JP2716842B2 - Manufacturing method of hot coil for cold rolled steel sheet - Google Patents

Manufacturing method of hot coil for cold rolled steel sheet

Info

Publication number
JP2716842B2
JP2716842B2 JP14216690A JP14216690A JP2716842B2 JP 2716842 B2 JP2716842 B2 JP 2716842B2 JP 14216690 A JP14216690 A JP 14216690A JP 14216690 A JP14216690 A JP 14216690A JP 2716842 B2 JP2716842 B2 JP 2716842B2
Authority
JP
Japan
Prior art keywords
coil
hot
hot coil
steel sheet
foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14216690A
Other languages
Japanese (ja)
Other versions
JPH0437414A (en
Inventor
敏博 大河内
亮平 高田
辰美 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP14216690A priority Critical patent/JP2716842B2/en
Publication of JPH0437414A publication Critical patent/JPH0437414A/en
Application granted granted Critical
Publication of JP2716842B2 publication Critical patent/JP2716842B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Winding, Rewinding, Material Storage Devices (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は冷延鋼板用ホットコイルの製造法に関するも
ので、詳しくはホットコイル製造過程で生成するスケー
ルを、ホットコイルの材質を悪化することなく効果的に
抑制するものである。
Description: TECHNICAL FIELD The present invention relates to a method for manufacturing a hot coil for a cold-rolled steel sheet, and more particularly, to reducing the scale generated in the hot coil manufacturing process by deteriorating the material of the hot coil. It is effectively suppressed without.

(従来の技術) 一般に、ホットコイルは熱間仕上圧延後のストリップ
をランアウトテーブルに配置された冷却装置により、予
じめ定められた温度にまで水冷し、最終的に捲取機でコ
イルに捲取り、引き続き大気中に放冷して製造されてい
る。
(Prior Art) Generally, a hot coil is subjected to water cooling of a strip after hot finish rolling to a predetermined temperature by a cooling device arranged on a run-out table, and finally wound around the coil by a winding machine. And then left to cool in the atmosphere.

該ホットコイルを酸洗−冷間圧延−連続焼鈍して冷延
鋼板となす冷延鋼板用ホットコイルの捲取り温度は一般
的には500〜750℃であるため、捲取り中及び捲取り後の
放冷中に酸化が生じ5〜20μのスケールが生成される。
このスケール除去のため一般的に酸洗等が行なわれる
が、その処理費が莫大でスケールの少ないホットコイル
製造法が従来より強くのぞまれていた。
The hot coil is pickled, cold rolled, and continuously annealed to form a cold-rolled steel sheet. Since the coiling temperature of the hot coil for a cold-rolled steel sheet is generally 500 to 750 ° C., during and after winding. Oxidation takes place during the cooling of the mixture to produce a 5-20 micron scale.
In general, pickling and the like are carried out to remove the scale. However, the processing cost is enormous and a method of manufacturing a hot coil with a small scale has been strongly desired.

しかして提案されたものとして特開昭58−53323号
公報、特開昭56−81632号公報、特開昭62−37383号
公報がある。
Japanese Patent Application Laid-Open Nos. Sho 58-53323, Sho 56-81632, and Sho 62-37383 have been proposed.

前記は仕上圧延後無酸化雰囲気中において、脱酸処
理した冷却水を噴射して400℃以下に冷却し捲取るもの
であるが、圧延後短時間にて500℃未満に冷却すること
は、後の冷延工程にて連続焼鈍を施される鋼板について
は結晶粒の成長や炭化物、窒化物の析出反応が不十分
で、材質が不良となるため採用できない。
In the non-oxidizing atmosphere after the finish rolling, the deoxidized cooling water is injected and cooled to 400 ° C. or less and wound up.However, cooling to less than 500 ° C. in a short time after rolling is The steel sheet subjected to continuous annealing in the cold rolling step of (1) cannot be adopted because the growth of crystal grains and the precipitation reaction of carbides and nitrides are insufficient and the material becomes poor.

は圧延後500〜700℃で捲取り直ちに無酸化徐冷却炉
に装入し、300℃になるまで徐冷することを提案してい
る。しかしながら徐冷炉中で300℃に低下するにはホッ
トコイルの大きさにもよるが24時間程度の時間を要する
ため、1日に1000個以上のホットコイルを製造する製鉄
所においては、極めて巨大な無酸化雰囲気炉が必要とな
り現実的ではない。
Proposes that after rolling, it is taken up at 500-700 ° C immediately after being rolled and then charged into a non-oxidizing slow cooling furnace and gradually cooled to 300 ° C. However, it takes about 24 hours to reduce the temperature to 300 ° C in an annealing furnace, depending on the size of the hot coil. Therefore, in a steel mill that manufactures more than 1000 hot coils per day, it is extremely huge. An oxidizing atmosphere furnace is required, which is not practical.

は捲取り直後のホットコイルのエッジ部分にシール
材を被着し、エッジ部を外気から遮断することにより、
放冷中にホットコイルにスケールが成長するのを防止す
るものであるが、捲取り中に侵入するコイルラップ間の
空気による酸化が防止できないこと、及びホットコイル
の移送中にシール材が剥離する等の不具合が起き易く、
スケール抑制効果が不十分である。
By applying a sealing material to the edge of the hot coil immediately after winding, and shielding the edge from the outside air,
This is to prevent the scale from growing on the hot coil during cooling, but it is not possible to prevent oxidation due to air between the coil wraps entering during winding, and the seal material peels off during the transfer of the hot coil. Etc. are likely to occur,
The scale suppression effect is insufficient.

(発明が解決しようとする課題) 本発明は以上の問題を有利に解決し、ホットコイル製
造過程で生成するスケールを材質を悪化することなく抑
制することを目的とする。
(Problems to be Solved by the Invention) It is an object of the present invention to advantageously solve the above-described problems and to suppress scale generated in a hot coil manufacturing process without deteriorating the material.

(課題を解決するための手段) 本発明は熱間圧延において捲取温度500〜700℃で捲取
り、酸洗−冷間圧延−連続焼鈍を経て冷延鋼板となす冷
延鋼板用ホットコイルの製造において、熱間圧延後冷却
装置出側より捲取機間でストリップ表面に泡沫を吹付
け、該泡沫を付着せしめたまま捲取り、引き続き非酸化
性雰囲気下で500℃以上に10〜60分保持し、次いで直ち
に水冷して60〜300℃に冷却し以後放冷することを特徴
とする冷延鋼板用ホットコイルの製造法である。
(Means for Solving the Problems) The present invention relates to a hot coil for a cold-rolled steel sheet, which is formed by hot-rolling at a winding temperature of 500 to 700 ° C., and pickling-cold rolling-continuous annealing to form a cold-rolled steel sheet. In the production, after the hot rolling, foam is sprayed on the strip surface between the winding machines from the cooling device outlet side, and the foam is wound with the foam adhered, and then continuously at 500 ° C. or higher for 10 to 60 minutes in a non-oxidizing atmosphere. A method for producing a hot coil for a cold-rolled steel sheet, which comprises holding, immediately cooling with water, cooling to 60 to 300 ° C., and then allowing to cool.

(作用) 第1図は本明細書法を実施する設備の概要を示し、図
中1はホットストリップで5〜7基のタンデム圧延機か
らなる仕上圧延後2で所定の寸法に圧延され、引き続き
ランアウトテーブルの上下に配置された冷却装置(下は
図示省力)3より冷却水を噴射され500〜750℃に冷却さ
れて捲取機(コイラー)6で捲取られてホットコイル7
となる。4は捲取機6の直前付近に配置された発泡剤吹
付ノズルで、ホットストリップの幅方向全面の発泡剤5
を吹付ける。
(Operation) FIG. 1 shows an outline of equipment for carrying out the method of the present invention. In FIG. 1, reference numeral 1 denotes a hot strip, which is rolled to a predetermined size after finish rolling comprising 5 to 7 tandem rolling mills, and subsequently run out. Cooling water is injected from a cooling device (lower in the figure, shown below) 3 disposed above and below the table, cooled to 500 to 750 ° C., wound up by a winder (coiler) 6,
Becomes Reference numeral 4 denotes a blowing agent spray nozzle arranged immediately before the winder 6, and the blowing agent 5 covers the entire surface of the hot strip in the width direction.
Spray.

したがってこの泡沫は付着したままコイルラップ間に
捲込まれるためラップ間に空気が滞留せず、かつコイル
エッジも泡沫でカバーされるので、ホットコイルに捲取
り中及び捲取り後、捲取機6に近接して配置された移載
コンベア10を内蔵した無酸化カバー8に搬入されるまで
のほんの数分間のハンドリング中の酸化を適確に防止可
能となる。尚、9は無酸化カバー8内にN2ガス、N2+H2
混合ガス等の非酸化性ガスを供給するための配管であ
る。
Therefore, the foam is wound between the coil wraps while adhering, so that air does not stay between the wraps and the coil edge is also covered with the foam. Can be properly prevented from being oxidized during handling for only a few minutes before being transported to the non-oxidizing cover 8 having the built-in transfer conveyor 10 disposed in close proximity to the conveyor. 9 is N 2 gas, N 2 + H 2 in the non-oxidizing cover 8.
This is a pipe for supplying a non-oxidizing gas such as a mixed gas.

ここに前記泡沫は、第2図に示すように適当な防錆剤
や還元剤を混入した水20と発泡剤(界面活性剤)21を加
圧タンク22中で加圧し、該混合液を水分離タンク23の入
口に設けた発泡ノズル24に送り、別系統で供給されるN2
ガス25と混合させて泡沫を形成する。
Here, as shown in FIG. 2, the foam is pressurized in a pressurized tank 22 with water 20 mixed with an appropriate rust inhibitor or reducing agent and a foaming agent (surfactant) 21, and the mixed solution is immersed in water. N 2 supplied to a foaming nozzle 24 provided at the inlet of the separation tank 23 and supplied by another system
Mix with gas 25 to form foam.

得られた泡沫は水分離タンク23中で泡沫中の水分が除
去され泡沫のみが吹付けノズル4よりホットコイル表面
に供給される。
In the obtained foam, water in the foam is removed in the water separation tank 23, and only the foam is supplied from the spray nozzle 4 to the hot coil surface.

ここで用いられる防錆剤としては、ジシクロヘキシル
アンモニウムナイトライト(DICHAN)やシクロヘキシル
アンモニウムカーボネート(CHC)が、還元剤としてア
ルコール水溶液等が適当である。
As the rust preventive used here, dicyclohexylammonium nitrite (DICHAN) or cyclohexylammonium carbonate (CHC) is suitable, and as a reducing agent, an alcohol aqueous solution or the like is suitable.

また発泡剤としてはアルキルベンゼンスルホン酸塩、
高級アルコールリン酸エステル塩等が適当である。
Alkyl benzene sulfonate as a foaming agent,
A higher alcohol phosphate ester salt or the like is suitable.

しかして泡沫生成において単なる水でなく防錆剤又は
還元剤と非酸化性気体を利用しているため、泡沫自体に
よる酸化が生じない作用効果も有する。
Since the foam generation uses not a mere water but a rust inhibitor or a reducing agent and a non-oxidizing gas, it also has the effect of preventing oxidation due to the foam itself.

捲取られたコイルはホットコイルヤードに移送される
のであるが、一般的にコンベアが用いられ移送時間は30
分から数時間を要し、その後ホットコイルヤードにて放
冷、保管される。
The wound coil is transferred to the hot coil yard. Generally, a conveyor is used and the transfer time is 30 minutes.
It takes several minutes to several hours, and then is left to cool and be stored in the hot coil yard.

このホットコイルの移送中及びホットコイルヤードで
の放冷中の温度パターンを第3図に示すが、温度が500
℃以上であるため、この間でのスケール生成が無視でき
ない。一方捲取り直後でコイルを水冷し、スケール生成
の少ない400℃以下にする方法も考えられるが、結晶粒
のコントロールや炭化物、窒化物の析出反応等の冶金反
応のため、一般的に500℃以上に10分間以上維持する必
要があるため採用できない。
FIG. 3 shows the temperature patterns during the transfer of the hot coil and during the cooling in the hot coil yard.
Since the temperature is not lower than ° C, scale formation during this period cannot be ignored. On the other hand, a method in which the coil is water-cooled immediately after winding to reduce the scale generation to 400 ° C or less can be considered, but generally 500 ° C or more due to metallurgical reactions such as control of crystal grains and precipitation of carbides and nitrides. Can not be adopted because it must be maintained for more than 10 minutes.

そこで本発明は冶金反応に必要な上述の高温保持時間
にコンベア移送時間をあてることに着目し、第1図に示
すように配管9によりN2又はH2+N2の無酸化ガスを供
給、充満した無酸化カバー式コンベア8にて、コイルを
移送する。これによりホットコイル7を上述の高温保持
時間を確保して、冶金反応を行ないつつスケールの生成
を防止できる。
Therefore, the present invention focuses on assigning the conveyor transfer time to the above-mentioned high temperature holding time required for the metallurgical reaction, and supplies and fills a non-oxidizing gas of N 2 or H 2 + N 2 through a pipe 9 as shown in FIG. The coil is transferred by the non-oxidized cover type conveyor 8. As a result, the above-described high-temperature holding time of the hot coil 7 can be secured, and the generation of scale can be prevented while performing the metallurgical reaction.

上述の冶金反応は60分で十分であり、無酸化カバー式
コンベア8は数10mの長さのもので十分である。無酸化
カバー式コンベア8を出たホットコイルは温度が500℃
以上あり、そのまま放冷すると酸化しスケールが成長す
る。
The above metallurgical reaction is sufficient for 60 minutes, and the non-oxidized cover type conveyor 8 having a length of several tens of meters is sufficient. The temperature of the hot coil exiting the non-oxidized cover type conveyor 8 is 500 ° C.
As described above, if left to cool as it is, it oxidizes and scale grows.

そこで無酸化カバーを出たところで直ちに水槽11にて
ホットコイルを急冷し、300℃以下60℃以上にする。本
例では浸漬法を示しているがスプレー法を用いてもよ
い。又、冷却水に0.1〜2.0%のアルコール水溶液の還元
剤や1%未満のギ酸等の弱酸を添加したものを加える
と、スケールの除去も同時に行なわれるのでより効果的
である。300℃以下にするのはこの温度以下であれば、
大気中に暴露しても第4図に示すようにスケールの生成
は極めて少ないためである。
Therefore, immediately after leaving the non-oxidizing cover, the hot coil is rapidly cooled in the water tank 11 to reach 300 ° C. or lower and 60 ° C. or higher. Although the dipping method is shown in this example, a spray method may be used. Further, it is more effective to add cooling water to which a reducing agent of a 0.1 to 2.0% aqueous alcohol solution or a weak acid such as less than 1% of formic acid is added, since the scale is removed at the same time. If it is below this temperature to 300 ° C or less,
This is because scale formation is extremely small as shown in FIG. 4 even when exposed to the atmosphere.

なお、第4図は所定の温度に熱間圧延軟鋼板JIS SPHC
相当を保持したときの放置時間とスケール厚みとの関係
を示したものである。
FIG. 4 shows a JIS SPHC hot-rolled mild steel sheet at a predetermined temperature.
It shows the relationship between the standing time and the scale thickness when the value is maintained.

図中より300℃以下であれば仮りに100分ホットコイル
がその温度に保たれていてもスケール厚みは0.1μであ
り、実際にはコイルは徐々に温度が低下していくことを
考えれば、ほとんどスケール発生はないと考えてもよ
い。
If the temperature is 300 ° C or less from the figure, even if the hot coil is kept at that temperature for 100 minutes, the scale thickness is 0.1μ, and in fact, considering that the temperature of the coil gradually decreases, It may be considered that there is almost no scale generation.

一方60℃以上とするのは、60℃未満にするとコイルに
付着した水の乾燥が不十分となり錆が発生し、60℃以上
で水冷を止めればホットコイルヤード14で放冷中に、コ
イルの熱で水分がすみやかに乾燥し、錆の発生が抑えら
れるためである。
On the other hand, when the temperature is set to 60 ° C or higher, if the temperature is set to a temperature lower than 60 ° C, drying of water adhering to the coil becomes insufficient and rust is generated. This is because moisture quickly dries due to heat and the generation of rust is suppressed.

以上本発明のホットコイル製造過程の温度推移を併せ
て第3図に示す。尚第1図においては12は冷却供給管、
13はオーバーフロー用管を示す。
FIG. 3 also shows the temperature transition during the hot coil manufacturing process of the present invention. In FIG. 1, 12 is a cooling supply pipe,
Reference numeral 13 denotes an overflow pipe.

熱間圧延工程中の鋼板を泡沫を覆うことについては、
特開昭55−136502号公報にて圧延工程中のスラブに圧延
中の放熱、酸化防止を目的として適用している例がみら
れるが、本発明は圧延の最終成品であるホットコイルの
酸化防止を目的として、かつ該コイル全体を覆うのでは
なくコイル・ラップ間に捲込ませ、ラップ中の空気を追
い出し酸化を防止するために泡沫を用いるものである。
For covering the foam on the steel sheet during the hot rolling process,
Japanese Patent Application Laid-Open No. 55-136502 discloses an example in which a slab in a rolling process is applied for the purpose of heat radiation and oxidation prevention during rolling, but the present invention is intended to prevent oxidation of a hot coil which is a final product of rolling. For this purpose, the coil is wound between the coil and the wrap rather than covering the entire coil, and the air in the wrap is expelled and foam is used to prevent oxidation.

加えて従来法に対し本発明の特徴は、移送コンベアを
利用し10〜60分の冶金反応時間を無酸化状態で保持した
のち、直ちに急冷するヒートサイクルを採用したことで
ある。
In addition, a feature of the present invention in comparison with the conventional method is that a heat cycle is employed in which a metallurgical reaction time of 10 to 60 minutes is maintained in a non-oxidized state using a transfer conveyer and then immediately cooled.

(実施例1) (1)使用材料成分 C:0.02%、Si:0.0004%、Mn:0.15%、Al:0.038%、P:0.
014%、S:0.007% (2)ホットコイル仕様 寸法:2.8mm×1100mm×coil コイル単重:16.5ton 仕上温度:915℃ 捲取温度:710℃ 第1図の設備を用いて上記のホットコイルを製造し
た。本発明に従ったものは捲取前に吹付ノズル4にて第
1表に示す泡沫処理を施し、捲取後3〜5分で無酸化カ
バー式コンベア8内に装入し所定時間経過後、水槽11に
装入して急冷したのち放冷し、以後酸洗−冷間圧延(寸
法0.7mm×1090mm×coil)−連続焼鈍(均熱750℃×30秒
−急冷100℃/sec−過時効処理400℃×2分)して冷延鋼
板とした。
(Example 1) (1) Material components used: C: 0.02%, Si: 0.0004%, Mn: 0.15%, Al: 0.038%, P: 0.
014%, S: 0.007% (2) Hot coil specification Dimensions: 2.8mm x 1100mm x coil Coil single weight: 16.5ton Finishing temperature: 915 ° C Winding temperature: 710 ° C Using the equipment shown in Fig. 1 Was manufactured. In accordance with the present invention, the foaming treatment shown in Table 1 is performed by the spray nozzle 4 before winding, and after 3 to 5 minutes from winding, the foam is charged into the non-oxidizing cover type conveyor 8 and after a predetermined time, After being quenched in the water tank 11 and quenched, it is allowed to cool, then pickled and cold-rolled (size 0.7 mm x 1090 mm x coil)-continuous annealing (soaking 750 ° C x 30 seconds-rapid cooling 100 ° C / sec-overageing) (400 ° C. for 2 minutes) to obtain a cold-rolled steel sheet.

酸洗前に各コイルからサンプルを採取してスケール厚
を測定した。また連続焼鈍後の材質試験成績を併せて第
1表に示す。
Before pickling, a sample was taken from each coil and the scale thickness was measured. Table 1 also shows the material test results after continuous annealing.

従来法Aは捲取後常温まで大気放冷したもので従来の
一般的製法のもので、材質は良好な水準なるもスケール
厚さが厚い。
Conventional method A is a conventional general production method in which the film is allowed to cool to room temperature after winding, and the material is of a good level but the scale thickness is thick.

比較法Bはスケール抑制を狙いとして捲取後10分以内
に浸漬冷却したもので、スケール厚はかなり改善できる
が捲取後の高温保持時間が短いため材質が劣化してい
る。
In Comparative Method B, immersion cooling was performed within 10 minutes after winding for the purpose of suppressing the scale. The scale thickness was considerably improved, but the material was deteriorated due to a short high-temperature holding time after winding.

これに対し本発明法C,Dの場合、いずれもスケール厚
さが薄くかつ材質は従来法A並以上の水準となってい
る。
On the other hand, in the methods C and D of the present invention, the scale thickness is thin and the material is at a level equal to or higher than that of the conventional method A.

尚、本発明法において泡沫処理に使用した防錆剤は、
シクロヘキシルアンモニウムカーボナイト(CHC)0.1
%、界面活性剤はアルキルベンゼンスルホン酸ナトリウ
ム(ABS)0.5%を用い、N2ガスで泡沫とした。又、無酸
化カバー内にはN2,N2+H2ガスを夫々200m3/h供給し無
酸化状態を保った。
Incidentally, the rust inhibitor used for the foam treatment in the method of the present invention,
Cyclohexyl ammonium carbonate (CHC) 0.1
%, And a surfactant was 0.5% sodium alkylbenzene sulfonate (ABS), and foamed with N 2 gas. Also, in the non-oxidizing cover maintaining the non-oxidizing state N 2, N 2 + H 2 gas respectively 200 meters 3 / h feed.

(実施例2) (1)使用材料成分 C:0.004%、Si:0.017%、Mn:0.14%、Ti:0.05%、Al:0.
03%、P:0.009%、S:0.005% (2)ホットコイル仕様 寸法:2.8mm×1100mm×coil コイル単重:13.6ton 仕上温度:910℃ 捲取温度:740℃ 実施例1と同様に第1図の設備を用いて、上記のホッ
トコイルを製造した。本発明に従ったものは捲取前に吹
付ノズル4にて第2表に示す泡沫処理を施し、捲取後3
〜5分で無酸化カバー式コンベア8内に装入した所定時
間経過後水槽11に装入して急冷したのち放冷し、以後酸
洗−冷間圧延(寸法0.7mm×1090mm×coil)−連続焼鈍
(均熱775℃×30秒−急冷80℃/s 過時効処理なし)して
冷延鋼板とした。
(Example 2) (1) Material components used: C: 0.004%, Si: 0.017%, Mn: 0.14%, Ti: 0.05%, Al: 0.
03%, P: 0.009%, S: 0.005% (2) Hot coil specifications Dimensions: 2.8 mm x 1100 mm x coil Coil single weight: 13.6 ton Finishing temperature: 910 ° C Winding temperature: 740 ° C Same as in Example 1. The hot coil was manufactured using the equipment shown in FIG. In accordance with the present invention, the foaming treatment shown in Table 2 is performed by the spray nozzle 4 before winding, and 3 times after winding.
After a lapse of a predetermined period of time in the non-oxidizing cover type conveyor 8 within a period of 5 minutes, it is charged in the water tank 11 and quenched, then allowed to cool, and thereafter pickled and cold-rolled (dimension 0.7 mm × 1090 mm × coil) − Cold-rolled steel sheets were obtained by continuous annealing (soaking at 775 ° C for 30 seconds and quenching at 80 ° C / s without overaging).

酸洗前に各コイルからサンプルを採取してスケール厚
を測定した。また連続焼鈍後の材質試験成績を併せて第
2表に示す。
Before pickling, a sample was taken from each coil and the scale thickness was measured. Table 2 also shows the material test results after continuous annealing.

従来法Aは捲取後常温まで大気放冷したもので、従来
の一般的製法によるもので、材質は良好なるもスケール
厚さが厚い。比較法Bはスケール抑制を狙いとして捲取
後10分以内に浸漬冷却したもので、スケール厚はかなり
改善できるが捲取後の高温保持時間が短いため、材質が
劣化している。
In the conventional method A, the film is allowed to cool to room temperature after winding, and is a conventional general manufacturing method. The material is good but the scale thickness is large. In Comparative Method B, immersion cooling was performed within 10 minutes after winding for the purpose of suppressing the scale. The scale thickness was considerably improved, but the material was deteriorated because the high-temperature holding time after winding was short.

これに対し本発明法C,Dの場合は、いずれもスケール
厚さが薄くかつ材質も従来法Aと同等の水準となってい
る。
On the other hand, in the methods C and D of the present invention, the scale thickness is thin and the quality of the material is the same as that of the conventional method A.

本例において泡沫処理に用いた防錆剤、界面活性剤は
実施例1と同一のものを用いN2で泡沫とした。また、無
酸化カバー内への供給ガスも実施例1と同一条件で供給
した。
Rust inhibitor used in the foam process in this example, the surfactant was foam with N 2 using the same as in Example 1. Further, the gas supplied into the non-oxidizing cover was also supplied under the same conditions as in Example 1.

(発明の効果) 本発明法によれば鋼板の材質を損うことなく、スケー
ル生成を大幅に低減できる効果が得られるものである。
(Effect of the Invention) According to the method of the present invention, the effect of greatly reducing the scale generation can be obtained without damaging the material of the steel sheet.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明を実施する設備の概要を示す説明図、第
2図は本発明で使用する泡沫を製造供給するための装置
例を示す説明図、第3図は従来法と本発明法でのホット
コイルの温度推移を示すグラフ、第4図は熱間圧延軟鋼
板(JIS SPHC相当)を各温度水準で空気中に放置したと
きの放置時間とスケール厚みの関係を示すグラフであ
る。 4:吹付ノズル、7:ホットコイル 8:無酸化カバー式コンベア 9:非酸化性ガス配管、10:コンベア 11:水槽 14:ホットコイルヤード
FIG. 1 is an explanatory view showing an outline of equipment for carrying out the present invention, FIG. 2 is an explanatory view showing an example of an apparatus for producing and supplying foam used in the present invention, and FIG. 3 is a conventional method and a method of the present invention. FIG. 4 is a graph showing the relationship between the standing time and the scale thickness when a hot-rolled mild steel sheet (equivalent to JIS SPHC) was left in air at each temperature level. 4: Spray nozzle, 7: Hot coil 8: Non-oxidizing cover type conveyor 9: Non-oxidizing gas piping, 10: Conveyor 11: Water tank 14: Hot coil yard

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】熱間圧延において捲取温度500〜750℃で捲
取り、酸洗−冷間圧延−連続焼鈍を経て冷延鋼板となす
冷延鋼板用ホットコイルの製造において熱間圧延後冷却
装置出側より捲取機間でストリップ表面に泡沫を吹付
け、該泡沫を付着せしめたまま捲取り、引き続き非酸化
性雰囲気下で500℃以上に10〜60分保持し、次いで直ち
に水冷して60〜300℃に冷却し、以後放冷することを特
徴とする冷延鋼板用ホットコイルの製造法。
In a hot rolling process, a coil is taken up at a temperature of 500 to 750 ° C., and then subjected to pickling, cold rolling and continuous annealing to form a cold rolled steel sheet. Foam is sprayed on the strip surface between the winders from the apparatus exit side, and the foam is wound with the foam adhered, then kept at 500 ° C. or higher for 10 to 60 minutes in a non-oxidizing atmosphere, and then immediately cooled with water. A method for producing a hot coil for a cold-rolled steel sheet, wherein the hot coil is cooled to 60 to 300 ° C and thereafter cooled.
JP14216690A 1990-05-31 1990-05-31 Manufacturing method of hot coil for cold rolled steel sheet Expired - Lifetime JP2716842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14216690A JP2716842B2 (en) 1990-05-31 1990-05-31 Manufacturing method of hot coil for cold rolled steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14216690A JP2716842B2 (en) 1990-05-31 1990-05-31 Manufacturing method of hot coil for cold rolled steel sheet

Publications (2)

Publication Number Publication Date
JPH0437414A JPH0437414A (en) 1992-02-07
JP2716842B2 true JP2716842B2 (en) 1998-02-18

Family

ID=15308895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14216690A Expired - Lifetime JP2716842B2 (en) 1990-05-31 1990-05-31 Manufacturing method of hot coil for cold rolled steel sheet

Country Status (1)

Country Link
JP (1) JP2716842B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4850425B2 (en) * 2005-03-15 2012-01-11 三菱マテリアル株式会社 Method for manufacturing linear copper base material and winding device

Also Published As

Publication number Publication date
JPH0437414A (en) 1992-02-07

Similar Documents

Publication Publication Date Title
AU692098B2 (en) Equipment for continuously manufacturing metal coils and metal coil manufacturing method
US6478899B1 (en) Installation for making cold rolled stainless steel bands
EP0664340A2 (en) Continuous method for producing final gauge stainless steel product
CA2228772A1 (en) Method and plant for manufacturing metal strip
US5725696A (en) Process and plant for production of raw stainless steel castings
ZA200500458B (en) Method and device for the continuous production of metallic strips
JP2716842B2 (en) Manufacturing method of hot coil for cold rolled steel sheet
JP4619404B2 (en) Hot-rolled steel sheet manufacturing method
JPH0414171B2 (en)
JP3329251B2 (en) Manufacturing method of hot rolled steel sheet
JP3113490B2 (en) Manufacturing method of ultra-thin scale steel sheet
JPH03122227A (en) Decarburization continuous annealing furnace for grain oriented electrical steel sheet
US6811827B2 (en) Method and installation for hot dip coating metal strips
JP2983404B2 (en) Continuous annealing and acid cleaning same line processing method for Mg-containing aluminum alloy plate
CA2749962A1 (en) Method and device for annealing and descaling strips of stainless steel
RU2040556C1 (en) Method of making strips of low-carbon hot rolled steel
JPH0466203A (en) Manufacture of hot rolled steel strip with thin scale
US3826693A (en) Atmosphere controlled annealing process
JP2002361314A (en) Apparatus and method for continuous heat treatment of hot-rolled plate of grain oriented silicon steel
JP3486899B2 (en) Method for producing hot rolled steel strip with excellent pickling properties
JP2001314912A (en) Method and equipment for treating surface of hot rolled metallic strip or steel sheet
JP2771633B2 (en) Continuous decarburization annealing equipment for grain-oriented electrical steel sheets
JPS5945018A (en) Manufacture of hot-rolled steel sheet having small amount of scale
JP2555798B2 (en) Manufacturing method of hot rolled steel strip with reduced scale formation
JPS5518562A (en) Method and apparatus for manufacturing galvanized steel strip for deep drawing