JP2716658B2 - Stern structure - Google Patents

Stern structure

Info

Publication number
JP2716658B2
JP2716658B2 JP6074658A JP7465894A JP2716658B2 JP 2716658 B2 JP2716658 B2 JP 2716658B2 JP 6074658 A JP6074658 A JP 6074658A JP 7465894 A JP7465894 A JP 7465894A JP 2716658 B2 JP2716658 B2 JP 2716658B2
Authority
JP
Japan
Prior art keywords
stern
ship
section
propeller
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6074658A
Other languages
Japanese (ja)
Other versions
JPH06344973A (en
Inventor
惟夫 山野
泰典 岩崎
和典 田口
直樹 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP6074658A priority Critical patent/JP2716658B2/en
Publication of JPH06344973A publication Critical patent/JPH06344973A/en
Application granted granted Critical
Publication of JP2716658B2 publication Critical patent/JP2716658B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この出願に係る発明は、船尾構造
の改良にかかり、詳しくは、大きな横安定性と充分なプ
ロペラティップクリアランスを確保したまま、プロペラ
直径を大きくできかつ、船尾での造波抵抗の減少を図っ
た船尾構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in the stern structure. More specifically, the invention makes it possible to increase the propeller diameter while securing a large lateral stability and a sufficient propeller tip clearance, and to improve the stern structure. The present invention relates to a stern structure for reducing wave resistance.

【0002】[0002]

【従来技術と発明が解決しようとする課題】従来よりコ
ンテナ船や自動車運搬船(PCC )等では喫水の制限、大
きな横安定性の確保、大出力主機によるプロペラ起振力
の抑制という課題がある。図6(a)(b)は、一例としてコ
ンテナ船の従来型船尾形状を示す横断面図と側断面図で
ある。船尾形状は下方に凸状に湾曲した形をしており、
その船尾端10はトランサム型をなし、そのトランサム
部の一部が水面に没している。プロペラ11は船底12
と一定のクリアランスcをとって装着されている。13
は舵を示す。
2. Description of the Related Art Conventionally, container ships and car carriers (PCCs) have problems of limiting draft, securing large lateral stability, and suppressing propeller vibrating force by a high-power main engine. FIGS. 6A and 6B are a cross-sectional view and a side cross-sectional view showing a conventional stern shape of a container ship as an example. The stern shape has a downwardly curved shape,
The stern end 10 has a transom shape, and a part of the transom part is submerged in the water surface. Propeller 11 is bottom 12
And a certain clearance c. 13
Indicates a rudder.

【0003】ところで、船体抵抗を軽減させるための一
つの方法として、トランサム部の航走時の没水面積を小
さくして船尾造波抵抗を減らす方法が考えられる。しか
し、大きな横安定性確保の必要性から、図6の従来型船
尾形状のままでは船尾水線の幅を広くせざるを得ず、船
尾造波抵抗を減らすことができない。
Incidentally, as one method for reducing the hull resistance, a method of reducing the stern wave resistance by reducing the submerged area of the transom when the ship is running can be considered. However, because of the necessity of securing a large lateral stability, the width of the stern water line must be widened with the conventional stern shape shown in FIG. 6, and the stern wave resistance cannot be reduced.

【0004】ここで、横安定性を示すTKM は、TKM =KB
+BMである。
[0004] Here, TKM showing lateral stability is given by TKM = KB
+ BM.

【0005】 KB:浮心高さ、BM=I/V 、V:排水容積 、I =∫B3dx つまり、船の横安定性は船の水線幅B に大きく依存して
いるのが分かる。
[0005] KB: buoyancy height, BM = I / V, V: drainage volume, I = ∫B 3 dx In other words, it can be seen that the lateral stability of a ship greatly depends on the water line width B of the ship. .

【0006】また、推進効率を向上させるための一つの
方法として、プロペラ直径を増大させてプロペラ効率を
向上させる方法があるが、図6の従来型船尾形状ではプ
ロペラ直径DP を増大させるとプロペラ11と直上の船
底12との間隙(ティップクリアランス)cを狭くせざ
るを得ず、プロペラ起振力による振動が大きくなるとい
う問題が生じる。
As one method for improving the propulsion efficiency, there is a method of increasing the propeller diameter to increase the propeller efficiency. In the conventional stern shape shown in FIG. 6, when the propeller diameter D P is increased, the propeller diameter is increased. A gap (tip clearance) c between the bottom 11 and the ship bottom 12 has to be narrowed, and a problem arises in that the vibration due to the propeller vibrating force increases.

【0007】このようにコンテナ船やPCC 等の船種に対
して従来型の船尾形状を採用している限り、船尾造波抵
抗の減少には限界があり、かつプロペラ直径にも制限が
生じ推進性能向上による省エネルギーに限界が生じる。
[0007] As long as the conventional stern shape is adopted for container ships, PCCs, and other types of ships, there is a limit to the reduction in wave stern wave resistance, and the propeller diameter is also limited, resulting in propulsion. There is a limit to energy saving due to improved performance.

【0008】一方、特開昭62-55285号公報には、図7に
示すような船底12に凹部14を形成した船尾形状が記
載されている。すなわち、この船尾部の船底外板は、図
7に示す如く、没水部の中央部が上方にアーチ型に窪ん
で凹部14が形成されており、その両舷側部15は後端
部をバルブ形状にして船尾端10の凹部の一部を没水さ
せて船尾砕波抵抗を減少せしめている。
On the other hand, Japanese Patent Application Laid-Open No. Sho 62-55285 describes a stern shape in which a recess 14 is formed in a bottom 12 as shown in FIG. That is, as shown in FIG. 7, the bottom of the stern bottom plate has a recessed portion 14 in which the center of the submerged portion is depressed upward in an arched shape, and a recessed portion 14 is formed on both sides of the ship. By making the shape, a part of the concave portion of the stern end 10 is submerged to reduce the stern breaking resistance.

【0009】しかしながら、この場合も従来型船尾形状
船と同一の水線面積をもつため、水線面積が舷側寄りで
船体中心からの距離が大きい分過大な横安定性を有す
る。その結果、復原性能、動揺性能等が異なり所定の設
計条件を満たしていない船となってしまう。また、船尾
底部12の中央部の上方を窪ませて凹部14を形成した
ために、従来型船尾形状の船で船体内に存在した舵ホー
ン上部の太い部分が露出し、その分水抵抗が増加するこ
とになる。
However, also in this case, since the water line area is the same as that of the conventional stern-shaped ship, the water line area is near the side of the ship, and the distance from the center of the hull is large, so that the lateral stability is excessive. As a result, the ship is different in restoring performance, swaying performance and the like and does not satisfy predetermined design conditions. In addition, since the recess 14 is formed by recessing the upper part of the center of the stern bottom part 12, the thick part of the upper part of the rudder horn existing in the hull of the conventional stern-shaped ship is exposed, and the water resistance increases accordingly. Will be.

【0010】この出願に係る発明の目的は、従来型船尾
形状を使う限り決して実現できない必要な横安定性と必
要なプロペラティップクリアランスを確保しつつ、プロ
ペラ直径を大きくして推進効率を向上させ、かつ、船尾
造波抵抗を減少させることにより推進性能の大幅な向上
を図った船尾構造を提供することにある。
The object of the invention according to this application is to improve the propulsion efficiency by increasing the propeller diameter while securing the necessary lateral stability and the necessary propeller tip clearance that cannot be realized as long as the conventional stern shape is used. Another object of the present invention is to provide a stern structure in which propulsion performance is significantly improved by reducing stern wave resistance.

【0011】[0011]

【課題を解決するための手段】上記目的達成するため、
この出願に係る発明のうち請求項1の船尾構造は、コン
テナ船等の大きな横安定性の確保が必要な一軸の船舶に
おいて、 プロペラ直上の船尾船底喫水線より上方に
湾曲させ、このプロペラ直上の断面を、舷側から離れた
船体中心寄りの位置において喫水線に両舷合わせて4点
にて交差させて少ない水線面積で適正な横安定性を有す
るW型断面となし、しかも、このW型断面形状の底面が
船尾にいくにつれ漸進的に上昇し、船尾端におけるW型
断面の下端がほぼ喫水線と接するようにしたことを特徴
とする。
In order to achieve the above object,
Stern structure of claim 1 of the invention according to this application is the large lateral stability uniaxial vessels necessary to secure the container ship or the like, a stern ship bottom directly above the propeller is curved the waterline upwards, immediately above the propeller the cross-section, having a proper lateral stability in a small waterplane area by Sasa exchange in suit both side of the ship to the waterline at the location of the hull near the center away from the side of the ship side 4 points
And the bottom of the W-shaped cross section
It gradually rises as it goes to the stern, and the W shape at the stern end
The lower end of the cross section is substantially in contact with the waterline.

【0012】また、請求項2の船尾構造は、コンテナ船
等の大きな横安定性の確保が必要な二軸以上の多軸の船
舶において、プロペラ直上の船尾船底を喫水線より上方
に湾曲させ、このプロペラ直上の断面を、舷側から離れ
た船体中心寄りの位置において喫水線に両舷合わせて6
点以上にて交差させて少ない水線面積で適正な横安定性
を有するWの複合型断面となし、しかも、この断面形状
が船尾にいくにつれ漸進的に上昇し、船尾端におけるW
の複合型断面の各下端がほぼ喫水線と接するようにした
ことを特徴とする。
Further, the stern structure of claim 2, in large lateral stability biaxial or more multiaxial vessels necessary to secure the container ship or the like, is curved stern ship bottom directly above the propeller waterline than upward, The section just above the propeller should be aligned with the waterline on both sides at a position near the center of the hull, away from the shore.
Intersecting at points or more , appropriate lateral stability with a small waterline area
A composite cross section of W having
Gradually rises toward the stern, and W at the stern end
Each lower end of the composite mold section is substantially in contact with the waterline.

【0013】また、請求項3の船尾構造は、上記いずれ
かの構成において舵ホーン上方の前方および後方に整流
のためのスケグを有するものである。
[0013] The stern structure according to claim 3 has a skeg for straightening in front and rear above the rudder horn in any of the above structures.

【0014】更にまた、請求項4の船尾構造は、上記い
ずれかの構成において、プロペラ直上断面における船尾
船底の湾曲部分の形状が、下記の数式の範囲を満たす船
尾構造である。
Further, the stern structure according to claim 4 is the stern structure according to any one of the above structures, wherein the shape of the curved portion of the stern stern bottom in the cross section immediately above the propeller satisfies the range of the following formula.

【0015】[0015]

【数2】 (Equation 2)

【0016】[0016]

【作用】請求項 1〜4 の船尾構造では、船体中心線付近
の水線面積を舷側寄りに移しているために、船体中心線
からの距離が大きい分、従来型船尾形状船より少ない水
線面積で同等の横安定性を有するとともに、トランサム
後端で特に船尾波( 含砕波) が大きい船体中心線まわり
の没水面積を減少させることができるのでこれにより船
尾造波抵抗を軽減する。
In the stern structure according to claims 1 to 4, since the water line area near the hull center line is shifted toward the side of the ship, the water line is smaller than the conventional stern-shaped ship because the distance from the hull center line is large. In addition to having the same lateral stability in terms of area, the submerged area around the hull centerline where the stern wave (including crushing wave) is particularly large at the rear end of the transom can be reduced, thereby reducing the stern wave resistance.

【0017】プロペラと直上の船底とのプロペラ直径に
対する間隙( ティップクリアランス) 率を従来型船尾形
状船と同等に保ったままプロペラ直径を大きくすること
が可能である。その結果、プロペラ起振力による船尾振
動を従来型船尾形状船と同等に保ったままプロペラ直径
増大による推進効率向上を可能にできる。
It is possible to increase the diameter of the propeller while keeping the ratio of the clearance (tip clearance) to the diameter of the propeller between the propeller and the bottom directly above the ship, equivalent to that of a conventional stern-shaped ship. As a result, it is possible to improve the propulsion efficiency by increasing the propeller diameter, while maintaining the stern vibration caused by the propeller excitation force equal to that of the conventional stern-shaped ship.

【0018】請求項3の船尾構造のように、露出した舵
ホーン上方部の前方および後方に整流のためのスケグを
設ければ、水抵抗を増やすことなく上記船体形状の形成
を可能にする。
According to the third aspect of the present invention, the hull shape can be formed without increasing water resistance by providing rectification skegs in front and rear of the exposed upper part of the rudder horn.

【0019】特に、請求項4の船尾構造のようにプロペ
ラ直上断面の船底湾曲(トンネル)部分の形状を一定範
囲に限定することで、従来のトンネル形状船では必ずし
も期待できるとは限らない船尾造波抵抗減少作用を確実
に発揮せしめることができる。
In particular, by limiting the shape of the bottom curved portion (tunnel) of the section just above the propeller to a certain range as in the stern structure of the fourth aspect, the stern structure is not always expected in a conventional tunnel-shaped ship. The effect of reducing the wave resistance can be reliably exhibited.

【0020】[0020]

【実施例】以下、この出願に係る発明の実施例を図面に
基づき説明する。図1(a) は、この出願に係る発明を一
軸船に適用した場合の模式的な船尾横断面図で、船尾の
正面からみた断面形状がW型をなしている。同(b) は二
軸船に適用した場合の模式的な船尾横断面図で、W型の
複合型(二軸以上の多軸船であっても同様)に形成され
ている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings. FIG. 1A is a schematic cross-sectional view of a stern when the invention according to the present application is applied to a single-axis ship, and has a W-shaped cross section as viewed from the front of the stern. (B) is a schematic cross section of the stern when applied to a twin-screw ship, and is formed in a W-shaped composite type (the same applies to a multi-screw ship having two or more shafts).

【0021】図2により一軸船を例にとってこの出願に
係る発明の構成を詳述する。図2(a) は一軸船の場合の
実際に近い船尾横断面図( 左右対称、左側半分を示す)
で、Aはプロペラ直上のライン、Bは船尾端におけるラ
インである。同(b) は船体中心線C位置における側断面
図である。
The configuration of the invention according to this application will be described in detail with reference to FIG. Figure 2 (a) is a near-actual stern cross-sectional view of a uniaxial ship (symmetrical, showing the left half)
A is the line just above the propeller, and B is the line at the stern end. (B) is a side sectional view at the position of the hull center line C.

【0022】図2(a)において、プロペラ1直上の船尾船
底2が喫水線LWL より上方に湾曲し、このプロペラ1直
上の断面は、喫水線LWL に両舷合わせて4点以上にて交
差し(没水部3は図6 の従来の船尾形状よりも舷側寄り
に位置する)、船体断面が両舷でW型に形成されてい
る。交差点は、図1(a)にも示すようにP1、P2 (左舷) と
P3、P4 (右舷) である。そして、このW型断面形状が船
尾にいくにつれ漸進的に上昇し、船尾端4において断面
の下端Pがほぼ喫水線LWL と接するような船尾形状に形
成されている。5は船体中心線C上のプロペラ1の後方
に設けた舵である。なお、二軸以上の多軸船の場合に
は、図1(b) に示すように、プロペラ1直上の断面は、
喫水線LWL に両舷合わせて6 点以上にて交差する。
In FIG. 2 (a), the stern bottom 2 just above the propeller 1 is curved above the water line LWL, and the cross section just above the propeller 1 crosses the water line LWL at four or more points on both sides (submerges). The water section 3 is located closer to the side of the ship than the conventional stern shape shown in FIG. 6), and the hull section is formed in a W shape on both sides. Intersection, P 1 as shown in FIG. 1 (a), P 2 (the port)
P 3 and P 4 (starboard). The W-shaped cross section gradually rises toward the stern, and is formed in a stern shape such that a lower end P of the cross section at the stern end 4 is almost in contact with the waterline LWL. Reference numeral 5 denotes a rudder provided behind the propeller 1 on the hull center line C. In the case of a multi-axle ship with two or more shafts, the cross section just above the propeller 1 is
Cross the waterline LWL at at least 6 points on both sides.

【0023】船体中心線C付近の水線面積を、図6の従
来型船尾形状船に比べ、舷側寄りに移しているために、
船体中心線Cからの距離が大きい分、従来型船尾形状船
より少ない水線面積で同等の横安定性を有することが可
能である。これは、船舶の横安定性は、片舷の水線面積
とその面積中心の船体中心線Cからの距離の積に比例す
るからである。その結果、船尾端4での船尾波( 含砕
波) が最も大きくなる船体中心まわりの没水面積を減少
させることができるのでこれにより船尾造波抵抗を軽減
することが可能になる。更に、本発明ではW型断面が船
尾にいくにつれて漸進的に上昇し、船尾端においてW型
断面の下端がほぼ喫水線と接する形状となっているた
め、船尾端4における没水部がほとんど無く、追加構造
物であるバルブを設けることなく、造波抵抗(上記砕波
抵抗を含む)を減少できる。
Since the area of the water line near the hull center line C is shifted to the side of the ship as compared with the conventional stern-shaped ship shown in FIG.
Since the distance from the hull center line C is large, it is possible to have the same lateral stability with a smaller water line area than the conventional stern-shaped ship. This is because the lateral stability of the ship is proportional to the product of the water line area on one side and the distance from the hull center line C at the center of the area. As a result, the submerged area around the center of the hull at which the stern wave (including the crushing wave) at the stern end 4 becomes the largest can be reduced, thereby making it possible to reduce the stern wave resistance. Furthermore, in the present invention, since the W-shaped section gradually rises toward the stern, and the lower end of the W-shaped section is almost in contact with the waterline at the stern end, there is almost no submerged portion at the stern end 4, Wave forming resistance (including the breaking wave resistance) can be reduced without providing a valve as an additional structure.

【0024】本発明による船体形状は、船体中心線付近
の船尾船底が喫水面より上方に湾曲して従来型船尾形状
船( 図6)より船尾船底が上方にあるため、プロペラ1先
端と直上の船底2との間隙c のプロペラ直径DP に対す
る間隙率c /DP を従来型船尾形状船と同等に保ったま
まプロペラ直径DP を大きくすることが可能である。
In the hull shape according to the present invention, the stern bottom near the center line of the hull is curved above the draft surface and the stern bottom is higher than that of the conventional stern-shaped ship (FIG. 6). it is possible to increase the propeller diameter D P while the porosity c / D P was kept equivalent to the conventional stern shape vessels for the propeller diameter D P of the gap c between the ship bottom 2.

【0025】その結果、プロペラ起振力による船尾振動
を従来型船尾形状船と同等に保ったままプロペラ直径増
大による推進効率向上を達成できる。
As a result, it is possible to improve the propulsion efficiency by increasing the propeller diameter while keeping the stern vibration caused by the propeller oscillating force equal to that of the conventional stern-shaped ship.

【0026】一方、図2(b)に示すように、本発明による
W型の船体形状は、露出した舵ホーン5a上方部の前方
および後方に整流のための平板状のスケグ6が船底2の
凹部位置に設けられており、水抵抗を増やすことなく上
記船体形状の形成を可能にしている。
On the other hand, as shown in FIG. 2 (b), the W-shaped hull shape according to the present invention is such that a flat skeg 6 for rectification is provided in front and rear of the upper part of the exposed rudder horn 5a. The hull shape is provided at the concave position without increasing the water resistance.

【0027】図3は水槽試験結果に基づく馬力曲線比較
図である。これは垂線間長が約260 m の3500個積コンテ
ナ船に対して従来型船尾形状船と本発明を適用した船舶
の両ケースの水槽試験を行った結果を示したものであ
る。縦軸に主機馬力(BHP) 、横軸に船速 (knot) をとっ
ている。この水槽試験結果により、本発明を適用した船
舶は、図6の従来型船尾形状船と比較して同一船速での
主機馬力を6% (Full: 満載時) 〜11%(O.Full: 過満載
時) 減少できることが分かった。
FIG. 3 is a comparison diagram of horsepower curves based on the results of the tank test. This shows the results of tank tests on both a conventional stern-shaped ship and a ship to which the present invention was applied to a 3500-unit container ship with a vertical line length of about 260 m. The vertical axis shows main engine horsepower (BHP) and the horizontal axis shows ship speed (knot). According to the tank test results, the ship to which the present invention is applied has a main engine horsepower of 6% (Full: full load) to 11% (O.Full: It was found that it could be reduced.

【0028】図4(a) に示すプロペラ直上断面における
船尾船底2の湾曲部分の形状A0 が、下記の数式の範囲
を満たすことがトンネル形状を得つつ、従来型船尾形状
船と同等の横安定性、同等のプロペラ間隙率及び大直径
プロペラ装備の条件のもとで船尾造波抵抗減少効果を得
るために好ましいことが実験結果等から判明した。
It is necessary that the shape A 0 of the curved portion of the stern bottom 2 in the cross section immediately above the propeller shown in FIG. Experimental results have shown that it is preferable to obtain a stern wave drag reduction effect under the conditions of stability, equivalent propeller porosity, and large-diameter propeller equipment.

【0029】[0029]

【数3】 (Equation 3)

【0030】縦軸にL/ L0 、横軸にθをとってその関
係をグラフに示した図4(b)によれば、上記数式はライ
ンに、数式はラインに該当する。従って、図4(b)
におけるラインとラインの範囲を満たすものであ
ればよい。その理由は図5による。
According to FIG. 4 (b), where L / L 0 is plotted on the ordinate and θ is plotted on the abscissa, the above equation corresponds to a line and the equation corresponds to a line. Therefore, FIG. 4 (b)
It suffices as long as it satisfies the line and the range of the line. The reason is shown in FIG.

【0031】図5は、トンネル形状船のトンネル形状の
実績を、L/ DP =L0 / DP ×{χ(1−√(1−θ2/75
2)) +1}で近似し、トンネル形状と造波抵抗との関係
を評価したグラフである。縦軸にはフルード数Fn=0.
24における剰余抵抗係数rR をとり、横軸には上式中の
χをとって示している。従来型船尾の剰余抵抗係数レベ
ルを考慮すると、2.6 ≦χ≦4.1 の範囲であれば、剰余
抵抗係数rR 即ち造波抵抗が減少して性能が良いことが
判る。χ=2.6 は図4(b)のライン( 数式) を規定
し、χ=4.1 は同図のライン( 数式) を規定するも
のである。
[0031] Figure 5, the performance of the tunnel the shape of tunnel-shaped vessels, L / D P = L 0 / D P × {χ (1-√ (1-θ 2/75
2 )) A graph approximating by +1} and evaluating the relationship between the tunnel shape and the wave resistance. The vertical axis indicates the Froude number Fn = 0.
The residual resistance coefficient r R at 24 is shown, and the horizontal axis shows 軸 in the above equation. Considering the level of the residual drag coefficient of the conventional stern, it can be seen that the residual drag coefficient r R, that is, the wave-making resistance is reduced and the performance is good when the range is 2.6 ≦ χ ≦ 4.1. χ = 2.6 defines the line (formula) in FIG. 4 (b), and χ = 4.1 defines the line (formula) in FIG.

【0032】[0032]

【発明の効果】 請求項1〜4に係る発明では、船尾端で船尾波( 含
砕波) が最も大きい船体中心線まわりの没水面積を減少
させることができるのでこれにより船尾造波抵抗を軽減
することができると共に、横安定性およびプロペラ起振
力による船尾振動を従来型船尾形状船と同等に保ったま
まプロペラ直径増大による推進効率向上を可能にでき
る。本発明を適用した船舶は従来型船尾形状船と比較し
て同一船速での主機馬力を6 〜11% 減少できる。 請求項3に係る発明のように整流のためのスケグを
有する場合、水抵抗の増加を抑えつつ、W型ないしW複
合型の船尾構造の形成を可能にする。
According to the first to fourth aspects of the present invention, the submerged area around the hull center line where the stern wave (including the crushing wave) is largest at the stern end can be reduced, thereby reducing the stern wave-making resistance. It is possible to improve the propulsion efficiency by increasing the propeller diameter while keeping the stern vibration caused by the lateral stability and the propeller vibrating force equal to that of the conventional stern-shaped ship. The ship to which the present invention is applied can reduce the main engine horsepower at the same ship speed by 6 to 11% as compared with the conventional stern-shaped ship. When a skeg for rectification is provided as in the invention according to claim 3, it is possible to form a W-type or W-type composite stern structure while suppressing an increase in water resistance.

【0033】 特に、請求項4に係る発明のようにプ
ロペラ直上断面の船底湾曲(トンネル)部分の形状を一
定範囲に限定することで、従来型船尾形状船と同一横安
定性、プロペラ間隙率の条件のもとで従来のトンネル形
状船では必ずしも得られるとは限らなかった船尾造波抵
抗減少効果を確実に得ることができる。
In particular, as in the invention according to claim 4, by limiting the shape of the bottom curved portion (tunnel) of the section just above the propeller to a certain range, the same lateral stability and propeller porosity as those of the conventional stern-shaped ship are obtained. Under the conditions, it is possible to surely obtain the stern wave drag reduction effect that is not always obtained by the conventional tunnel-shaped ship.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)はこの出願に係る発明を一軸船に適用した
場合の模式的な船尾横断面図、(b) は二軸船に適用した
場合の模式的な船尾横断面図である。
FIG. 1 (a) is a schematic stern cross-sectional view when the invention according to this application is applied to a single-screw ship, and FIG. 1 (b) is a schematic stern cross-sectional view when applied to a twin-screw ship. .

【図2】(a)は一軸船の場合の実際の横断面図( 左右対
称、左側半分を示す) 、同(b)はスケグを含む側断面図
である。
FIG. 2 (a) is an actual cross-sectional view (symmetrical, showing the left half) in the case of a uniaxial ship, and FIG. 2 (b) is a side cross-sectional view including a skeg.

【図3】水槽試験結果に基づく馬力曲線比較図である。FIG. 3 is a horsepower curve comparison diagram based on aquarium test results.

【図4】(a) はプロペラ直上断面における船底形状とプ
ロペラ先端の軌跡との関係図であり、(b) は縦軸にL/
0 、横軸にθをとってその関係を示した図である。
FIG. 4 (a) is a diagram showing a relationship between a ship bottom shape and a trajectory of a propeller tip in a cross section immediately above a propeller, and FIG.
FIG. 5 is a diagram showing the relationship between L 0 and θ on the horizontal axis.

【図5】トンネル形状船のトンネル形状の実績をL/ D
P =L0 / DP ×{χ(1−√(1−θ2/752)) +1}で近
似し、トンネル形状と造波抵抗との関係を評価した図で
ある。
Fig. 5: L / D results of tunnel shape of tunnel shape ship
P = L 0 / D P × {χ (1-√ (1-θ 2/75 2)) +1} is approximated by a drawing of the evaluation of the relationship between the tunnel-shaped and wave resistance.

【図6】従来型船尾形状船で、(a) はその船尾部の横断
面図、(b) は同側断面図である。
6 (a) is a cross-sectional view of a stern portion of a conventional stern-shaped ship, and FIG. 6 (b) is a side sectional view of the same.

【図7】従来の改良型船尾形状船で、(a) はその船尾部
の横断面図、(b) は同側断面図である。
7 (a) is a cross-sectional view of a stern portion of a conventional improved stern-shaped ship, and FIG. 7 (b) is a side sectional view of the same.

【符号の説明】[Explanation of symbols]

1…プロペラ 2…船底 3…没水部 4…船尾端 5…舵 5a…舵ホーン 6…スケグ DESCRIPTION OF SYMBOLS 1 ... Propeller 2 ... Ship bottom 3 ... Submerged part 4 ... Stern end 5 ... Rudder 5a ... Rudder horn 6 ... Skeg

───────────────────────────────────────────────────── フロントページの続き (72)発明者 前田 直樹 兵庫県神戸市中央区東川崎町3丁目1番 1号 川崎重工業株式会社 神戸工場内 (56)参考文献 特開 昭62−55285(JP,A) 特開 平3−284497(JP,A) 特開 昭59−164280(JP,A) 特公 昭54−33435(JP,B2) ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Naoki Maeda 3-1-1, Higashikawasaki-cho, Chuo-ku, Kobe-shi, Hyogo Kawasaki Heavy Industries, Ltd. Kobe Factory (56) References JP-A-62-55285 (JP, A) JP-A-3-284497 (JP, A) JP-A-59-164280 (JP, A) JP-B-54-33435 (JP, B2)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 コンテナ船等の大きな横安定性の確保が
必要な一軸の船舶において、 プロペラ直上の船尾船底喫水線より上方に湾曲させ
このプロペラ直上の断面を、舷側から離れた船体中心寄
りの位置において喫水線に両舷合わせて4点にて交差さ
せて少ない水線面積で適正な横安定性を有するW型断面
となし、しかも、このW型断面形状の底面が船尾にいく
につれ漸進的に上昇し、船尾端におけるW型断面の下端
がほぼ喫水線と接するようにしたことを特徴とする船尾
構造。
1. A large lateral stability uniaxial vessels necessary to secure the container ship or the like, is curved stern ship's bottom just above the propeller waterline than upward,
The cross-section directly above the propeller, Sasa exchange at both side of the ship together four points waterline at the location of the hull near the center away from the side of the ship side
W-shaped cross section with appropriate lateral stability with small water line area
And the bottom of this W-shaped cross section goes to the stern
A stern structure wherein the lower end of the W-shaped cross section at the stern end is substantially in contact with the waterline.
【請求項2】 コンテナ船等の大きな横安定性の確保が
必要な二軸以上の多軸の船舶において、 プロペラ直上の船尾船底を喫水線より上方に湾曲させ
このプロペラ直上の断面を、舷側から離れた船体中心寄
りの位置において喫水線に両舷合わせて6点以上にて交
させて少ない水線面積で適正な横安定性を有するWの
複合型断面となし、しかも、この断面形状が船尾にいく
につれ漸進的に上昇し、船尾端におけるWの複合型断面
の各下端がほぼ喫水線と接するようにしたことを特徴と
する船尾構造。
2. A large lateral stability biaxial or more multiaxial vessels necessary to secure the container ship or the like, is curved stern ship bottom directly above the propeller waterline than upward,
The cross-section immediately above the propeller, the W having the proper transverse stability in a small waterplane area by intersecting at the position of the hull near the center away from the broadside waterline on both side of the ship together 6 points or more
A composite cross section, and this cross section goes to the stern
A stern structure wherein the lower end of the composite type cross section of W at the stern end is substantially in contact with the waterline.
【請求項3】 舵ホーン上方の前方および後方に整流の
ためのスケグを有することを特徴とする請求項1または
2記載の船尾構造。
3. The stern structure according to claim 1, wherein a skeg for rectification is provided forward and rearward above the rudder horn.
【請求項4】 プロペラ直上断面における船尾船底の湾
曲部分の形状が、下記の数式の範囲を満たす請求項1〜
3のいずれか1項に記載の船尾構造。 【数1】
4. The curved portion of the stern bottom at the section just above the propeller satisfies the range of the following formula:
4. The stern structure according to any one of items 3. (Equation 1)
JP6074658A 1993-04-16 1994-04-13 Stern structure Expired - Lifetime JP2716658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6074658A JP2716658B2 (en) 1993-04-16 1994-04-13 Stern structure

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-19576 1993-04-16
JP1957693 1993-04-16
JP6074658A JP2716658B2 (en) 1993-04-16 1994-04-13 Stern structure

Publications (2)

Publication Number Publication Date
JPH06344973A JPH06344973A (en) 1994-12-20
JP2716658B2 true JP2716658B2 (en) 1998-02-18

Family

ID=26356421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6074658A Expired - Lifetime JP2716658B2 (en) 1993-04-16 1994-04-13 Stern structure

Country Status (1)

Country Link
JP (1) JP2716658B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008099672A1 (en) 2007-02-13 2008-08-21 Mitsubishi Heavy Industries, Ltd. Stern shape for displacement type ship

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3490392B2 (en) * 2000-11-22 2004-01-26 株式会社川崎造船 Transom stern type stern shape
JP5393160B2 (en) * 2007-02-13 2014-01-22 三菱重工業株式会社 Stern shape of a displacement type ship
DE102018121414A1 (en) * 2018-09-03 2019-02-14 Emex Industrie AG Hull with a rise in the area of a bottom of the hull

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59164280A (en) * 1983-03-08 1984-09-17 Ishikawajima Harima Heavy Ind Co Ltd Shape of stern of multiple screw ship
JPS6255285A (en) * 1985-09-03 1987-03-10 Nippon Kokan Kk <Nkk> Stern shape
JP2623895B2 (en) * 1990-03-30 1997-06-25 石川島播磨重工業株式会社 Stern viscous drag reduction device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008099672A1 (en) 2007-02-13 2008-08-21 Mitsubishi Heavy Industries, Ltd. Stern shape for displacement type ship
US8028636B2 (en) 2007-02-13 2011-10-04 Mitsubishi Heavy Industries, Ltd. Stern shape of displacement-type marine vessel

Also Published As

Publication number Publication date
JPH06344973A (en) 1994-12-20

Similar Documents

Publication Publication Date Title
WO1999012804A1 (en) Boat hull with center v-hull and sponsons
AU693858B2 (en) Hull configuration
EP1211171B1 (en) Method for reducing wake making resistance at transom stern and transom stern form
JP3571023B2 (en) Ship bow shape
KR20120004414A (en) Method and arrangement of bulbous bow
JP2716658B2 (en) Stern structure
US5188049A (en) Catamaran boat
US5832855A (en) Ship&#39;s hull
JP2008247050A (en) Vessel drag reducing device and vessel
JP4938056B2 (en) Stern wave interference fin
JP2005537175A (en) Ships with foil located below the waterline
JPH04314684A (en) Hull construction for double-hull ship
JP4216858B2 (en) Ship
US20090188419A1 (en) Boat hull with air augmented center v-hull and aerated sponsons
US20080066673A1 (en) Quadrapod air assisted catamaran boat or vessel
JPH0580395B2 (en)
JPH0685188U (en) Stern structure
JP2006240516A (en) High speed catamaran
JP2006008091A (en) Vessel shape for small high speed vessel
JP2836738B2 (en) High speed ship trim tub device
US20030041791A1 (en) Motorboat with a skimmer hull
WO2023223617A1 (en) Ship
JP7017378B2 (en) Ship
JP2572150Y2 (en) Boat rudder
JPH0285090A (en) Lower hull structure for small-sized water vehicle

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091107

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101107

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 16

EXPY Cancellation because of completion of term