JP2716334B2 - Electric double layer capacitor - Google Patents

Electric double layer capacitor

Info

Publication number
JP2716334B2
JP2716334B2 JP5000159A JP15993A JP2716334B2 JP 2716334 B2 JP2716334 B2 JP 2716334B2 JP 5000159 A JP5000159 A JP 5000159A JP 15993 A JP15993 A JP 15993A JP 2716334 B2 JP2716334 B2 JP 2716334B2
Authority
JP
Japan
Prior art keywords
electric double
double layer
layer capacitor
polarizable electrode
activated carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5000159A
Other languages
Japanese (ja)
Other versions
JPH06244059A (en
Inventor
貴之 斉藤
篤 越智
順次 田渕
ゆかり 吉備
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5000159A priority Critical patent/JP2716334B2/en
Publication of JPH06244059A publication Critical patent/JPH06244059A/en
Application granted granted Critical
Publication of JP2716334B2 publication Critical patent/JP2716334B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は電気二重層コンデンサに
関し、特に固体活性炭を分極性電極として用いた電気二
重層コンデンサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric double layer capacitor, and more particularly to an electric double layer capacitor using solid activated carbon as a polarizable electrode.

【0002】[0002]

【従来の技術】図4および図5に示すように、電気二重
層コンデンサの分極性電極16は平板や円盤状の固体活
性炭であり、この固体活性炭は特願平3−81262に
示される活性炭/炭素複合材料等が用いられる。集電体
7には電解液が水溶液系の場合にはカーボンや導電性ゴ
ム,導電プラスチック等がまた非水溶液系の場合には金
属箔などが使用され、固体活性炭と電気的に接続してい
る。ガスケット8はプラスチックやゴムからなり、集電
体7と接着剤で接着されている。セパレータ9は多孔性
フィルムまたはガラス繊維製の抄造体で、一対の分極性
電極16間を電気的に絶縁している。
2. Description of the Related Art As shown in FIGS. 4 and 5, a polarizable electrode 16 of an electric double layer capacitor is a flat or disk-shaped solid activated carbon. A carbon composite material or the like is used. When the electrolytic solution is an aqueous solution, carbon, conductive rubber, conductive plastic, or the like is used for the current collector 7, and when the electrolytic solution is a non-aqueous solution, a metal foil or the like is used, and is electrically connected to the solid activated carbon. . The gasket 8 is made of plastic or rubber, and is bonded to the current collector 7 with an adhesive. The separator 9 is a porous film or a glass fiber papermaking body, and electrically insulates between the pair of polarizable electrodes 16.

【0003】電気二重層コンデンサの耐電圧は電解液の
電気分解電圧であるため、基本セル10を電気的に直列
接続することで所用の耐電圧を実現している。図4は水
溶液系電解液を使用した電気二重層コンデンサを示して
いるが、耐電圧0.9Vの基本セル10を6つ直列接続
しており、耐電圧は5.5Vである。上述の電気二重層
コンデンサへの電解液注入は、ガスソケット8側面にあ
けられた注入孔15より電解液を注入することで行い、
注入孔15は電解液注入後、溶融し電解液の封止を行
う。
Since the withstand voltage of the electric double layer capacitor is the electrolysis voltage of the electrolytic solution, the required withstand voltage is realized by electrically connecting the basic cells 10 in series. FIG. 4 shows an electric double-layer capacitor using an aqueous electrolytic solution. Six basic cells 10 with a withstand voltage of 0.9 V are connected in series, and the withstand voltage is 5.5 V. The above-described electrolyte injection into the electric double layer capacitor is performed by injecting the electrolyte through an injection hole 15 formed in a side surface of the gas socket 8.
After the injection of the electrolyte, the injection hole 15 is melted to seal the electrolyte.

【0004】ところで、上述の分極性電極16には数μ
mの孔が無数にあいており、この孔を通して内部へ電解
液が入る。しかし、この細孔に電解液を完全に注入する
ことは非常に困難である。従来、特開平1−15271
5に示される、活性炭をバインダで固形化して分極性電
極としたコイン状の電気二重層コンデンサにおいて、図
6に示すように、分極性電極17表面に傷18を設ける
ことで電解液の含浸性を高める方法があるが、この方法
では傷18のある表面付近だけで分極性電極17全体の
含浸性は上がらないという欠点を有する。
The above-mentioned polarizable electrode 16 has several μm.
There are countless holes of m, and the electrolyte enters inside through these holes. However, it is very difficult to completely inject the electrolyte into these pores. Conventionally, Japanese Unexamined Patent Publication No.
In the coin-shaped electric double-layer capacitor shown in FIG. 5 in which activated carbon was solidified with a binder and used as a polarizable electrode, as shown in FIG. However, this method has a disadvantage that the impregnating property of the entire polarizable electrode 17 does not increase only near the surface where the scratch 18 exists.

【0005】[0005]

【発明が解決しようとする課題】この従来の分極性電極
では内部まで完全に電解液を含浸できない。また、表面
に傷をつけた場合でも表面付近だけで全体の含浸性の向
上は望めない。その結果、分極性電極内部に窒素や酸素
などのガスが残ってしまう。この残留ガスは、温度変化
や充放電などにより分極性電極外部へ出てくるため、基
本セル内の内圧が上昇し、電解液の漏液や基本セルの破
損等が発生するという問題点がある。
With this conventional polarizable electrode, it is impossible to completely impregnate the inside with the electrolyte. Further, even when the surface is scratched, improvement of the entire impregnation property cannot be expected only near the surface. As a result, gases such as nitrogen and oxygen remain inside the polarizable electrode. Since this residual gas comes out of the polarizable electrode due to a temperature change or charge / discharge, there is a problem that the internal pressure in the basic cell increases, causing leakage of the electrolytic solution, damage to the basic cell, and the like. .

【0006】本発明の目的は、基本セル内の内圧の上昇
による電解液の漏液や破損等の発生がなく、信頼性の高
い電気二重層コンデンサを提供することにある。
It is an object of the present invention to provide a highly reliable electric double layer capacitor which does not cause electrolyte leakage or breakage due to an increase in internal pressure in a basic cell.

【0007】[0007]

【課題を解決するための手段】本発明は、固体活性炭を
分極性電極として用い、前記分極性電極に電解液を注入
することにより得られる電気二重層コンデンサにおい
て、前記固体活性炭に少くとも1mmの径を有する貫通
孔を静電容量の減少が10%以下になるように形成する
か、または前記固体活性炭に高配向黒鉛粉末と黒鉛ウイ
スカのうちのいずれか一方を重量比で1%以上10%未
満添加したものである。
According to the present invention, there is provided an electric double layer capacitor obtained by using a solid activated carbon as a polarizable electrode and injecting an electrolytic solution into the polarizable electrode. Either a through hole having a diameter is formed so that a decrease in capacitance is 10% or less, or one of a highly oriented graphite powder and a graphite whisker is added to the solid activated carbon in a weight ratio of 1% to 10%. Less than that added.

【0008】[0008]

【実施例】次に、本発明の実施例について図面を参照し
て説明する。
Next, embodiments of the present invention will be described with reference to the drawings.

【0009】図1は本発明の第1の実施例の構成を示す
断面図、図2は図1の分極性電極の平面図である。第1
の実施例の構造は、分極性電極1以外は図4に示す従来
の電気二重層コンデンサの構造と同じである。第1の実
施例の分極性電極1は、図2に示すように、9つの貫通
孔4を有する。
FIG. 1 is a sectional view showing the structure of a first embodiment of the present invention, and FIG. 2 is a plan view of the polarizable electrode of FIG. First
The structure of this embodiment is the same as the structure of the conventional electric double layer capacitor shown in FIG. The polarizable electrode 1 of the first embodiment has nine through holes 4 as shown in FIG.

【0010】この分極性電極1の製造方法は次の通りで
ある。まず、粉末活性炭と粉末状フェノール樹脂とを重
量比で60/40に混合する。混合にはボールミルを使
用し乾式混合したのち造粒した。この混合粉を9つのコ
アピン(直径2mm)を有する金型で射出成型した。成
形品は70×50×4mmの大きさでコアピンの部分が
貫通孔4になる。この成形品を非酸化性雰囲気中におい
て900℃で熱処理した。熱処理時間は2時間,昇温速
度は50℃/hである。分極性電極の収縮率は5%で等
方的に収縮するため、貫通孔の直径は1.9mmとな
り、9つの貫通孔4を有する分極性電極1が得られる。
The method of manufacturing the polarizable electrode 1 is as follows. First, powdered activated carbon and a powdery phenol resin are mixed at a weight ratio of 60/40. The mixture was dry mixed using a ball mill and then granulated. This mixed powder was injection-molded in a mold having nine core pins (diameter 2 mm). The molded product has a size of 70 × 50 × 4 mm and the portion of the core pin becomes the through hole 4. This molded article was heat-treated at 900 ° C. in a non-oxidizing atmosphere. The heat treatment time is 2 hours, and the heating rate is 50 ° C./h. Since the contraction rate of the polarizable electrode is isotropically contracted at 5%, the diameter of the through hole becomes 1.9 mm, and the polarizable electrode 1 having nine through holes 4 is obtained.

【0011】このように直径1.9mmの9つの貫通孔
4を分極性電極1に形成することにより、静電容量の減
少が10%以下におさえられ、また貫通孔4を点対称の
位置に設けることにより、熱処理時に等方的に収縮させ
含浸性を向上させることができる。
By forming the nine through holes 4 having a diameter of 1.9 mm in the polarizable electrode 1 as described above, the reduction of the capacitance is suppressed to 10% or less, and the through holes 4 are positioned at point-symmetric positions. By providing, it is possible to improve the impregnation property by causing isotropic shrinkage during heat treatment.

【0012】図3は本発明の第2の実施例の分極性電極
の平面図である。第2の実施例の構造は、分極性電極以
外は図1に示す第1の実施例の構造と同じである。第2
の実施例の分極性電極2は、図3に示すように、黒鉛粉
末5を含有する。
FIG. 3 is a plan view of a polarizable electrode according to a second embodiment of the present invention. The structure of the second embodiment is the same as the structure of the first embodiment shown in FIG. 1 except for the polarizable electrodes. Second
As shown in FIG. 3, the polarizable electrode 2 of Example 1 contains a graphite powder 5.

【0013】この分極性電極2の製造方法は、次の通り
である。まず、粉末活性炭と粉末状フェノール樹脂、お
よび黒鉛粉末5とを重量比で55/40/5に混合す
る。使用した黒鉛粉末5はX線回折の結果から炭素網平
面の層間距離が3.38オングストロームであった。混
合にはボールミルを使用し乾式混合した後、造粒した。
この混合粉を射出成形により、70×50×4mmの大
きさに成形し、非酸化性雰囲気中において900℃で熱
処理した。熱処理時間は2時間で、昇温速度は50℃/
hである。重量減少率は、活性炭10%,樹脂65%,
黒鉛1%以下であるため、熱処理後の混合比は重量比で
49.5/26/5となり、黒鉛粉末5が6.2%含有
の分極性電極2が得られる。
The method for manufacturing the polarizable electrode 2 is as follows. First, powdered activated carbon, powdery phenol resin, and graphite powder 5 are mixed at a weight ratio of 55/40/5. As a result of X-ray diffraction, the graphite powder 5 used had an interlayer distance of 3.38 angstroms on the carbon net plane. The mixture was dry mixed using a ball mill and then granulated.
This mixed powder was formed into a size of 70 × 50 × 4 mm by injection molding and heat-treated at 900 ° C. in a non-oxidizing atmosphere. The heat treatment time is 2 hours, and the heating rate is 50 ° C /
h. Weight loss rate is 10% activated carbon, 65% resin,
Since the graphite content is 1% or less, the mixing ratio after the heat treatment is 49.5 / 26/5 by weight, and the polarizable electrode 2 containing 6.2% of the graphite powder 5 is obtained.

【0014】高配向の黒鉛は硫酸イオンをはじめいろい
ろなイオンをインターカレーションできるので、この性
質を利用し固体活性炭に黒鉛粉末または黒鉛ウイスカを
添加することで電解液の含浸を容易にする。黒鉛粉末5
の添加量を重量比で1%以上10%未満とすることによ
り、図2に示す第1の実施例の分極性電極1の貫通孔4
と同様静電容量の低下を10%以下におさえることがで
きる。
Since highly oriented graphite can intercalate various ions including sulfate ions, the impregnation of the electrolyte is facilitated by adding graphite powder or graphite whisker to solid activated carbon utilizing this property. Graphite powder 5
The weight ratio of 1% or more to less than 10% makes the through hole 4 of the polarizable electrode 1 of the first embodiment shown in FIG.
In the same manner as described above, the decrease in capacitance can be suppressed to 10% or less.

【0015】分極性電極1,2をそれぞれ用いた第1お
よび第2の実施例の電気二重層コンデンサを試作した。
試作方法はどの分極性電極を用いても同じであるため、
分極性電極1を用いた第1の実施例を例にとり説明す
る。まず、分極性電極1と集電体7を圧着する。集電体
7には導電性ゴムを使用した。積層体11の両側に配置
される集電体7に関しては片面だけに分極性電極1を圧
着し、残りは集電体7の両側に分極性電極1を圧着す
る。これをエポキシ接着剤を用いてABS製のガスケッ
ト8と接着する。このときガラス繊維抄造体のセパレー
タ9を図1に示すように配置する。このようにして集電
体7を共通にする6つの基本セル10からなる積層体1
1を得る。次に、端子板12,絶縁シート13を配置
し、両側より加圧板14をボルトで固定することにより
積層体11を加圧する。次に2つある注入孔15の一方
から真空ポンプで排気し、もう一方より電解液である硫
酸を注入する。注入の時間は2,4,8,12,24時
間とした。注入後、注入孔15を溶融して封止を行い、
分極性電極1を用いた第1の実施例の電気二重層コンデ
ンサを得た。同様にして第2の実施例の電気二重層コン
デンサを得た。比較用として、分極性電極16および分
極性電極17を用いた従来例1および従来例2の電気二
重層コンデンサをそれぞれ試作した。
The electric double layer capacitors of the first and second embodiments using the polarizable electrodes 1 and 2, respectively, were prototyped.
Since the prototype method is the same with any polarizable electrode,
The first embodiment using the polarizing electrode 1 will be described as an example. First, the polarizable electrode 1 and the current collector 7 are pressed. Conductive rubber was used for the current collector 7. With respect to the current collectors 7 arranged on both sides of the stacked body 11, the polarizable electrode 1 is crimped on only one side, and the rest of the current collectors 7 are crimped on both sides of the current collector 7. This is adhered to an ABS gasket 8 using an epoxy adhesive. At this time, the separator 9 of the glass fiber papermaking body is arranged as shown in FIG. In this way, the stacked body 1 including the six basic cells 10 sharing the current collector 7
Get 1. Next, the terminal body 12 and the insulating sheet 13 are arranged, and the laminated body 11 is pressed by fixing the pressing plate 14 with bolts from both sides. Next, the gas is exhausted from one of the two injection holes 15 by a vacuum pump, and sulfuric acid as an electrolyte is injected from the other. The injection time was 2, 4, 8, 12, 24 hours. After the injection, the injection hole 15 is melted and sealed,
The electric double layer capacitor of the first embodiment using the polarizing electrode 1 was obtained. Similarly, an electric double layer capacitor of the second embodiment was obtained. For comparison, electric double layer capacitors of Conventional Example 1 and Conventional Example 2 using the polarizable electrode 16 and the polarizable electrode 17 were prototyped, respectively.

【0016】従来例1の分極性電極16の製造方法は次
の通りである。まず、粉末活性炭と粉末状フェノール樹
脂とを重量比で60/40に混合する。混合にはボール
ミルを使用し乾式混合したのち造粒し、射出成形した。
成形品は70×50×4mmの大きさである。この成形
品を非酸化性雰囲気中において900℃で熱処理した。
熱処理時間は2時間、昇温速度は50℃/hである。
The method for manufacturing the polarizable electrode 16 of the first conventional example is as follows. First, powdered activated carbon and a powdery phenol resin are mixed at a weight ratio of 60/40. The mixture was dry-mixed using a ball mill, granulated, and injection-molded.
The molded article has a size of 70 × 50 × 4 mm. This molded article was heat-treated at 900 ° C. in a non-oxidizing atmosphere.
The heat treatment time is 2 hours, and the heating rate is 50 ° C./h.

【0017】従来例2の分極性電極17は、分極性電極
16の表面に研磨紙で傷18をつけることにより得た。
研磨紙には粒度180番のものを使用し、湿式で3分行
った。分極性電極16,17をそれぞれ用いた電気二重
層コンデンサの試作方法は分極性電極1を用いて試作し
た方法と同じである。
The polarizable electrode 17 of Conventional Example 2 was obtained by scratching the surface of the polarizable electrode 16 with abrasive paper.
Abrasive paper having a particle size of 180 was used for 3 minutes in a wet system. The trial production method of the electric double layer capacitor using the polarizing electrodes 16 and 17 is the same as the trial production method using the polarizable electrode 1.

【0018】以上試作した第1,第2の実施例の電気二
重層コンデンサおよび従来例1,2の電気二重層コンデ
ンサについて、初期特性おおよび高温負荷試験を行っ
た。試験方法は次の通りである。試験1では、70℃で
240時間5.5V印加した後、外観をチェックした。
試験2では電解液の注入時間が24時間のものを使用
し、70℃で5.5Vを1,000時間印加した後、外
観および等価直列抵抗(ESR),静電容量を評価し
た。等価直列抵抗は、交流4端子法で1kHzのインピ
ーダンスを測定し、その時の実数部とする。また静電容
量Cは、室温で24時間短絡したのち、12時間5Vで
充電し、電流100mAで放電させて、3Vから2.5
Vに電圧降下ΔVするのに要する時間Δtから算出す
る。計算式は、 C=I×Δt/ΔV=0.1×Δt/0.5 である。
The electric double layer capacitors of the first and second embodiments and the electric double layer capacitors of Conventional Examples 1 and 2 produced as described above were subjected to initial characteristics and high-temperature load tests. The test method is as follows. In Test 1, the appearance was checked after applying 5.5 V at 70 ° C. for 240 hours.
In Test 2, an electrolyte solution with an injection time of 24 hours was used. After applying 5.5 V for 1,000 hours at 70 ° C., the appearance, equivalent series resistance (ESR), and capacitance were evaluated. The equivalent series resistance is obtained by measuring an impedance of 1 kHz by an AC four-terminal method and obtaining a real part at that time. The capacitance C is short-circuited at room temperature for 24 hours, charged at 5 V for 12 hours, discharged at a current of 100 mA, and changed from 3 V to 2.5 V.
It is calculated from the time Δt required for the voltage drop ΔV to V. The calculation formula is: C = I × Δt / ΔV = 0.1 × Δt / 0.5

【0019】表1,2はその試験結果を示したものであ
り、表1は電解液注入時間と液漏れの有無,表2は評価
結果である。表1より、電解液の液漏れと電解液の注入
方法,時間との間に関係のあることがわかる。また、本
実施例の電気二重層コンデンサは従来例より電解液の注
入時間を短くできることがわかる。液漏れは、一部注入
孔15から、多くはガスケット8とガスケット8との接
着面からわずかにしみだす程度ではあったが発生してい
た。表2より24時間電解液注入を行った本実施例の電
気二重層コンデンサは、外観、特性とも問題なく、電解
液の含浸性を向上させ、高い信頼性を得ることができ
る。
Tables 1 and 2 show the test results, Table 1 shows the electrolyte injection time and the presence or absence of leakage, and Table 2 shows the evaluation results. It can be seen from Table 1 that there is a relationship between the leakage of the electrolyte and the method and time for injecting the electrolyte. Further, it can be seen that the electric double layer capacitor of the present embodiment can shorten the injection time of the electrolytic solution as compared with the conventional example. The liquid leak occurred from the injection hole 15 partially, but mostly from the adhesive surface between the gasket 8 and the gasket 8. According to Table 2, the electric double layer capacitor of this example in which the electrolyte was injected for 24 hours has no problem in appearance and characteristics, improves the impregnation of the electrolyte, and can obtain high reliability.

【0020】[0020]

【表1】 外観;○問題なし、△液のしみだし、×液漏れ[Table 1] Appearance; ○ no problem, △ liquid seeping, × liquid leak

【0021】[0021]

【表2】 単位;ESR/mΩ、静電容量/F 外観;○問題なし、×液漏れ[Table 2] Unit: ESR / mΩ, capacitance / F Appearance: ○ No problem, × liquid leakage

【0022】[0022]

【発明の効果】以上説明したように本発明により電気二
重層コンデンサは、分極性電極に1つ以上の貫通孔を設
けたため、または高配向の黒鉛粉末または黒鉛ウイスカ
を添加したために電解液の含浸性が向上し、高い信頼性
が得られるという効果がある。
As described above, according to the present invention, the electric double layer capacitor is impregnated with the electrolytic solution because one or more through holes are provided in the polarizable electrode or because highly oriented graphite powder or graphite whisker is added. The effect is that the reliability is improved and high reliability is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例の構成を示す断面図であ
る。
FIG. 1 is a sectional view showing a configuration of a first exemplary embodiment of the present invention.

【図2】図1の分極性電極の平面図である。FIG. 2 is a plan view of the polarizable electrode of FIG.

【図3】本発明の第2の実施例の分極性電極の平面図で
ある。
FIG. 3 is a plan view of a polarizable electrode according to a second embodiment of the present invention.

【図4】従来の電気二重層コンデンサの一例の構成を示
す断面図である。
FIG. 4 is a cross-sectional view illustrating a configuration of an example of a conventional electric double layer capacitor.

【図5】従来の電気二重層コンデンサの分極性電極の一
例の平面図である。
FIG. 5 is a plan view of an example of a polarizable electrode of a conventional electric double layer capacitor.

【図6】従来の電気二重層コンデンサの分極性電極の他
の例の平面図である。
FIG. 6 is a plan view of another example of the polarizable electrode of the conventional electric double layer capacitor.

【符号の説明】[Explanation of symbols]

1,2,3,16,17 分極性電極 4 貫通孔 5 黒鉛粉末 7 集電体 8 ガスケット 9 セパレータ 10 基本セル 11 積層体 12 端子板 13 絶縁シート 14 加圧板 15 注入孔 18 傷 1, 2, 3, 16, 17-minute polar electrode 4 Through hole 5 Graphite powder 7 Current collector 8 Gasket 9 Separator 10 Basic cell 11 Stack 12 Terminal plate 13 Insulating sheet 14 Pressing plate 15 Injection hole 18 Scratches

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田渕 順次 東京都港区芝五丁目7番1号日本電気株 式会社内 (72)発明者 吉備 ゆかり 東京都港区芝五丁目7番1号日本電気株 式会社内 (56)参考文献 特開 平4−288361(JP,A) 特開 平2−281608(JP,A) 特開 平3−116708(JP,A) 特開 平3−201519(JP,A) 実開 平1−133725(JP,U) ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Tabuchi sequentially 7-1, Shiba 5-chome, Minato-ku, Tokyo Inside NEC Corporation (72) Yukari Kibi 5-7-1, Shiba 5-chome, Minato-ku, Tokyo Japan (56) References JP-A-4-288361 (JP, A) JP-A-2-281608 (JP, A) JP-A-3-116708 (JP, A) JP-A-3-201519 ( JP, A) Hikaru 1-133725 (JP, U)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 固体活性炭を分極性電極として用い、前
記分極性電極に電解液を注入することにより得られる
気二重層コンデンサにおいて、前記固体活性炭に少くと
も1mmの径を有する貫通孔を静電容量の減少が10%
以下になるように、かつ前記分極性電極の全域にわたっ
て形成したことを特徴とする電気二重層コンデンサ。
1. A solid activated carbon used as the polarizable electrodes, before
In the electric double layer capacitor obtained by injecting the electrolytic solution into the polarizable electrode, a through hole having a diameter of at least 1 mm is formed in the solid activated carbon so that the capacitance is reduced by 10%.
An electric double layer capacitor formed as described below and over the entire area of the polarizable electrode.
【請求項2】 固体活性炭を分極性電極として用い、前
記分極性電極に電解液を注入することにより得られる
気二重層コンデンサにおいて、前記固体活性炭に高配向
黒鉛粉末と黒鉛ウイスカのうちのいずれか一方を重量比
で1%以上10%未満添加したことを特徴とする電気二
重層コンデンサ。
Wherein the solid activated carbon used as the polarizable electrodes, before
In an electric double layer capacitor obtained by injecting an electrolyte into the polarizable electrode, one of a highly oriented graphite powder and a graphite whisker is added to the solid activated carbon in a weight ratio of 1% to 10%. % Electric double layer capacitor.
JP5000159A 1993-01-05 1993-01-05 Electric double layer capacitor Expired - Fee Related JP2716334B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5000159A JP2716334B2 (en) 1993-01-05 1993-01-05 Electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5000159A JP2716334B2 (en) 1993-01-05 1993-01-05 Electric double layer capacitor

Publications (2)

Publication Number Publication Date
JPH06244059A JPH06244059A (en) 1994-09-02
JP2716334B2 true JP2716334B2 (en) 1998-02-18

Family

ID=11466265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5000159A Expired - Fee Related JP2716334B2 (en) 1993-01-05 1993-01-05 Electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP2716334B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1696446A4 (en) * 2003-07-07 2009-07-22 Eamex Corp Capacitor and method for manufacturing same
KR101310520B1 (en) * 2005-05-26 2013-09-23 니폰 제온 가부시키가이샤 Electrode material for electrochemical device and composite particle

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01133725U (en) * 1988-03-08 1989-09-12
JPH02281608A (en) * 1989-04-21 1990-11-19 Nec Corp Electrical double layer capacitor
JPH03116708A (en) * 1989-09-28 1991-05-17 Isuzu Motors Ltd Electric double-layer capacitor
JPH0791449B2 (en) * 1990-03-23 1995-10-04 日本電気株式会社 Activated carbon / polyacene material composite, its manufacturing method, electric double layer capacitor and its composite parts

Also Published As

Publication number Publication date
JPH06244059A (en) 1994-09-02

Similar Documents

Publication Publication Date Title
US6426865B2 (en) Electric double layer capacitor
US6413282B1 (en) Electrolytic capacitor and method for manufacturing the same
JP2840780B2 (en) Electric double layer capacitor
US7623339B2 (en) Electrochemical device
US6843810B2 (en) Electric double layer capacitor and method for preparing the same
CN107240721A (en) The preparation method of bipolar electrode and lithium ion battery and lithium ion battery
JPH10275747A (en) Electric double layer capacitor
KR101793040B1 (en) Manufacturing method of electrode active material for ultracapacitor, manufacturing method of ultracapacitor electrode using the electrode active material and ultracapacitorusing the electrode active material
KR101486429B1 (en) Composite for supercapacitor electrode with low initial resistance, manufacturing method of supercapacitor electrode using the composite and supercapacitor using the supercapacitor electrode manufactured by the method
JP3436189B2 (en) Electric double layer capacitor and method of manufacturing the same
JPH11224834A (en) Polarizable electrode, its manufacture, and electric double layer capacitor using the electrode
KR100752945B1 (en) Electrochemical capacitor
JPH11219861A (en) Electrolytic capacitor and manufacture thereof
KR101635763B1 (en) Composite for ultracapacitor electrode, manufacturing method of ultracapacitor electrode using the composite, and ultracapacitor manufactured by the method
JP2716334B2 (en) Electric double layer capacitor
JPS62200715A (en) Electric double-layer capacitor
JP2000286165A (en) Electric double-layer capacitor and manufacture thereof
KR102013173B1 (en) Composite for ultracapacitor electrode, manufacturing method of ultracapacitor electrode using the composite, and ultracapacitor manufactured by the method
KR101860755B1 (en) Composite for ultracapacitor electrode, manufacturing method of ultracapacitor electrode using the composite, and ultracapacitor manufactured by the method
JPH065467A (en) Electric double layer capacitor
KR102188237B1 (en) Composite for supercapacitor electrode, manufacturing method of supercapacitor electrode using the composite, and supercapacitor manufactured by the method
JP2001102273A (en) Electric double-ayer capacitor
KR101494622B1 (en) Composite for supercapacitor electrode and manufacturing method of supercapacitor electrode using the composite
JP2002280059A (en) Battery, electric double layer capacitor and their manufacturing method
JP3114337B2 (en) Electric double layer capacitor

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19960723

LAPS Cancellation because of no payment of annual fees