい。 以下、実施例により本発明を詳細に説明する。 実施例1〜3、比較例1、2 アルミニウム基板上(1cm×5cm)にプラズマCVDによ
り約4μmの厚さのアモルファスシリコンを堆積させた
(堆積重量0.01206g)テストピースをプラズマCVD装置
の下部電極上に静置し三フッ化塩素(実施例1〜3)、
酸素75%、アルゴン25%混合ガス(比較例1)、四フッ
化炭素95%・酸素5%の混合ガス(比較例2)の三種類
のガスを用いて、高周波電源周波数13.56MHz、電極間距
離50mm、ガス圧力50Torr、ガス流量10SCCM、印加電力0.
315W/cm2、室温、プラズマ雰囲気下で反応を行った。反
応時間およびその結果を第1表に示した。 実施例4〜7、比較例3 ステンレス銅(SUS316)上にプラズマCVDにより約10
μmの厚さのタングステンカーバイトを堆積させた(堆
積重量0.0043g)テストピースを外熱式横型反応炉中で
各種ガスと反応させた。この結果を第2表に示した。 第2表からも明らかなとおりNF3(比較例3)に比較
して、実施例4〜7は、低温でも数倍ないし数十倍のク
リーニング速度となり、十分な効果が認められる。な
お、実施例4のテストピースの表面をX線マイクロアナ
ライザーにより分析の結果、タングステンのピークが全
く認められず、完全にクリーニングさていることを確認
した。 実施例8〜11 三フッ化塩素50%、ヘリウム50%混合ガスを用いて外
熱式横型反応炉内中でステンレス銅(SUS316)上に炭化
チタン(実施例8)、窒化チタン(実施例9)、窒化ケ
イ素(実施例10)の被膜を各々5μmの厚さで形成した
ものと、炭化ケイ素焼結体表面に多結晶金属シリコン
(実施例11)を20μmの厚みで堆積させたテストピース
のクリーニング試験を実施した。テストピースのクリー
ニングの確認はX線マイクロアナライザーによって、チ
タン、ケイ素のピークの存在の有無で確認した。 結果: 実施例8の炭化チタン膜のクリーニング 200℃以下ではほとんど反応が進行せず、X線マイク
ロアナライザーによる分析でもチタンのピークが減少し
ていなかった。250℃以上に加熱することによってチタ
ンのピークが減少し始め、10分間でほぼ完全にチタンの
ピークが消滅した。 実施例9の窒化チタン膜のクリーニング 150℃以下ではほとんど変化が認められなかったが、2
50℃、10分のクリーニング条件において、窒化チタンの
反応が進み、試験後のテストピース表面のX線マイクロ
アナライザーによる分析でもチタンのピークが認められ
なかった。 実施例10の窒化ケイ素膜のクリーニング 室温から反応が進行し、5μmの被膜が5分間でほぼ
完全にクリーニングできた。ただし、100℃以下では反
応中間体と推定される剥離した白色粉体が認められる
が、150℃以上ではこの粉体も完全に消滅した。 実施例11の多結晶シリコン膜のクリーニング 室温から反応が進行し、5μmの被膜が5分間でほぼ
完全にクリーニングできた。これらの結果をまとめて第
3表に示した。 実施例12 石英基板上に、窒化ケイ素を5μmの厚さでコーティ
ングしたテストピークを用い、CIF、CIF3、CIF5を各々H
eで50%に希釈したガスを用い、外熱式横型反応炉中で
クリーニング試験を行った。 結果: CIF50%、He50%の場合 室温から150℃の間では、ほとんど反応が進行しない
が、250℃以上で反応を開始し、250℃以上でほぼ完全に
クリーニングできた。この時の反応時間は10分間であっ
た。 CIF350%、He50%の場合 室温から反応を開始し、150℃5分間でほぼ完全にクリ
ーニングされた。 CIF550%、He50%の場合 100℃、5分間で完全にクリーニングできた。 これらの結果を第3表にまとめて示した。 (発明の効果) 本発明の再生利用する方法は、前述したように極めて
反応性に優れたフッ化塩素を主体とする再生利用方法を
提供するものであり、NF3ガスに比較して、低温におい
ても優れたクリーニング性能を示すものであり、薄膜を
除去した後の清浄な表面に再度薄膜を形成できるので薄
膜形成不良品等の再生利用を容易に達成することがで
き、治具についてもすみやかに真空薄膜形成装置へ再利
用でき操業効率を高めることができるものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial application field) The present invention relates to an article in which a thin film is formed by a thin film forming process such as CVD, vacuum evaporation, sputtering, or thermal spraying, or a jig to which a thin film is attached. The present invention relates to a method for removing a metal and its compound at a high speed to expose a clean surface. (Prior art) Thin film formation process has spread mainly in the semiconductor industry, and CVD
Many devices such as vacuum evaporation, sputtering, etc. are operating. However, in such a thin film forming apparatus, a large amount of deposits is generated on the inner wall of the apparatus, a jig for supporting the target object, and the like in addition to the target on which the thin film is to be formed. Problems have occurred, such as stopping the operation of the device for a long time. Also, at present, equipment and jigs are severely damaged to remove deposits by chemical polishing, electrolytic polishing, mechanical polishing, etc. using aqueous solutions of strong acids and strong alkalis. In many cases, replacement must be performed, and the operation is complicated. For the purpose of super-hard coating, various types of mechanical parts are coated with a thin film of titanium carbide, tungsten carbide, titanium nitride, silicon nitride, etc. Currently, it is difficult to recycle and is discarded. (Means for Solving the Problems) As a result of intensive studies, the present inventors have found that thin films can be efficiently formed from thin film deposits (especially defective products) such as ultra-hard coatings formed by a vacuum thin film forming method and from jigs. The present inventors have found an excellent cleaning method which can be removed without difficulty, and have reached the present invention. That is, according to the present invention, a component having a thin film of a metal or its compound adhered by a vacuum thin film forming method is placed in a reaction furnace, and a high concentration of 50 to 100% by volume of chlorine fluoride, Introduce at least one gas of chlorine and chlorine pentafluoride and gasify it with a thin film of the metal or its compound at a low temperature of less than 400 ° C, and remove the thin film at a high speed of 600 A / min or more. The present invention provides a method of cleaning a component without damaging the surface of the component by gas erosion, that is, exposing a clean surface, removing the thin film from the component to which the thin film is attached, and recycling the component. is there. Considering the type of metal or its compound, thickness and jig, and the type of material of the thin film forming device, use chlorine fluoride or dilute it with an inert gas such as nitrogen, argon, or helium. What you need to do is select. Also,
Remove the thin film at high speed under the reaction conditions as low as possible,
As described above, a high concentration is appropriately selected in consideration of the target material. The gas distribution system may be any of a stationary system and a circulation system. Hereinafter, the present invention will be described in detail with reference to examples. Examples 1 to 3, Comparative Examples 1 and 2 A test piece in which amorphous silicon having a thickness of about 4 μm was deposited on an aluminum substrate (1 cm × 5 cm) by plasma CVD (deposition weight: 0.01206 g) was used as a lower electrode of a plasma CVD apparatus. Place it on top of chlorine trifluoride (Examples 1-3),
Using three kinds of gases, a mixed gas of 75% oxygen, 25% argon (Comparative Example 1), and a mixed gas of 95% carbon tetrafluoride and 5% oxygen (Comparative Example 2), a high frequency power supply frequency of 13.56 MHz, between electrodes Distance 50mm, gas pressure 50Torr, gas flow rate 10SCCM, applied power 0.
The reaction was performed at 315 W / cm 2 at room temperature in a plasma atmosphere. The reaction times and the results are shown in Table 1. Examples 4 to 7, Comparative Example 3 Approximately 10 by plasma CVD on stainless copper (SUS316).
A test piece on which tungsten carbide having a thickness of μm was deposited (deposition weight: 0.0043 g) was reacted with various gases in an externally heated horizontal reactor. The results are shown in Table 2. As is clear from Table 2, the cleaning speeds of Examples 4 to 7 are several times to several tens of times even at a low temperature as compared with NF 3 (Comparative Example 3), and a sufficient effect is recognized. In addition, as a result of analyzing the surface of the test piece of Example 4 with an X-ray microanalyzer, no tungsten peak was recognized at all, and it was confirmed that the test piece was completely cleaned. Examples 8 to 11 Using a mixed gas of 50% chlorine trifluoride and 50% helium, titanium carbide (Example 8) and titanium nitride (Example 9) were placed on stainless steel (SUS316) in an externally heated horizontal reactor. ), A silicon nitride (Example 10) film with a thickness of 5 μm each, and a test piece in which polycrystalline metal silicon (Example 11) was deposited with a thickness of 20 μm on the surface of the silicon carbide sintered body. A cleaning test was performed. The cleaning of the test piece was confirmed by an X-ray microanalyzer based on the presence or absence of titanium and silicon peaks. Result: Cleaning of Titanium Carbide Film of Example 8 At 200 ° C. or less, the reaction hardly proceeded, and the titanium peak did not decrease even by analysis with an X-ray microanalyzer. By heating above 250 ° C., the titanium peak began to decrease, and the titanium peak disappeared almost completely in 10 minutes. Cleaning of the titanium nitride film of Example 9 Almost no change was observed below 150 ° C.
Under the cleaning conditions of 50 ° C. and 10 minutes, the reaction of titanium nitride proceeded, and no titanium peak was observed in the X-ray microanalyzer on the test piece surface after the test. Cleaning of Silicon Nitride Film of Example 10 The reaction proceeded from room temperature, and a film of 5 μm was almost completely cleaned in 5 minutes. However, at 100 ° C. or lower, a peeled white powder presumed to be a reaction intermediate was observed, but at 150 ° C. or higher, this powder completely disappeared. Cleaning of Polycrystalline Silicon Film of Example 11 The reaction proceeded from room temperature, and a 5 μm film was almost completely cleaned in 5 minutes. The results are summarized in Table 3. Example 12 Using a test peak obtained by coating silicon nitride with a thickness of 5 μm on a quartz substrate, each of CIF, CIF 3 and CIF 5 was H
Using a gas diluted to 50% by e, a cleaning test was performed in an externally heated horizontal reactor. Result: In the case of 50% CIF and 50% He, the reaction hardly progressed between room temperature and 150 ° C., but the reaction started at 250 ° C. or higher and was almost completely cleaned at 250 ° C. or higher. At this time, the reaction time was 10 minutes. In the case of 50% CIF 3 and 50% He, the reaction was started at room temperature, and was almost completely cleaned at 150 ° C. for 5 minutes. CIF 5 50%, He50% when 100 ° C., completely be cleaned by 5 min. These results are summarized in Table 3. (Effect of the Invention) The recycling method of the present invention provides, as described above, a recycling method mainly composed of chlorine fluoride which has extremely high reactivity, and has a lower temperature than NF 3 gas. It also shows excellent cleaning performance, and a thin film can be formed again on a clean surface after removing the thin film, so that it is possible to easily achieve recycling of defective products, etc. It can be reused for a vacuum thin film forming apparatus and can improve the operation efficiency.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 楊井 清志 埼玉県入間郡三芳町藤久保271−8 (72)発明者 新井 博通 埼玉県狭山市水野471−38 (56)参考文献 特開 昭62−33761(JP,A) 特公 昭46−19008(JP,B1) 英国特許1180187(GB,B)   ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Kiyoshi Yang               271-8 Fujikubo, Miyoshi-cho, Iruma-gun, Saitama (72) Inventor Hiromichi Arai               471-38 Mizuno, Sayama City, Saitama Prefecture                (56) References JP-A-62-33761 (JP, A)                 Tokiko 46-19008 (JP, B1)                 UK Patent 1180187 (GB, B)

Claims (1)

(57)【特許請求の範囲】 1.真空薄膜形成法により金属またはその化合物の薄膜
が付着した部品を反応炉の中に載置し、炉内に50〜100
容量%の高濃度の−フッ化塩素、三フッ化塩素、五フッ
化塩素のうちの少なくとも1種のガスを導入し、400℃
未満の低温において、該金属またはその化合物の薄膜と
ガス化反応させ、600A/分以上の高速度で薄膜を除去す
ることにより部品の表面をガスの侵食により傷つけるこ
となく、清浄な表面を露出させることを特徴とする薄膜
を付着した部品から薄膜を除去して部品を再生利用する
方法。
(57) [Claims] The parts to which the metal or its compound thin film has adhered by the vacuum thin film forming method are placed in a reaction furnace, and 50-100
A high concentration of at least one gas selected from the group consisting of chlorine fluoride, chlorine trifluoride and chlorine pentafluoride at a concentration of 400% by volume is introduced.
Gasification reaction with a thin film of the metal or its compound at a low temperature of less than, and removing the thin film at a high speed of 600 A / min or more, thereby exposing a clean surface without damaging the surface of the component by gas erosion. A method for recycling a component by removing the thin film from the component to which the thin film is attached.
JP62172947A 1987-07-13 1987-07-13 Recycling method of parts with thin film attached Expired - Lifetime JP2720966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62172947A JP2720966B2 (en) 1987-07-13 1987-07-13 Recycling method of parts with thin film attached

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62172947A JP2720966B2 (en) 1987-07-13 1987-07-13 Recycling method of parts with thin film attached

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP21731697A Division JP2823555B2 (en) 1997-08-12 1997-08-12 Method using chlorine trifluoride for surface cleaning of thin film forming equipment

Publications (2)

Publication Number Publication Date
JPS6417857A JPS6417857A (en) 1989-01-20
JP2720966B2 true JP2720966B2 (en) 1998-03-04

Family

ID=15951302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62172947A Expired - Lifetime JP2720966B2 (en) 1987-07-13 1987-07-13 Recycling method of parts with thin film attached

Country Status (1)

Country Link
JP (1) JP2720966B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6453913B2 (en) 2000-04-27 2002-09-24 Canon Kabushiki Kaisha Method of cleaning a film deposition apparatus, method of dry etching a film deposition apparatus, and an article production method including a process based on the cleaning or dry etching method

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0331479A (en) * 1989-06-29 1991-02-12 Tokyo Electron Ltd Heat treatment
JP2539917B2 (en) * 1989-07-10 1996-10-02 セントラル硝子株式会社 Method for cleaning carbon material with chlorine fluoride gas
JPH04181734A (en) * 1990-11-16 1992-06-29 Central Glass Co Ltd Cleaning method of cvd sio2
US5318668A (en) * 1991-10-24 1994-06-07 Matsushita Electric Industrial Co., Ltd. Dry etching method
JPH06270156A (en) * 1993-03-17 1994-09-27 Bridgestone Corp Method of cleaning mold
JPH06330323A (en) * 1993-05-18 1994-11-29 Mitsubishi Electric Corp Production device for semiconductor device and cleaning method therefor
JP2963973B2 (en) * 1993-09-17 1999-10-18 東京エレクトロン株式会社 Batch type cold wall processing apparatus and cleaning method thereof
US5647945A (en) * 1993-08-25 1997-07-15 Tokyo Electron Limited Vacuum processing apparatus
US5616208A (en) * 1993-09-17 1997-04-01 Tokyo Electron Limited Vacuum processing apparatus, vacuum processing method, and method for cleaning the vacuum processing apparatus
JPH09129557A (en) * 1995-10-27 1997-05-16 Shin Etsu Handotai Co Ltd Method for manufacturing thin film
SG11202111745YA (en) * 2019-05-15 2021-11-29 Showa Denko Kk Metal removal method, dry etching method, and production method for semiconductor element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1180187A (en) 1967-05-08 1970-02-04 Motorola Inc Improvements in or relating to Vapor Phase Etching and Polishing of Semiconductors

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6233761A (en) * 1985-08-02 1987-02-13 Ishikawajima Harima Heavy Ind Co Ltd Cleaning device for inside wall of vacuum vessel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1180187A (en) 1967-05-08 1970-02-04 Motorola Inc Improvements in or relating to Vapor Phase Etching and Polishing of Semiconductors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6453913B2 (en) 2000-04-27 2002-09-24 Canon Kabushiki Kaisha Method of cleaning a film deposition apparatus, method of dry etching a film deposition apparatus, and an article production method including a process based on the cleaning or dry etching method

Also Published As

Publication number Publication date
JPS6417857A (en) 1989-01-20

Similar Documents

Publication Publication Date Title
US10002745B2 (en) Plasma treatment process for in-situ chamber cleaning efficiency enhancement in plasma processing chamber
JP3510993B2 (en) Plasma processing container inner member and method for manufacturing the same
JP2720966B2 (en) Recycling method of parts with thin film attached
JP3801730B2 (en) Plasma CVD apparatus and thin film forming method using the same
US20060016783A1 (en) Process for titanium nitride removal
TW554418B (en) Method and device for cleaning chemical vapor deposition apparatus
US20040163669A1 (en) Cleaning chamber surfaces to recover metal-containing compounds
JPS61295377A (en) Formation of membrane
JP4459329B2 (en) Method and apparatus for removing attached film
CN101278072A (en) Method of using NF3 for removing surface deposits
KR100786609B1 (en) Method and Process for Reactive Gas Cleaning of Tool Parts
CN1119385C (en) Gas for removing deposit and removal method using same
US4526644A (en) Treatment device utilizing plasma
JP2904723B2 (en) Cleaning gas
WO2005068681A2 (en) Cleaning tantalum-containing deposits from process chamber components
JP4398091B2 (en) Cleaning solution and cleaning method for parts of semiconductor processing equipment
JPH0341199A (en) Method for cleaning carbon material with chlorine fluoride gas
JPS5944770B2 (en) Cleaning method for plasma CVD reactor
JPWO2009069650A1 (en) Corrosion resistant material
JP2823555B2 (en) Method using chlorine trifluoride for surface cleaning of thin film forming equipment
US20050202167A1 (en) Method for removing titanium dioxide deposits from a reactor
JP2901778B2 (en) Cleaning method of silicon nitride by HF gas
JP2768666B2 (en) Method for removing deposits in thin film forming apparatus
JP2963169B2 (en) Electrodes for high frequency plasma generation
JPH09326384A (en) Plasma processing system

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071121

Year of fee payment: 10