JP2715304B2 - MIM type electron-emitting device - Google Patents

MIM type electron-emitting device

Info

Publication number
JP2715304B2
JP2715304B2 JP12695788A JP12695788A JP2715304B2 JP 2715304 B2 JP2715304 B2 JP 2715304B2 JP 12695788 A JP12695788 A JP 12695788A JP 12695788 A JP12695788 A JP 12695788A JP 2715304 B2 JP2715304 B2 JP 2715304B2
Authority
JP
Japan
Prior art keywords
emitting device
fine particles
type electron
electron
mim type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12695788A
Other languages
Japanese (ja)
Other versions
JPH01298623A (en
Inventor
一郎 野村
哲也 金子
嘉和 坂野
俊彦 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP12695788A priority Critical patent/JP2715304B2/en
Publication of JPH01298623A publication Critical patent/JPH01298623A/en
Application granted granted Critical
Publication of JP2715304B2 publication Critical patent/JP2715304B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/312Cold cathodes having an electric field perpendicular to the surface thereof
    • H01J2201/3125Metal-insulator-Metal [MIM] emission type cathodes

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電子放出素子、詳しくはMIM形の電子放出素
子に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electron-emitting device, and more particularly to an MIM-type electron-emitting device.

[従来の技術] 従来、簡単な構造で電子の放出が得られる素子とし
て、金属M1の表面に絶縁物薄膜I1を付け、その表面に金
属M2を薄く付けたいわゆるMIM形電子放出素子がある。
[Prior Art] Conventionally, as an element electron emission can be obtained with a simple structure, the surface of the metal M 1 with an insulator film I 1, thin with so-called MIM type electron-emitting device to the metal M 2 on the surface thereof There is.

従来のMIM形電子放出素子と駆動回路の概略的構成図
を第1図に示す。1は基板、2は金属M1、3は絶縁体薄
膜、4は金属M2、5は金属M1と金属M2に電圧を印加する
為の電源、6は金属M2の表面から放出される電子であ
る。
FIG. 1 shows a schematic configuration diagram of a conventional MIM type electron-emitting device and a driving circuit. 1 is a substrate, 2 is a metal M 1 , 3 is an insulator thin film, 4 is a metal M 2 , 5 is a power supply for applying a voltage to the metal M 1 and the metal M 2 , 6 is emitted from the surface of the metal M 2 Electrons.

MIM形電子放出素子は、金属M2側が正極になるように
素子に電圧を印加し、金属M1から絶縁体薄膜中に電子を
注入し、注入した電子を絶縁体中で加速し、金属M2を通
して電子放出せしめるものである。
MIM type electron-emitting devices, metal M 2 side by applying a voltage to the device so that the positive electrode, electrons are injected from the metal M 1 in the insulator thin film, accelerated electrons injected in the insulator, the metal M Electrons are emitted through 2 .

一般に、このような素子において、金属M2の厚さは、
電子放出電流を得る為に、数十〜数百Åにする必要があ
る。また絶縁体薄膜3の厚さは数十Å〜300Åの薄いも
のと、数百Å〜数ミクロンの厚いものがある。
Generally, in such devices, the thickness of the metal M 2,
In order to obtain an electron emission current, it needs to be several tens to several hundreds of square meters. The thickness of the insulating thin film 3 may be as thin as several tens of mm to 300 mm or as thick as several hundred mm to several microns.

絶縁体薄膜3の厚さが薄いMIM形電子放出素子の絶縁
体薄膜の製造法は、金属M1の材料としてAl材料を用い、
このAl金属の表面を熱酸化または陽極酸化を施すること
によりAl2O3の絶縁体薄膜を設けていた。この絶縁体薄
膜の厚さはひじょうに薄く、欠陥のない一様な膜質が要
求される為、実用的には上述した方法に限定されてい
る。
Preparation of the insulator thin film is thin MIM type electron emission device the thickness of the insulating thin film 3, an Al material as a material of the metal M 1,
By subjecting the surface of the Al metal to thermal oxidation or anodic oxidation, an insulating thin film of Al 2 O 3 was provided. Since the thickness of the insulator thin film is very thin and uniform film quality without defects is required, the method is practically limited to the above-described method.

絶縁体薄膜3の厚いMIM形電子放出素子は単に第1図
に示すような素子を製造しても電子放出は得られず、上
部金属M2が正極になるように金属M1と金属M2間に電圧を
印加するフォーミング処理を必要とする。このフォーミ
ング処理は、絶縁破壊とは異なり、電極物質の絶縁体薄
膜中への拡散、絶縁体中での結晶化、絶縁体組成の化学
量論的なズレ等の説があるがいまだ解明されていない。
このように非可逆的なフォーミング処理を行う為には、
絶縁体薄膜の材料としてAl2O3,MnO2,SiO等の酸化物、Li
F,KF,MgF2,NaBr等のハロゲン化物、ZnS,CdS等の硫化
物、特定の有機化合物に限定され、金属M2の材料として
Au,Cu,Ag,Al等に限定される。
Thick MIM type electron-emitting device having an insulating thin film 3 is electron emission can not be obtained even by merely producing device as shown in FIG. 1, a metal so that the top metal M 2 is a positive electrode M 1 and the metal M 2 A forming process for applying a voltage therebetween is required. Unlike the dielectric breakdown, this forming process has theories such as diffusion of the electrode material into the insulator thin film, crystallization in the insulator, and stoichiometric deviation of the insulator composition, but is still unclear. Absent.
In order to perform such irreversible forming processing,
Oxides such as Al 2 O 3 , MnO 2 , SiO, Li
F, KF, halides such as MgF 2, NaBr, ZnS, a sulfide such as CdS, limited to certain organic compounds, as the material of the metal M 2
It is limited to Au, Cu, Ag, Al, etc.

一般にMIM形電子放出素子は、電極M1,M2に印加する電
圧に対し指数関数的に電子放出電流が得られる。
Generally, in the MIM type electron-emitting device, an electron emission current is obtained exponentially with respect to a voltage applied to the electrodes M 1 and M 2 .

[発明が解決しようとする課題] しかしながら、上記のようなMIM形電子放出素子は素
子構造が簡単であるという利点があるにもかからず次の
ような欠点がある為産業上積極的に応用されるには至っ
ていなかった。
[Problems to be Solved by the Invention] However, the MIM-type electron-emitting device as described above has the following disadvantages in spite of the advantage that the device structure is simple, and thus is actively applied in industry. It had not been done.

先ず絶縁体膜が薄いMIM形電子放出素子の問題点とし
て絶縁体膜が薄い為絶縁破壊が生じ易い、素子に印加す
る電圧が低い為充分な放出電流が得られない、素子の製
造上金属M1と絶縁体薄膜の材料がそれぞれAlとAl2O3
限定され素子設計上の融通性がない、といった点が挙げ
られる。次に絶縁体膜が厚いMIM形電子放出素子の問題
点としてはフォーミング処理の制御性が悪い為素子を再
現性良く製造することが難しくバラツキも生じ易い、フ
ォーミング処理のできる絶縁体膜と金属M2の材料が上述
したように限定される、といった点である。
First, the problem of the MIM type electron-emitting device having a thin insulator film is that a thin insulator film easily causes dielectric breakdown, and a voltage applied to the device is low, so that a sufficient emission current cannot be obtained. 1 and the material of the insulator thin film are limited to Al and Al 2 O 3 , respectively, and there is no flexibility in element design. Next, the problem with the MIM type electron-emitting device having a thick insulator film is that it is difficult to manufacture the device with good reproducibility because the controllability of the forming process is poor, and it is easy for variations to occur. The second material is limited as described above.

[問題点を解決するための手段及び作用] 本発明は、比較的厚い絶縁体膜中に微粒子を分散させ
ることにより上述問題点を解決するものである。即ち、
本発明は、相対向する2枚の電極間に導電性材料の微粒
子を含む絶縁体膜が設けられ、かつ、2枚の電極の一方
が電子放出部となっていることを特徴とするMIM形電子
放出素子を提供するものである。本発明のように絶縁体
膜中に導電性材料の微粒子を分散させておくと、絶縁体
膜を厚くしてもフォーミングをすることなく電子の放出
を得ることができ、しかも絶縁体膜を厚くできるので、
高い電圧、具体的には10V以上の電圧印加による十分な
放出電流が得られるものである。
[Means and Actions for Solving Problems] The present invention solves the above problems by dispersing fine particles in a relatively thick insulator film. That is,
The MIM type according to the present invention is characterized in that an insulator film containing fine particles of a conductive material is provided between two opposing electrodes, and one of the two electrodes serves as an electron emitting portion. An electron-emitting device is provided. When fine particles of a conductive material are dispersed in an insulator film as in the present invention, electrons can be emitted without forming even if the insulator film is made thicker, and the insulator film is made thicker. So you can
A sufficient emission current can be obtained by applying a high voltage, specifically, a voltage of 10 V or more.

第2図は、本発明による電子放出素子の第1実施形態
を示す概略的模式図である。
FIG. 2 is a schematic diagram showing a first embodiment of the electron-emitting device according to the present invention.

同図において、7はガラス等の絶縁基板、8は電圧印
加用の電極、9は微粒子11を含む絶縁体膜、10は電圧印
加用の電極である。
In the figure, 7 is an insulating substrate such as glass, 8 is an electrode for applying a voltage, 9 is an insulator film containing fine particles 11, and 10 is an electrode for applying a voltage.

第3図は素子を上から見た概略的模式図である。 FIG. 3 is a schematic diagram showing the element viewed from above.

同図において、12は電子放出部である。絶縁体膜9は
電子放出部12より広い面積に設けた。又電子放出部12は
電極8と重なり合った電極10部分に形成される。
In the figure, reference numeral 12 denotes an electron emitting unit. The insulator film 9 is provided in an area larger than the electron emitting portion 12. Further, the electron emission portion 12 is formed in a portion of the electrode 10 overlapping with the electrode 8.

絶縁体膜9中に分散されている微粒子11の粒径は数十
Å〜数μm、望ましくは1000Å以下で、さらに微粒子の
間隔は数10Å〜数1000Åの範囲で形成されるとよい。又
絶縁体膜9の厚さは通常数10Å〜数μmが適当である。
The particle size of the fine particles 11 dispersed in the insulator film 9 is preferably several tens of μm to several μm, and more preferably 1000 ° or less, and the interval between the fine particles is preferably set to several tens to several thousand degrees. The appropriate thickness of the insulator film 9 is usually several tens to several micrometers.

本発明で用いられる微粒子の材料は非常に広い範囲に
および通常の金属、半金属、半導体といった導電性材料
のほとんど全てを使用可能である。
The material of the fine particles used in the present invention can be used in a very wide range and almost all conductive materials such as ordinary metals, metalloids and semiconductors can be used.

こうした材料から必要とする目的に応じて適宜材料を
選んで微粒子として用いることにより、所望の電子放出
素子を形成することができる。
A desired electron-emitting device can be formed by appropriately selecting a material from these materials according to a required purpose and using the material as fine particles.

具体的にはNb,Mo,Rh,Hf,Ta,W,Re,Ir,Pt,Ti,Au,Ag,Cu,
Cr,Al,Co,Ni,Fe,Pb,Pd,Cs,Baなどの金属、LaB6,CeB6,YB
4,GdB4などの硼化物、TiC,ZrC,HfC,TaC,SiC,Wcなどの炭
化物、TiN,ZrN,HfNなどの窒化物、In2O3,SuO2,Sb2O3
どの金属酸化物、Si,Geなどの半導体、カーボン、AgMg
などを一例として挙げることができる。なお本発明は上
記材料に限定されるものではない。
Specifically, Nb, Mo, Rh, Hf, Ta, W, Re, Ir, Pt, Ti, Au, Ag, Cu,
Metals such as Cr, Al, Co, Ni, Fe, Pb, Pd, Cs, Ba, LaB 6 , CeB 6 , YB
4, borides such GdB 4, TiC, ZrC, HfC , TaC, SiC, carbides such as Wc, TiN, ZrN, nitrides such as HfN, metal oxides such as In 2 O 3, SuO 2, Sb 2 O 3 Object, semiconductor such as Si, Ge, carbon, AgMg
Can be cited as an example. The present invention is not limited to the above materials.

微粒子を含む絶縁体膜を形成するには、所望材料の微
粒子の分散液を回転塗布、ディッピング等の手法で基板
等に塗布し、加熱処理で溶剤,バインダー等を除去する
塗布法が最も簡便である。この場合に微粒子の粒径、含
量、塗布条件等を調整することにより、その分散の分布
状態を容易に制御することができる。
In order to form an insulator film containing fine particles, the simplest method is to apply a dispersion of fine particles of a desired material to a substrate or the like by spin coating, dipping, or the like, and remove a solvent, a binder, and the like by heat treatment. is there. In this case, by adjusting the particle size, content, application conditions and the like of the fine particles, the distribution state of the dispersion can be easily controlled.

[実施例] 実施例1 実施例により塗布による微粒子の分散の具体的な製造
方法を以下に示す。
[Example] Example 1 A specific production method of dispersion of fine particles by coating according to an example will be described below.

まず、清浄なガラス,セラミックス等の絶縁基板7の
上に、電圧印加用の電極8を形成する。通常の真空堆積
法とフォトリソグラフィーの手法又は印刷法等で行うこ
とができる。
First, an electrode 8 for applying a voltage is formed on an insulating substrate 7 made of clean glass, ceramics or the like. It can be performed by a usual vacuum deposition method and a photolithography method, a printing method, or the like.

電極材としては一般的な導電性材料、Au,Pt,Ag等の金
属の他、SnO2,ITO等の酸化物導電性材料でも使用でき
る。電極8の厚みは数100Åから数μm程度が適当であ
るが、この数値に限るものではない。本発明ではAuによ
り形成した。また、電極の幅はある数値範囲に限定され
るものではないが本実施例では1.5mmで形成した。
As the electrode material, a general conductive material, a metal such as Au, Pt, or Ag, or an oxide conductive material such as SnO 2 or ITO can be used. The thickness of the electrode 8 is suitably about several hundreds of degrees to about several μm, but is not limited to this value. In the present invention, it is formed of Au. Further, the width of the electrode is not limited to a certain numerical range, but in this example, the width was 1.5 mm.

絶縁体の材料は特に限定されるものではないが、絶縁
耐圧の高い材料が望ましく、106ボルト/cmの電界強度で
絶縁破壊しないものが好適である。こうした材料とし
て、SiO2,Al2O3、SiO2を主成分とする絶縁体、Al2O3
主成分とする絶縁体などが用いることができる。
Material of the insulating member is not particularly limited, but preferably high withstand voltage material, it is preferable that no dielectric breakdown electric field strength of 10 6 volts / cm. As such a material, SiO 2 , Al 2 O 3 , an insulator containing SiO 2 as a main component, an insulator containing Al 2 O 3 as a main component, or the like can be used.

次に電極8上に微粒子を含む絶縁体膜を形成する方法
を説明する。
Next, a method of forming an insulating film containing fine particles on the electrode 8 will be described.

分散液は、SiO2液体コーティング剤(東京応化工業製
OCD)にAu微粒子を混合し、SiO2:Auのモル比を約10:1に
調整して製造した。Au微粒子の粒径は500Å以下のもの
を用いた。この分散液をスピンコート法で電極8上に塗
布した。その後約400℃で1時間焼成し、膜厚3000ÅのA
u微粒子を分散した絶縁体膜9を形成した。ここで実際
には絶縁基板7上にも絶縁体膜9が形成されるが、これ
らは何ら素子特性に影響を与えるものではない。
The dispersion liquid is a SiO 2 liquid coating agent (Tokyo Ohka Kogyo Co., Ltd.)
OCD) was mixed with Au fine particles, and the molar ratio of SiO 2 : Au was adjusted to about 10: 1 for production. Au fine particles having a particle size of 500 mm or less were used. This dispersion was applied on the electrode 8 by spin coating. After that, it is baked at about 400 ° C for 1 hour.
u An insulating film 9 in which fine particles were dispersed was formed. Here, the insulator film 9 is actually formed on the insulating substrate 7, but these do not affect the element characteristics at all.

次に電極10を絶縁体膜9上に通常の真空堆積法とフォ
トリソグラフィーの手法により形成した。電極材として
Au,Pt,Ag,Al等の金属の他、SnO2,ITO電極等の酸化物導
電材料でも使用できるが本発明ではAuにより形成した。
電極10の厚さは、薄い方が望ましいが、あまり薄すぎる
と電極としての機能を得ることができない。一般には数
十Å〜1000Åが望ましく、本発明では300Åで形成し
た。
Next, an electrode 10 was formed on the insulator film 9 by a usual vacuum deposition method and a photolithography method. As an electrode material
In addition to metals such as Au, Pt, Ag, and Al, oxide conductive materials such as SnO 2 and ITO electrodes can be used, but in the present invention, they were formed of Au.
The thickness of the electrode 10 is desirably thin, but if it is too thin, the function as an electrode cannot be obtained. In general, the thickness is preferably several tens to 1000 degrees, and in the present invention, it was formed at 300 degrees.

本発明では電子放出部12の面積を1mm角に形成した。 In the present invention, the area of the electron emitting portion 12 is formed to be 1 mm square.

以上の工程により作製された素子を1×10-5Torr以上
の真空下に置き先に述べた電極8,10に電圧を印加し、電
子放出の特性を検討した。
The device manufactured by the above steps was placed under a vacuum of 1 × 10 −5 Torr or more, a voltage was applied to the electrodes 8 and 10 described above, and the electron emission characteristics were examined.

従来の素子においては、絶縁破壊が生じ易くまた数10
%も特性がばらつく例が多かったが、本発明の素子は、
素子間のばらつきが小さく、15Vの電圧を印加して放出
電流2.5μAが安定に得られた。また本素子に電圧18Vを
印加しても絶縁破壊が生じない、きわめて絶縁耐圧が高
い素子であることがわかった。
In conventional devices, dielectric breakdown is likely to occur and
% In many cases, the characteristics of the device of the present invention are:
The variation between the elements was small, and the emission current of 2.5 μA was stably obtained by applying a voltage of 15V. In addition, it was found that the element did not cause dielectric breakdown even when a voltage of 18 V was applied to the element, and was an element having an extremely high withstand voltage.

本発明の素子は微粒子の材料や大きさ、微粒子密度、
電極材料、絶縁体薄膜の材料等を変化させるとそれぞれ
の条件に応じて電子放出特性の異なる素子が再現性良く
作成できることがわかった。
The element of the present invention is a material and size of fine particles, fine particle density,
It was found that by changing the electrode material, the material of the insulating thin film, and the like, elements having different electron emission characteristics can be produced with good reproducibility according to the respective conditions.

本実施例において金の微粒子を用いたが、これに限定
されるものではなく、上述したように他の金属あるいは
半導体の微粒子においても同様な結果が期待できる。
In the present embodiment, gold fine particles are used, but the present invention is not limited to this. Similar results can be expected with other metal or semiconductor fine particles as described above.

実施例2 次に本発明の第2の実施例を説明する。Embodiment 2 Next, a second embodiment of the present invention will be described.

絶縁体膜9の形成方法として、SiO2等の液体コーティ
ング剤に有機金属化合物の溶液を電極8上に塗布した
後、熱分解によって半導体の金属酸化物や金属の微粒子
を絶縁体膜中に形成する手法も用いた。一例としては、
カプリル酸スズ(C7H15COO)2Sn,ジイソアシロキシエト
キシアンチモンC2H5O(C5H11O)2Sbの熱分解によってそ
れぞれSnO2,Sb2O3の微粒子を形成したり、有機パラジウ
ム化合物からPd微粒子を形成する例などを挙げることが
できる。
As a method for forming the insulating film 9, a solution of an organometallic compound is applied to a liquid coating agent such as SiO 2 on the electrode 8, and then a semiconductor metal oxide or fine metal particles are formed in the insulating film by thermal decomposition. We also used a technique to do this. As an example,
Fine particles of SnO 2 and Sb 2 O 3 are formed by thermal decomposition of tin caprylate (C 7 H 15 COO) 2 Sn and diisoacyloxyethoxyantimony C 2 H 5 O (C 5 H 11 O) 2 Sb, respectively. Examples of forming Pd fine particles from an organic palladium compound can be given.

具体的に示すとSiO2液体コーティング剤に有機パラジ
ウム化合物とPd金属換算比率で0.2%含む酢酸ブチル溶
液(奥野製薬工業製キャタペーストCCP−4230)を混合
した。混合する割合はSiO2:Pdのモル比を約10:1にし
た。次に実施例1と同様この混合分散液を電極8上に塗
布、熱処理(250℃前後)して約500Å程度の微粒子を含
む絶縁体膜9を形成した。
Specifically, an organic palladium compound and a butyl acetate solution (catapaste CCP-4230 manufactured by Okuno Pharmaceutical Co., Ltd.) containing 0.2% in terms of Pd metal were mixed with the SiO 2 liquid coating agent. The mixing ratio was such that the molar ratio of SiO 2 : Pd was about 10: 1. Next, in the same manner as in Example 1, this mixed dispersion was applied onto the electrode 8 and heat-treated (around 250 ° C.) to form an insulator film 9 containing fine particles of about 500 °.

前記と同様に特性を測定したところ、16Vの印加電圧
で放出電流1.2μAが安定に得られた。また有機パラジ
ウム化合物の濃度や熱処理温度を変えると、放出電流の
値を再現よく変化させることができた。
When the characteristics were measured in the same manner as described above, an emission current of 1.2 μA was stably obtained at an applied voltage of 16 V. When the concentration of the organic palladium compound and the heat treatment temperature were changed, the value of the emission current could be changed with good reproducibility.

実施例3 本発明の第3の実施例である絶縁体膜9の形成方法を
説明する。絶縁体膜9の形成方法としてプラズマや熱CV
D法等によるSiO2等の真空堆積法がある。この時堆積膜
材料のガス種やガス量,比を適当に選ぶことによって堆
積中に電気的導体あるいは、半導体の微粒子が発生し膜
内に分散された絶縁体膜9が得られる。
Embodiment 3 A method for forming an insulator film 9 according to a third embodiment of the present invention will be described. Plasma or thermal CV is used as a method of forming the insulator film 9.
There is a vacuum deposition method of SiO 2 or the like by the D method or the like. At this time, by appropriately selecting the gas species, gas amount, and ratio of the deposited film material, an insulating film 9 in which fine particles of an electric conductor or a semiconductor are generated during deposition and dispersed in the film can be obtained.

ここで絶縁体膜と電気的導体あるいは半導体の微粒子
材は特に限定されるものではなく、CVD法等の真空堆積
法で形成されるものであれば同様な結果が得られる。
Here, the insulator film and the fine particles of the electric conductor or semiconductor are not particularly limited, and similar results can be obtained as long as they are formed by a vacuum deposition method such as a CVD method.

具体的に示すと、電極8上にN2OガスとSiH4ガスを流
量比をN2O:SiH4=3:1から50:1の範囲として約700℃の加
熱状態でプラズマCVDにより粒径が約100Å以下のSiを1
%から15%含むSiO2絶縁体膜9を形成した。膜厚は約30
00Åで形成した。
More specifically, N 2 O gas and SiH 4 gas are applied on the electrode 8 at a flow rate ratio of N 2 O: SiH 4 = 3: 1 to 50: 1 by plasma CVD at a heating temperature of about 700 ° C. 1 Si with a diameter of about 100 mm or less
% To 15% of the SiO 2 insulator film 9 was formed. The film thickness is about 30
Formed at 00 °.

本実施例における電子放出素子においてその特性を検
討したところ、13Vの印加電圧で放出電流が約0.1μA得
られた。
When the characteristics of the electron-emitting device of this example were examined, an emission current of about 0.1 μA was obtained at an applied voltage of 13 V.

また、本実施例において、SiO2絶縁体膜9中のSiの量
や、成膜時の温度によって電子放出特性を制御できる。
Further, in this embodiment, the electron emission characteristics can be controlled by the amount of Si in the SiO 2 insulator film 9 and the temperature at the time of film formation.

[発明の効果] 以上説明したように、MIM形電子放出素子の絶縁体膜
中に微粒子を分散させた比較的厚い絶縁体膜を形成する
ことにより、次のようの効果が得られた。
[Effects of the Invention] As described above, the following effects are obtained by forming a relatively thick insulator film in which fine particles are dispersed in the insulator film of the MIM-type electron-emitting device.

絶縁破壊が生じにくい為、歩留りや再現性が改善され
た。
Yield and reproducibility were improved because insulation breakdown was hard to occur.

10V以上の電圧を素子に印加できる為高い放出電流が
得られた。
Since a voltage of 10 V or more can be applied to the device, a high emission current was obtained.

電極材や絶縁体膜材および微粒子材の材質が限定され
ない為、素子設計の幅が広がった。
Since the materials of the electrode material, the insulator film material, and the fine particle material are not limited, the range of element design has been widened.

フォーミング処理を必要としない為、電子放出特性の
制御や、材料の選択範囲で広がった。
Since no forming process is required, control over electron emission characteristics and selection of materials have been expanded.

【図面の簡単な説明】[Brief description of the drawings]

第1図は従来のMIM形電子放出素子と駆動回路を示す概
略的な構成図である。第2図は本発明によるMIM形電子
放出素子の概略的模式図である。第3図は本発明による
MIM形電子放出素子を上から見た概略的模式図である。 1……基板、2……電極 3……絶縁体薄膜、4……電極 5……電源、6……電子、7……絶縁基板 8……電極、9……絶縁体膜、10……電極、11……微粒
子、12……電子放出部
FIG. 1 is a schematic configuration diagram showing a conventional MIM type electron-emitting device and a driving circuit. FIG. 2 is a schematic diagram of a MIM type electron-emitting device according to the present invention. FIG. 3 is according to the invention.
It is the schematic model which looked at the MIM type electron emission element from the top. DESCRIPTION OF SYMBOLS 1 ... Board | substrate 2, ... Electrode 3 ... Insulator thin film 4, ... Electrode 5 ... Power supply, 6 ... Electron, 7 ... Insulating substrate 8 ... Electrode, 9 ... Insulator film, 10 ... Electrode, 11: Fine particles, 12: Electron emission part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 武田 俊彦 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (56)参考文献 特開 昭63−91925(JP,A) 特開 昭63−4532(JP,A) 特公 昭44−17051(JP,B1) ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Toshihiko Takeda 3-30-2 Shimomaruko, Ota-ku, Tokyo Inside Canon Inc. (56) References JP-A-63-91925 (JP, A) JP-A-63 −4532 (JP, A) JP44-17051 (JP, B1)

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】相対向する2枚の電極間に導電性材料の微
粒子を含む絶縁体膜が設けられ、かつ、2枚の電極の一
方が電子放出部となっていることを特徴とするMIM形電
子放出素子。
An MIM characterized in that an insulating film containing fine particles of a conductive material is provided between two opposing electrodes, and one of the two electrodes is an electron emitting portion. Type electron-emitting device.
【請求項2】微粒子が金属である請求項1記載のMIM形
電子放出素子。
2. The MIM type electron-emitting device according to claim 1, wherein the fine particles are metal.
【請求項3】微粒子が半導体である請求項1記載のMIM
形電子放出素子。
3. The MIM according to claim 1, wherein the fine particles are semiconductors.
Type electron-emitting device.
【請求項4】微粒子が平均粒径1000Å以下の超微粒子で
ある請求項1記載のMIM形電子放出素子。
4. The MIM type electron-emitting device according to claim 1, wherein the fine particles are ultrafine particles having an average particle diameter of 1000 ° or less.
【請求項5】微粒子を含む絶縁体膜が塗布法によって形
成されている請求項1〜4いずれかに記載のMIM形電子
放出素子。
5. The MIM type electron-emitting device according to claim 1, wherein the insulating film containing the fine particles is formed by a coating method.
【請求項6】微粒子を含む絶縁体膜が真空堆積法によっ
て形成されている請求項1〜4いずれかに記載のMIM形
電子放出素子。
6. The MIM type electron-emitting device according to claim 1, wherein the insulator film containing the fine particles is formed by a vacuum deposition method.
【請求項7】微粒子が有機化合物の熱分解により形成さ
れている請求項1〜4いずれかに記載のMIM型電子放出
素子。
7. The MIM type electron-emitting device according to claim 1, wherein the fine particles are formed by thermal decomposition of an organic compound.
【請求項8】10V以上の電圧が印加されることを特徴と
する請求項1〜7いずれかに記載のMIM形電子放出素
子。
8. The MIM type electron-emitting device according to claim 1, wherein a voltage of 10 V or more is applied.
JP12695788A 1988-05-26 1988-05-26 MIM type electron-emitting device Expired - Fee Related JP2715304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12695788A JP2715304B2 (en) 1988-05-26 1988-05-26 MIM type electron-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12695788A JP2715304B2 (en) 1988-05-26 1988-05-26 MIM type electron-emitting device

Publications (2)

Publication Number Publication Date
JPH01298623A JPH01298623A (en) 1989-12-01
JP2715304B2 true JP2715304B2 (en) 1998-02-18

Family

ID=14948080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12695788A Expired - Fee Related JP2715304B2 (en) 1988-05-26 1988-05-26 MIM type electron-emitting device

Country Status (1)

Country Link
JP (1) JP2715304B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000074098A1 (en) * 1999-05-28 2000-12-07 Hitachi, Ltd. Thin-film electron source, display and device

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4303308B2 (en) * 2007-11-20 2009-07-29 シャープ株式会社 Electron-emitting device, electron-emitting device, self-luminous device, image display device, air blower, cooling device, charging device, image forming device, electron beam curing device, and method for manufacturing electron-emitting device
WO2009066723A1 (en) * 2007-11-20 2009-05-28 Sharp Kabushiki Kaisha Electron emitting element, electron emitting device, light emitting device, image display, blower, cooling device, electrifying device, image forming device, electron beam curing device, and electron emitting element manufacturing method
JP4314307B1 (en) * 2008-02-21 2009-08-12 シャープ株式会社 Heat exchanger
US8299700B2 (en) 2009-02-05 2012-10-30 Sharp Kabushiki Kaisha Electron emitting element having an electron acceleration layer, electron emitting device, light emitting device, image display device, cooling device, and charging device
JP4917121B2 (en) * 2009-03-06 2012-04-18 シャープ株式会社 Electron-emitting device, electron-emitting device, self-luminous device, image display device, cooling device, and charging device
CN101814405B (en) 2009-02-24 2012-04-25 夏普株式会社 Electron emitting element, method for producing electron emitting element and each device using the same
JP4768051B2 (en) * 2009-05-14 2011-09-07 シャープ株式会社 Manufacturing method of electron-emitting device, electron-emitting device, electron-emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display device, blower device, cooling device
JP4768050B2 (en) * 2009-05-14 2011-09-07 シャープ株式会社 Electron-emitting device, electron-emitting device, self-luminous device, image display device, air blower, cooling device, charging device, image forming device, electron beam curing device, and electron-emitting device manufacturing method
JP4932864B2 (en) * 2009-02-24 2012-05-16 シャープ株式会社 Electron-emitting device, electron-emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display device, blower, cooling device, and method for manufacturing electron-emitting device
JP2010244738A (en) * 2009-04-02 2010-10-28 Sharp Corp Electron emission element and its manufacturing method
JP2010244735A (en) * 2009-04-02 2010-10-28 Sharp Corp Electron emission element and its manufacturing method
JP5133295B2 (en) * 2009-04-23 2013-01-30 シャープ株式会社 Electron emission apparatus, self-luminous device, image display apparatus, charging apparatus, image forming apparatus, electron beam curing apparatus, and driving method of electron emission element
JP4732533B2 (en) 2009-05-19 2011-07-27 シャープ株式会社 Electron-emitting device and manufacturing method thereof, and electron-emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display device, blower, and cooling device
JP4777448B2 (en) 2009-05-19 2011-09-21 シャープ株式会社 Electron emitting device, electron emitting device, self-luminous device, image display device, blower device, cooling device, charging device, image forming device, and electron beam curing device
JP4732534B2 (en) * 2009-05-19 2011-07-27 シャープ株式会社 Electron emitting element, electron emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display device, blower, cooling device
CN101930884B (en) 2009-06-25 2012-04-18 夏普株式会社 Electron emitting element and method for producing electron emitting element, electron emitting device, self luminescence device and image display device
JP4880740B2 (en) 2009-12-01 2012-02-22 シャープ株式会社 Electron-emitting device and manufacturing method thereof, and electron-emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display device, blower, and cooling device
JP5033892B2 (en) 2010-02-24 2012-09-26 シャープ株式会社 Electron-emitting device, electron-emitting device, self-luminous device, image display device, air blower, cooling device, charging device, image forming device, electron beam curing device, and method for manufacturing electron-emitting device
JP5050074B2 (en) 2010-04-02 2012-10-17 シャープ株式会社 Electron emitting device and manufacturing method thereof
JP5238795B2 (en) 2010-11-19 2013-07-17 シャープ株式会社 Electron emitting device and driving method thereof
JP6016475B2 (en) * 2012-06-27 2016-10-26 シャープ株式会社 Electron emitter
CN109478485B (en) 2016-07-21 2021-02-02 夏普株式会社 Electron emitting element, charging device, and image forming apparatus
JP7130202B2 (en) * 2018-03-06 2022-09-05 盛敏 小野 electronic transfer device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000074098A1 (en) * 1999-05-28 2000-12-07 Hitachi, Ltd. Thin-film electron source, display and device
KR100689919B1 (en) * 1999-05-28 2007-03-09 가부시키가이샤 히타치세이사쿠쇼 Thin-film electron source, display and device

Also Published As

Publication number Publication date
JPH01298623A (en) 1989-12-01

Similar Documents

Publication Publication Date Title
JP2715304B2 (en) MIM type electron-emitting device
US4954744A (en) Electron-emitting device and electron-beam generator making use
US5661362A (en) Flat panel display including electron emitting device
JP3241613B2 (en) Electron emitting element, electron source, and method of manufacturing image forming apparatus
US5023110A (en) Process for producing electron emission device
EP0299461B1 (en) Electron-emitting device
EP1009009B1 (en) Electron-emitting device, electron source using the electron-emitting devices, and image-forming apparatus using the electron source
JPH0687392B2 (en) Method for manufacturing electron-emitting device
JP2715312B2 (en) Electron emitting device, method of manufacturing the same, and image display device using the electron emitting device
JP2608295B2 (en) Electron-emitting device
USRE41086E1 (en) Electron source substrate, production method thereof, and image forming apparatus using electron source substrate
KR100362972B1 (en) Methods for producing electron-emitting device, electron source, and image-forming apparatus
JPH01200532A (en) Electron emission element and manufacture thereof
JP2946153B2 (en) Method for manufacturing electron-emitting film and electron-emitting device
USRE40566E1 (en) Flat panel display including electron emitting device
JPS63184230A (en) Electron emission element
JPH0193024A (en) Electron emitting element
JP2961477B2 (en) Electron emitting element, electron beam generator, and method of manufacturing image forming apparatus
JP2727193B2 (en) Method for manufacturing electron-emitting device
JPH0765703A (en) Electron emission element and its manufacture
JPH0797474B2 (en) Electron-emitting device and manufacturing method thereof
JPH07123023B2 (en) Electron-emitting device and manufacturing method thereof
JPH0945230A (en) Formation method for conductive film, and manufacture of electron emitting element
JPH0945223A (en) Electron emitting element, and electron beam generator, and image forming device
JP2001216890A (en) Electron-emissive element, electron source using the same, and method of manufacturing image-forming device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees