JP2714735B2 - Large diameter rod made of organic synthetic fiber - Google Patents

Large diameter rod made of organic synthetic fiber

Info

Publication number
JP2714735B2
JP2714735B2 JP4151166A JP15116692A JP2714735B2 JP 2714735 B2 JP2714735 B2 JP 2714735B2 JP 4151166 A JP4151166 A JP 4151166A JP 15116692 A JP15116692 A JP 15116692A JP 2714735 B2 JP2714735 B2 JP 2714735B2
Authority
JP
Japan
Prior art keywords
rod
fiber
organic synthetic
diameter
synthetic fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4151166A
Other languages
Japanese (ja)
Other versions
JPH05321118A (en
Inventor
勝 館山
幸彦 田村
厚生 福田
茂 吉田
上  周史
正樹 岡崎
勉 江部
志郎 近藤
馬屋原光郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Kuraray Co Ltd
Tenox Corp
Tokyu Construction Co Ltd
Original Assignee
Railway Technical Research Institute
Kuraray Co Ltd
Tenox Corp
Tokyu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute, Kuraray Co Ltd, Tenox Corp, Tokyu Construction Co Ltd filed Critical Railway Technical Research Institute
Priority to JP4151166A priority Critical patent/JP2714735B2/en
Publication of JPH05321118A publication Critical patent/JPH05321118A/en
Application granted granted Critical
Publication of JP2714735B2 publication Critical patent/JP2714735B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Nonwoven Fabrics (AREA)
  • Reinforcement Elements For Buildings (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は有機合成繊維から構成さ
れた太径ロッドに関するものである。特に、土木、建設
分野に好適な補強材用太径ロッドに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a large-diameter rod made of an organic synthetic fiber. In particular, the present invention relates to a large-diameter rod for a reinforcing material suitable for civil engineering and construction.

【0002】[0002]

【従来技術】土木、建設の補強材としては、日本農林規
格で定められている建築用材、正角材、平角材、正割
材、平割材、板材、集成材、合板、竹などが、また鉄材
としての異型鉄筋や異形鋼なども利用されている。ま
た、合成繊維の補強材としては、有機、無機の合成繊維
を引き揃えて合成樹脂含浸により硬化させた棒状のFR
Pが有るが、生産上の問題から平均直径が20mm以下
のものしか作れなかった。
2. Description of the Related Art Civil engineering and construction reinforcement materials include building materials, square beams, flat beams, split materials, flat materials, plate materials, laminated materials, plywood, bamboo, etc. as defined by Japanese Agricultural Standards. Deformed rebars and deformed steels are also used as iron materials. Further, as a reinforcing material for synthetic fibers, a rod-shaped FR obtained by aligning organic and inorganic synthetic fibers and curing by impregnation with a synthetic resin.
Although there was P, only those having an average diameter of 20 mm or less could be produced due to production problems.

【0003】[0003]

【発明が解決しようとする課題】補強材としての建築用
材、正角材、平角材、正割材、平割材、板材、集成材、
合板、竹などは、軽量でどこでも容易に入手でき、かつ
経済性にも富んでいる利点はあるものの、使う時天然物
であるため均質な材料で長尺物を得ることができない。
又セルローズ繊維からなるため、吸水性が大きく、かつ
耐薬品性や、乾燥湿潤等による腐触や劣化が起るため土
木用構造材としての長期的信頼性が欠けるなどの欠点が
ある。
[Problems to be solved by the invention] Building materials, square beams, flat bars, split bars, flat bars, plate materials, laminated materials,
Plywood, bamboo, and the like have the advantage of being lightweight and easily available anywhere and being economical, but cannot be used to obtain a long product with a homogeneous material because they are natural products.
In addition, since it is made of cellulose fiber, it has high water absorption, chemical resistance, corrosion and deterioration due to drying and wetting, and the like, and thus has the disadvantage of lacking long-term reliability as a structural material for civil engineering.

【0004】一方、鉄材としての異型鉄筋や異形鋼など
は強度や弾性率が高いものの、重いために取扱いの面か
ら安全性、働労力の点から嫌われている。更に大きな欠
点は錆が発生するためにコンクリート中や、酸性、アル
カリ性、塩を含む水や土壌中、又、電気の発生する電気
軌道、路床等の補強用鉄筋はその極部電池の生成により
錆を発生し、コンクリートとの付着を悪化し、コンクリ
ートにひび割れを発生し、鉄筋の補強性は失なわれると
いう最大の欠点を有している。
[0004] On the other hand, deformed rebars and deformed steels as iron materials have high strength and elastic modulus, but are hesitant in terms of handling and safety and labor because they are heavy. A further major drawback is that rust occurs in concrete, in water or soil containing acid, alkalinity, salt, or in electric rails or subgrades that generate electricity. Rust is generated, the adhesion to concrete is deteriorated, cracks are generated in concrete, and reinforcement of reinforcing steel is lost.

【0005】また、有機、無機の合成繊維を引き揃えて
合成樹脂含浸により硬化させた棒状のFRPの太径の棒
状物を作ろうとすると、現在のり網用のポールや物干ざ
おに用いられているガラス繊維を主体とした形物と呼ば
れる中空状の引抜き成形物となり太径で成型体の中心ま
で充実した繊維補強棒状体は得られていない。炭素繊維
を用いた棒状FRPはプレプリグにした炭素繊維を集束
し、その表面を合成繊維でラッピングして、更に撚線化
し、硬化して太径の炭素繊維棒状体を得ているものが市
販されているに過ぎない。有機合成繊維は太径化するた
めに繊維1本1本を一方向に均一に引き揃えるのが太く
なればなるほど均質性が欠け高強度が得にくいこと、次
に棒状体成型時合成樹脂の均一含浸性が損われること、
又、硬化が表面から中心部に均一に行きにくく、FRP
としての欠点部が発生するなどの欠点を有していた。
又、有機合成樹脂から作られるFRP棒状物はその腰の
強さ(弾性率)の点で鉄より劣っていた。
[0005] In addition, when trying to make a rod-shaped FRP rod having a large diameter made of organic and inorganic synthetic fibers aligned and cured by impregnation with a synthetic resin, it is used as a pole for a current gauze net or a clothesline. It is a hollow pultruded molded product called a molded product mainly composed of glass fiber, and a fiber-reinforced rod having a large diameter and a solid shape up to the center of the molded product has not been obtained. A rod-shaped FRP using carbon fiber is commercially available in which prepreg carbon fibers are bundled, the surface thereof is wrapped with synthetic fiber, further twisted, and cured to obtain a large-diameter carbon fiber rod. It's just that. In order to increase the diameter of the organic synthetic fiber, it is necessary to uniformly and uniformly lay each fiber in one direction in order to increase the diameter. Impaired impregnation,
In addition, it is difficult for curing to go uniformly from the surface to the center,
As a defect.
Further, FRP rods made of organic synthetic resins were inferior to iron in terms of their stiffness (elastic modulus).

【0006】[0006]

【本発明の目的】本発明は、有機合成繊維製太径ロッド
を提供することにある。更に、信頼性が高く、定着が確
実に行える有機合成繊維製太径ロッドを提供することに
ある。
An object of the present invention is to provide a large-diameter rod made of an organic synthetic fiber. Another object of the present invention is to provide a large-diameter rod made of an organic synthetic fiber which has high reliability and can reliably perform fixing.

【0007】[0007]

【問題点を解決するための手段】本発明は、有機合成繊
維製太径ロッドにおいて、有機合成繊維の多本数を引き
揃えた繊維束に合成樹脂を含浸硬化し、その表面に異形
加工した最大外径が3〜20mmの単線を中空パイプ状
物からなる芯材の外周へ平行に複数本束ねて、その最大
外径が20mm以上とすることを特徴とする有機合成繊
維製太径ロッド、又は、前記有機合成繊維製太径ロッド
において、有機合成繊維がポリビニルアルコール系、全
芳香族ポリエステル系、全芳香族アラミド系、ポリアク
リロニトリル系、ポリオレフィン系であることを特徴と
する有機合成繊維製太径ロッド、又は、前記有機合成繊
維製太径ロッドにおいて、芯材は、各種鉄鋼、ステンレ
ス鋼、アルミニウム等の金属、セラミックス、ガラス等
の無機材料、ポリ塩化ビニル、ポリカーボネート、ポリ
アミド、ポリオレフィン等の合成樹脂、または、ガラス
繊維やカーボン繊維よりなる繊維強化プラスチック材よ
り選ばれた材料よりなる中空パイプ状物であることを特
徴とする有機合成繊維製太径ロッド、又は、前記有機合
成繊維製太径ロッドにおいて、有機合成繊維よりなる表
面異形加工した最大外径が3〜20mmの単線を、別種
材料の芯材パイプ状物の外周に沿って最大本数以下の複
数本数を、合成樹脂接着剤又は帯、紐、テープ類で結束
し一体化することを特徴とする有機合成繊維製太径ロッ
ドにある。
SUMMARY OF THE INVENTION The present invention relates to a large-diameter rod made of an organic synthetic fiber, which is obtained by impregnating and curing a synthetic resin into a fiber bundle having a large number of organic synthetic fibers, and deforming the surface of the bundle. Hollow pipe shape of single wire with outer diameter of 3-20mm
A large-diameter rod made of an organic synthetic fiber or a large-diameter rod made of the organic synthetic fiber , wherein a plurality of bundles are bundled in parallel with the outer periphery of a core material made of a material, and a maximum outer diameter of the bundle is 20 mm or more.
In the organic synthetic fibers polyvinyl alcohol, wholly aromatic polyester, wholly aromatic aramid, polyacrylonitrile, synthetic organic fibers made large diameter rod, which is a polyolefin, or the organic synthesis fiber
In the large diameter rod made of fiber, the core material is various metals such as iron and steel, stainless steel and aluminum, inorganic materials such as ceramics and glass, synthetic resins such as polyvinyl chloride, polycarbonate, polyamide and polyolefin, or glass fiber and carbon. organic synthetic fibers large diameter rod, which is a hollow pipe-like material made of a material selected from fiber-reinforced plastic material made of fibers, or, the organic coupling
In a synthetic fiber large diameter rod, a single wire having a maximum outer diameter of 3 to 20 mm formed of an organic synthetic fiber having a surface deformed shape is synthesized along the outer periphery of a core material pipe- shaped material of a different material into a plurality of wires having a maximum number or less. A large-diameter rod made of an organic synthetic fiber, which is bound and integrated with a resin adhesive or a band, a string, a tape, or the like.

【0008】[0008]

【実施例】以下に実施例を説明する。 <イ>有機合成繊維 太径ロッドの有機合成繊維は、ポリビニルアルコール系
としては高強力ビニロン繊維、全芳香族ポリエステル繊
維(ポリアリレート繊維)はP−ヒドロキシ安息香酸と
6−ヒドロキシ−2−ナフトエ酸のもの、P,P′−ビ
スフェノールとテレフタール酸およびP−ヒドロキシ安
息香酸からのもの、芳香族ジカルボン酸と芳香族ジヒド
ロキシ化合物又は芳香族オキシカルボン酸からのもの、
2,6−ナフタレンジカルボン酸、2,6−ナフタレン
ジオール、6−ヒドロキシ−2−ナフトエ酸、及びそれ
らのエステル形成性化合物を主体とした化合物からのも
の等が利用できる。全芳香族ポリアミド系繊維としては
パラフェニレンフタールアミド(ケブラー、トワロ
ン)、芳香族系ポリエーテルアミド(テクノーラ)繊維
がある。高強度ポリアクリロニトリル(ドラン)や、高
強度ポリオレフィン繊維として高強度ポリエチレン繊維
が(ダイニーマ、テクミロン)が利用できる。この合成
繊維の所定の本数を一方向に引き揃えた繊維束を補強繊
維とする。この補強繊維の太さは使用に際する設計強力
又安全係数を加えた強力となるようにする。通常はロッ
ド状成形体の太さが2〜20mm、好ましくは3〜15
mmになる繊維束の太さである。
Embodiments will be described below. <A> Organic synthetic fiber The organic synthetic fiber of the large-diameter rod is a polyvinyl alcohol-based high-strength vinylon fiber, and a wholly aromatic polyester fiber (polyarylate fiber) is P-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid. , From P, P'-bisphenol and terephthalic acid and P-hydroxybenzoic acid, from aromatic dicarboxylic acids and aromatic dihydroxy compounds or aromatic oxycarboxylic acids,
For example, 2,6-naphthalenedicarboxylic acid, 2,6-naphthalenediol, 6-hydroxy-2-naphthoic acid, and compounds derived from ester-forming compounds thereof can be used. As the wholly aromatic polyamide fibers, there are paraphenylene phthalamide (Kevlar, Twaron) and aromatic polyetheramide (Technola) fibers. High-strength polyacrylonitrile (Doran) and high-strength polyethylene fibers (Dyneema, Tekmylon) can be used as the high-strength polyolefin fibers. A fiber bundle in which a predetermined number of the synthetic fibers are aligned in one direction is defined as a reinforcing fiber. The thickness of the reinforcing fiber should be designed to be strong in use and a design strength or safety factor added. Usually, the thickness of the rod-shaped molded body is 2 to 20 mm, preferably 3 to 15 mm.
mm is the thickness of the fiber bundle.

【0009】<ロ>樹脂 次に、ロッド状成形体を構成する樹脂は、熱可塑性樹脂
または熱硬化性樹脂から選ばれた、合成樹脂で、例え
ば、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエ
ステル系樹脂、ビニルアクリレート系樹脂、フェノール
樹脂、メラミン系樹脂、尿素樹脂などの熱硬化性樹脂、
ポリエチレンテレフタレート樹脂、メタクリル酸エステ
ル系樹脂、熱可塑性ポリエステル、ポリフェニレンオキ
サイド、ポリカーボネート、ナイロン−66、ナイロン
−6などの熱可塑性樹脂から選ばれた合成樹脂である。
この合成樹脂の曲げ弾性率は、樹脂本来の特性で選択す
る方法、樹脂に無機質あるいは有機質の充填剤、短繊維
などから選ばれた充填剤を添加する方法、架橋剤などを
添加する方法、弾性率の異なる2種類以上の樹脂を混合
する方法、硬化性樹脂の組成を選択する方法などにより
所望する物性に調整する。合成樹脂の曲げ弾性率が小さ
いとクリープ特性が大きくなり、長期間に亙って形態の
安定性を保つことができなくなる。
<B> Resin Next, the resin constituting the rod-shaped molded body is a synthetic resin selected from a thermoplastic resin and a thermosetting resin, such as an epoxy resin, an unsaturated polyester resin, and a vinyl ester resin. Thermosetting resin such as resin, vinyl acrylate resin, phenol resin, melamine resin, urea resin,
It is a synthetic resin selected from thermoplastic resins such as polyethylene terephthalate resin, methacrylic acid ester resin, thermoplastic polyester, polyphenylene oxide, polycarbonate, nylon-66, nylon-6, and the like.
The flexural modulus of this synthetic resin can be selected according to the resin's inherent properties, a method of adding a filler selected from inorganic or organic fillers and short fibers to the resin, a method of adding a crosslinking agent, etc. The desired physical properties are adjusted by a method of mixing two or more resins having different ratios, a method of selecting the composition of the curable resin, and the like. If the flexural modulus of the synthetic resin is small, the creep characteristics become large, and it becomes impossible to maintain the morphological stability over a long period of time.

【0010】<ハ>ロッド状成形体の製造法 次に、ロッド状成形体の製造法は、硬化性樹脂組成物な
どの液状物に、所望の太さに引き揃えた繊維束を浸漬
し、加熱帯で熱処理して樹脂を固化・硬化させる。また
は熱可塑性樹脂あるいは熱可塑性樹脂組成物をメルター
で溶融し、該合成樹脂溶融物と所望の太さに引き揃えた
繊維束とをダイ部で一体化させ、フォーミングダイを経
て引き取り、冷却するなどの方法でロッド状成形体を得
る。単線ロッド表面の異型化は、単線を平行に束ねるこ
とから束ねた外周に接触する土又はセメント等との接着
性が必要であるため、又、端末の定着具と本発明の束ね
た有機合成繊維製太径ロッドの定着性を確実とするため
に必要である。異型化は同一繊維又は他の繊維で撚糸を
して、棒状FRPの表面に一定間隔で綾状に巻き付け樹
脂で硬化し、異形鉄筋のような模様体を施すものであ
る。又繊維をまきつけフシやコブ状のものとしてもよ
い。一方、砂やガラス粉末、セラミック粉末、金剛砂な
どの粉末を付着し表面を粗面化してもよい。
<C> Manufacturing method of rod-shaped molded body Next, a method of manufacturing a rod-shaped molded body is as follows. A liquid bundle such as a curable resin composition is immersed in a fiber bundle having a desired thickness. The resin is solidified and cured by heat treatment in a heating zone. Alternatively, a thermoplastic resin or a thermoplastic resin composition is melted by a melter, and the synthetic resin melt and a fiber bundle aligned to a desired thickness are integrated at a die portion, taken through a forming die, cooled, and the like. To obtain a rod-shaped molded body. Since the single wire rod surface is deformed, the single wire is bundled in parallel, so it is necessary to have an adhesive property with soil or cement which comes into contact with the bundled outer periphery. It is necessary to ensure the fixing property of the large diameter rod. In the deforming, twisted yarns of the same fiber or other fibers are wound at regular intervals around the surface of a rod-shaped FRP, cured with a resin, and a pattern such as a deformed reinforcing bar is applied. Also, the fibers may be sprinkled into a brush or bumpy shape. On the other hand, the surface may be roughened by adhering powder such as sand, glass powder, ceramic powder, or sand.

【0011】<ニ>ロッドの強度 FRPロッドの引張り強度は60〜600kgf/mm
2 がよい。引張り強度が60kgf/mm2 を下まわっ
ては補強材としての利用価値も少なく意味がない。60
0kgf/mm2 以上では定着具が巨大なものとなり現
場施工での実用性がない。より好ましいFRPロッドの
引張強度は80〜300kgf/mm2 である。FRP
ロッドの引張り弾性率は2000−20000kgf/
mm2 が好ましい。引張り弾性率は2000kgf/m
2 を下まわっては破断時の伸度が大きくコンクリート
等の付着が悪くて定着ができない。又、20000kg
f/mm2以上では従来法でよく、より好ましくは30
00〜19500kgf/mm2 である。このように合
成繊維で3〜20mmの棒状FRPを得る。
<D> Rod strength The tensile strength of the FRP rod is 60 to 600 kgf / mm.
2 is better. If the tensile strength is less than 60 kgf / mm 2 , it has little value as a reinforcing material and is meaningless. 60
If the pressure is 0 kgf / mm 2 or more, the fixing tool becomes huge and is not practical for on-site construction. A more preferred tensile strength of the FRP rod is 80 to 300 kgf / mm 2 . FRP
The tensile modulus of the rod is 2000-20,000kgf /
mm 2 is preferred. The tensile modulus is 2000kgf / m
If it is less than m 2 , the elongation at break is large and the adhesion of concrete or the like is poor, so that it cannot be fixed. Also, 20000kg
At f / mm 2 or more, the conventional method may be used, and more preferably 30 / f.
It is 00 to 19500 kgf / mm 2 . Thus, a rod-shaped FRP of 3 to 20 mm is obtained from synthetic fibers.

【0012】<ホ>芯材 これら棒状FRPを芯材表面に配置するが、その芯材に
鉄、ステンレス、アルニミウム等の金属を用いる理由は
引張強度は合成樹脂棒状体に劣るものの弾性率が高くそ
の腰の強さを利用するためである。パイプ状とすれば見
掛の割に比重が小さくなり、比較的軽く、引張り、圧
縮、剪断に強いものとなり、太くするための効果が大き
い。セラミックス、又はガラスは弾性率が高いことを利
用し、その腰の強さを利用する。しかし伸びが小さいた
めじん性に欠点がある。又、ポリ塩化ビニル、ポリカー
ボネート、ナイロン6.66等のポリアミド、ポリエチ
レン、ポリプロピレンに代表されるポリオレフィン等の
合成樹脂が選ばれ強度向上を更に目指すためには、ガラ
ス繊維やカーボン繊維を用いた一方向プレプリグや、引
抜き成型、織布などを用いた繊維強化FRPを用いるこ
ともできる。形状は中空状のパイプが軽量性の点から
ましい。これら芯材の表面は外周に配置されるFRP棒
状物がズレないように所定の所に位置できるように表面
部分に溝をつけたものでもよい。高強力を有する有機合
成繊維の棒状FRP単線は強くても線直径が細く、人間
及び機械の取り扱い性が悪い。本発明は3〜20mmの
単線を複数本以上平行に束ねることによって人間及び機
械での取り扱いが容易に出来るように工夫改良した。束
ねることにより、有機合成繊維の棒状FRPは、その最
大外径が20mm以上となる太径ロッドを得ることが可
能である。太径ロッドは、強度や腐食に強く、定着装置
に強固に定着できるために、地盤改良や補強盛土の補強
材として、又地盤中に構築されるアンカーの補強材にも
最適である。
<E> Core Material These rod-shaped FRPs are arranged on the surface of the core material. The reason for using metal such as iron, stainless steel, and aluminum as the core material is that although the tensile strength is inferior to that of the synthetic resin rod, the elastic modulus is high. This is to utilize the strength of the waist. If it is formed in a pipe shape, its specific gravity is small for its apparent value, it is relatively light, it is resistant to tension, compression, and shearing, and the effect of making it thick is great. Ceramics or glass utilize the high elastic modulus and utilize the strength of the waist. However, there is a defect in toughness due to small elongation. Also, synthetic resins such as polyvinyl chloride, polycarbonate, polyamides such as nylon 6.66, and polyolefins such as polyethylene and polypropylene are selected, and in order to further improve the strength, a unidirectional resin using glass fiber or carbon fiber is used. It is also possible to use a fiber reinforced FRP using prepreg, draw molding, woven fabric, or the like. Shape good hollow pipe from the viewpoint of light weight
Good. The surface of these core materials may be provided with a groove in the surface portion so that the FRP rod-like material arranged on the outer periphery can be located at a predetermined position so as not to shift. The rod-shaped FRP single wire made of organic synthetic fiber having high strength has a small wire diameter even if it is strong, and is difficult to handle by humans and machines. The present invention has been devised and improved so that it can be easily handled by humans and machines by bundling a plurality of single wires of 3 to 20 mm in parallel. By bundling, the rod-shaped FRP of the organic synthetic fiber can obtain a large-diameter rod having a maximum outer diameter of 20 mm or more. The large-diameter rod is resistant to strength and corrosion, and can be firmly fixed to a fixing device. Therefore, the large-diameter rod is most suitable as a reinforcing material for ground improvement and reinforcing embankment, and also as a reinforcing material for anchors constructed in the ground.

【0013】次に測定事例を説明する。 <イ>強度測定法 合成繊維FRPロッドの引張り強度及び引張り弾性率は
JIS.K7113「プラスチックの引張試験方法」に
準じて測定した。棒状FRPロッドの強力測定は図4に
示した方法と装置を用いた。FRPロッド11の固定基
材12は直径15cm長さ1mの円筒状鉄製型枠であ
り、セメントに早強セメントを用い、水/セメントの比
を0.4とし、セメント/砂比を1.0としたモルタル
を作製し、型枠の中心部にFRPロッドを底部から垂直
に立て、モルタルを注入し、2週間気中養生して硬化し
た。次にFRPロッド11が通る座金13を装着し、セ
ンターホールジャッキ(RIKEN社製 DC−2−1
00型)14を油圧ゲージ15、油圧ポンプ16に連結
し座金13を入れ、定着具17及びエポキシ樹脂定着方
法によって定着した。一夜放置によって硬化後FRPロ
ッド11が固定基材12、センターホールジャッキ1
4、定着具17が一直線となるように調整し、油圧ポン
プ16により加圧しジャッキをFRPロッドが切断する
時又は定着具から引抜ける時まで押し出し、油圧ゲージ
にてその圧力とジャッキの油圧断面積よりその時の荷重
を測定した。
Next, a measurement example will be described. <A> Strength measurement method The tensile strength and tensile elastic modulus of synthetic fiber FRP rods are determined according to JIS. It was measured according to K7113 “Plastic tensile test method”. For measuring the strength of the rod-shaped FRP rod, the method and apparatus shown in FIG. 4 were used. The fixed base material 12 of the FRP rod 11 is a cylindrical iron mold having a diameter of 15 cm and a length of 1 m, using a high-strength cement as a cement, a water / cement ratio of 0.4, and a cement / sand ratio of 1.0. A mortar was prepared, and an FRP rod was set upright from the bottom at the center of the mold, and the mortar was injected, cured in the air for 2 weeks and hardened. Next, a washer 13 through which the FRP rod 11 passes is attached, and a center hole jack (DC-2-1 manufactured by RIKEN) is attached.
(Type 00) 14 was connected to a hydraulic gauge 15 and a hydraulic pump 16, a washer 13 was inserted, and the fixing was performed by a fixing tool 17 and an epoxy resin fixing method. After being cured overnight, the FRP rod 11 is fixed to the fixed base material 12,
4. Adjust the fixing device 17 so that it is in a straight line, pressurize it with the hydraulic pump 16 and push the jack out until the FRP rod is cut or pulled out of the fixing device, and the hydraulic gauge measures the pressure and the hydraulic cross-sectional area of the jack. The load at that time was measured.

【0014】<ロ>事例1〜8 高強力ポリビニルアルコール繊維(クラレ社製品番79
01 切断強度17.5g/デニール、切断伸度4.9
%引張り弾性率350g/デニール)を1800デニー
ルの1000本のマルチヤーンを128本ヤーン引揃え
繊維束となし、繊維束に含浸付与する合成樹脂はエポキ
シ樹脂(油化シェルエポキシ社製 エピコート828を
100重量部、硬化剤LX−IN30重量部の混合物)
で含浸し、成形ノズルを通し単線の内径6mmを引抜き
成形し、同一繊維を綾巻(斜交巻)用に所定の太さにな
る本数を所定の撚数に撚糸をし、本ロッドの表面に1c
mピッチとなるように2本交互に綾巻し、加熱炉で加熱
硬化し、表1に示した単線の形状を得た。得られた単線
の引張り強力は2.3tonであり、その引張り強度は
90kgf/mm2 、引張り破断伸度3.1%、引張り
弾性率は3000kgf/mm2 のものであった。
<B> Cases 1 to 8 High-strength polyvinyl alcohol fiber (Kuraray product number 79)
01 Cutting strength 17.5 g / denier, cutting elongation 4.9
% Tensile modulus of elasticity of 350 g / denier), a multi-filament bundle of 128 multi-yarns of 1800 deniers is made into a yarn bundle of 128 yarns, and the synthetic resin for impregnating and imparting the fiber bundles is epoxy resin (Epicoat 828 manufactured by Yuka Shell Epoxy Co., Ltd.). Parts by weight, a mixture of 30 parts by weight of a curing agent LX-IN)
Through a forming nozzle to form a single wire with an inner diameter of 6 mm, and draw and form the same fiber into a specified thickness for a twill (oblique winding) to a specified number of twists. 1c
Two turns were alternately wound so as to have an m pitch, and were heated and cured in a heating furnace to obtain a single wire shape shown in Table 1. The tensile strength of the obtained single wire was 2.3 ton, the tensile strength was 90 kgf / mm 2 , the tensile elongation at break was 3.1%, and the tensile modulus was 3000 kgf / mm 2 .

【0015】束ねた本数も事例1〜8までの単線の覧に
示した。図1乃至2には複数の単線1がパイプ3に樹脂
4で取り付けられてなる太径ロッドが示されている。図
3には綾巻糸2が巻き付けられた単線1が示されてい
る。綾巻糸2により所定の太さにでき、かつ、摩擦抵抗
を高めている。該る本数の単線を所要長さに切断し、芯
材及び単線に上記配合のエポキシ樹脂を塗布し、所定本
数を芯材周辺に均一に配置し紐で束ね一夜空気中に放置
することにより硬化結束し一体化したものを得た。次に
用いた芯材は表1に示したように事例1〜4は鉄製のガ
ス管を用いることにより、太径でかつ腰の強いものであ
った。事例1は鋼管3/8B(外形17.3mm,肉厚
2.3)の周囲に7本のロッドを取り付けてある。事例
2は事例1に比して径が小さい鋼管を用い、7本の単線
を鋼管の周囲に密に配置する。事例3は鋼管の周囲に9
本の単線を配置する。事例4は単線に綾巻糸が9本巻か
れており、太くなっている。そのため、鋼管の太さは事
例と同じであるが、7本の単線が周囲に配置される。事
例5はアルミニウムパイプであり事例3の軽量化を計っ
た。事例6は硬質ポリ塩化ビニル樹脂パイプであり、束
ねた太径ロッドは太くなりかつ軽量であるが、若干たわ
みが大きいものであった。事例7は硬質ポリ塩化ビニル
樹脂の丸棒を心材として使用した。事例8はガラス繊維
強化FRPロッドを芯材としたものである。その束ねた
太径ロッドの最大直径と長さ当りの表面積、引張り破断
強力、及び太径ロッドの5m当りの重量を示した。
The number of bundles is also shown in the list of single lines in Examples 1 to 8. 1 and 2 show a large-diameter rod in which a plurality of single wires 1 are attached to a pipe 3 with a resin 4. FIG. 3 shows a single wire 1 around which a twill yarn 2 is wound. The desired thickness can be obtained by the twill winding yarn 2, and the frictional resistance is increased. Cut the required number of single wires to the required length, apply the epoxy resin of the above composition to the core material and the single wire, arrange a predetermined number of them uniformly around the core material, bundle them with a string, and cure by leaving them in the air overnight. A united and integrated product was obtained. As shown in Table 1, the core material used in Examples 1 to 4 was a large diameter and strong stiffness by using an iron gas pipe. Case 1 has seven rods mounted around a steel pipe 3 / 8B (outer diameter 17.3 mm, wall thickness 2.3). Case 2 uses a steel pipe having a smaller diameter than that of Case 1, and seven single wires are densely arranged around the steel pipe. Case 3 has 9 around the steel pipe.
Arrange two single lines. In Case 4, nine single twill yarns are wound on a single line and are thick. Therefore, the thickness of the steel pipe is the same as the case, but seven single wires are arranged around. Case 5 was an aluminum pipe, and the weight of Case 3 was reduced. Case 6 was a rigid polyvinyl chloride resin pipe, and the bundled large diameter rod was thick and light, but slightly large in bending. In Case 7, a round bar of a rigid polyvinyl chloride resin was used as a core material. Case 8 uses a glass fiber reinforced FRP rod as a core material. The maximum diameter and the surface area per length, the tensile strength at break, and the weight per 5 m of the large diameter rod are shown.

【表1】 [Table 1]

【表2】 [Table 2]

【表3】 [Table 3]

【0016】[0016]

【発明の効果】本発明は以上説明したように次のような
格別な効果を得ることができる。 <イ>FRPロッドを用いるので、軽く、錆ず、腐らず
(耐薬品性、耐紫外線、耐候性)、水を吸わず、電気を
通さず、磁化しない特性を有し、しかも、それらが複数
本周囲に取り付けられるので、高強度性を有する。 <ロ>土中へ打ちこめ、じん性(ねばり強い)を有し、
曲げ加工ができ、切断が容易にでき、取り扱い性が容易
で、保管が簡便と施工性に優れている。 <ハ>セメントモルタルやソイルセメント、ブラウト材
等の水硬性物質とよく接合する。 <ニ>合成繊維ロッドは木材の6〜50倍、竹の5〜1
3倍と極めて高い強度を有して、例えばビニロン繊維で
作った直径6mmのFRPロッドの引張り破断強力は
2.5tonである。太くて強いため、従来材料に比べ
て信頼性を得ることができる。 <ホ>人間が材料を取り扱う時、その信頼性が長い時間
に渡って確認されてゆくまでは、従来に似た太さ、重
さ、長さ、表面積を有するものが必要とされる。これら
材料を用いる土木設備等も、信頼性が得られるように設
計されてくる。
According to the present invention, as described above, the following special effects can be obtained. <A> Since the FRP rod is used, it is light, does not rust, does not rot (chemical resistance, UV resistance, weather resistance), does not absorb water, does not conduct electricity, and does not magnetize. Since it is attached around the book, it has high strength. <B> Driving into the soil, having toughness (sticky)
It can be bent, cut easily, easy to handle, easy to store and excellent in workability. <C> It is well bonded with hydraulic materials such as cement mortar, soil cement, and broach material. <D> Synthetic fiber rod is 6-50 times of wood, 5-1 of bamboo
The FRP rod having a very high strength of 3 times and made of, for example, vinylon fiber and having a diameter of 6 mm has a tensile breaking strength of 2.5 ton. Since it is thick and strong, reliability can be obtained as compared with conventional materials. <E> Until the reliability of humans when handling materials is confirmed over a long period of time, materials having similar thickness, weight, length and surface area are required. Civil engineering facilities and the like using these materials are also designed to obtain reliability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】太径ロッドの断面図FIG. 1 is a cross-sectional view of a large-diameter rod.

【図2】太径ロッドの側面図FIG. 2 is a side view of a large-diameter rod.

【図3】綾巻糸が巻かれた単線の断面図FIG. 3 is a cross-sectional view of a single line on which a twill is wound.

【図4】太径ロッドの強度を測定する図FIG. 4 is a diagram for measuring the strength of a large-diameter rod.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 館山 勝 東京都国分寺市光町2丁目8番地38 財 団法人鉄道総合技術研究所内 (72)発明者 田村 幸彦 神奈川県横浜市緑区桂台2−22−15− 106 (72)発明者 福田 厚生 東京都港区赤坂2丁目4番1号 株式会 社テノックス内 (72)発明者 吉田 茂 東京都港区赤坂2丁目4番1号 株式会 社テノックス内 (72)発明者 上 周史 東京都港区赤坂2丁目4番1号 株式会 社テノックス内 (72)発明者 岡崎 正樹 東京都中央区日本橋3−8−2 株式会 社クラレ内 (72)発明者 江部 勉 東京都中央区日本橋3−8−2 株式会 社クラレ内 (72)発明者 近藤 志郎 東京都中央区日本橋3−8−2 株式会 社クラレ内 (72)発明者 馬屋原光郎 岡山県岡山市海岸道り1丁目2番1号 株式会社クラレ内 (56)参考文献 特開 平2−154052(JP,A) 実開 昭63−51014(JP,U) 実公 昭31−19042(JP,Y1) ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Masaru Tateyama 2-8-8 Hikaricho, Kokubunji-shi, Tokyo 38 Inside the Railway Technical Research Institute (72) Inventor Yukihiko Tamura 2-22 Katsuradai, Midori-ku, Yokohama-shi, Kanagawa −15− 106 (72) Inventor Kosei Fukuda 2-4-1, Akasaka, Minato-ku, Tokyo Inside Tenox Corporation (72) Inventor Shigeru Yoshida 2-4-1, Akasaka Akasaka, Minato-ku, Tokyo Inside Tenox Corporation (72) Inventor Shuji Kami 2-4-1 Akasaka, Minato-ku, Tokyo Inside Tenox Co., Ltd. (72) Inventor Masaki Okazaki 3-8-2 Nihonbashi, Chuo-ku, Tokyo Kuraray Co., Ltd. (72) Invention Person Tsutomu Ebe 3-8-2 Nihonbashi, Chuo-ku, Tokyo, Japan Kuraray Co., Ltd. (72) Inventor Shiro Kondo 3-8-2 Nihonbashi, Chuo-ku, Tokyo, Japan Kuraray Co., Ltd. (72) Inventor Ma Mitsuo Hara 1-2-1, Kaigan-dori, Okayama-shi, Okayama Pref. Kuraray Co., Ltd. (56) References JP-A-2-154405 (JP, A) JP-A 63-51014 (JP, U) -19042 (JP, Y1)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】有機合成繊維製太径ロッドにおいて、有機
合成繊維の多本数を引き揃えた繊維束に合成樹脂を含浸
硬化し、その表面に異形加工した最大外径が3〜20m
mの単線を中空パイプ状物からなる芯材の外周へ平行に
複数本束ねて、その最大外径が20mm以上とすること
を特徴とする有機合成繊維製太径ロッド。
1. A large-diameter rod made of an organic synthetic fiber, in which a fiber bundle in which a large number of organic synthetic fibers are arranged is impregnated with a synthetic resin and cured, and the surface thereof is deformed to have a maximum outer diameter of 3 to 20 m.
A large-diameter rod made of an organic synthetic fiber, wherein a plurality of single wires having a maximum diameter of 20 mm or more are bundled in parallel with an outer periphery of a core material formed of a hollow pipe-shaped material.
【請求項2】有機合成繊維がポリビニルアルコール系、
全芳香族ポリエステル系、全芳香族アラミド系、ポリア
クリロニトリル系、ポリオレフィン系であることを特徴
とする請求項1に記載の有機合成繊維製太径ロッド。
2. The organic synthetic fiber is a polyvinyl alcohol type.
The organic synthetic fiber large diameter rod according to claim 1, wherein the rod is a wholly aromatic polyester-based, wholly aromatic aramid-based, polyacrylonitrile-based, or polyolefin-based rod.
【請求項3】芯材は、各種鉄鋼、ステンレス鋼、アルミ
ニウム等の金属、セラミックス、ガラス等の無機材料、
ポリ塩化ビニル、ポリカーボネート、ポリアミド、ポリ
オレフィン等の合成樹脂、または、ガラス繊維やカーボ
ン繊維よりなる繊維強化プラスチック材より選ばれた材
料よりなる中空パイプ状物であることを特徴とする請求
項1に記載の有機合成繊維製太径ロッド。
3. The core material is made of various metals such as iron and steel, stainless steel and aluminum; inorganic materials such as ceramics and glass;
Polyvinyl chloride, polycarbonate, polyamide, synthetic resins such as polyolefin, or claims characterized in that it is a hollow pipe-like material made of glass fiber or carbon fiber reinforced plastic material selected from the materials consisting of fibers
Item 2. An organic synthetic fiber large diameter rod according to item 1 .
【請求項4】有機合成繊維よりなる表面異形加工した最
大外径が3〜20mmの単線を、別種材料の芯材パイプ
状物の外周に沿って最大本数以下の複数本数を、合成樹
脂接着剤又は帯、紐、テープ類で結束し一体化すること
を特徴とする請求項1に記載の有機合成繊維製太径ロッ
ド。
4. The single line of the maximum outer diameter surface profile machining made of an organic synthetic fiber is 3 to 20 mm, the outer periphery plurality number of less than or equal to the maximum number along the core pipe <br/> like of another kind material, The organic synthetic fiber large-diameter rod according to claim 1, wherein the rod is integrated with a synthetic resin adhesive or a band, a string, or a tape.
JP4151166A 1992-05-20 1992-05-20 Large diameter rod made of organic synthetic fiber Expired - Fee Related JP2714735B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4151166A JP2714735B2 (en) 1992-05-20 1992-05-20 Large diameter rod made of organic synthetic fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4151166A JP2714735B2 (en) 1992-05-20 1992-05-20 Large diameter rod made of organic synthetic fiber

Publications (2)

Publication Number Publication Date
JPH05321118A JPH05321118A (en) 1993-12-07
JP2714735B2 true JP2714735B2 (en) 1998-02-16

Family

ID=15512770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4151166A Expired - Fee Related JP2714735B2 (en) 1992-05-20 1992-05-20 Large diameter rod made of organic synthetic fiber

Country Status (1)

Country Link
JP (1) JP2714735B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61207657A (en) * 1985-03-06 1986-09-16 敷島カンバス株式会社 Composite reinforced fiber structure
JPH0668198B2 (en) * 1986-06-25 1994-08-31 三井建設株式会社 Structural material
JPH0615078Y2 (en) * 1986-09-22 1994-04-20 東京製綱株式会社 Reinforcing material for concrete
US4737399A (en) * 1987-02-12 1988-04-12 E. I. Du Pont De Nemours And Company Three-dimensional structures of interlocked strands
US4752513A (en) * 1987-04-09 1988-06-21 Ppg Industries, Inc. Reinforcements for pultruding resin reinforced products and novel pultruded products
JP2639502B2 (en) * 1988-07-26 1997-08-13 株式会社高分子加工研究所 Matrix reinforcement structure consisting of reticulated tubular body
JPH0299659A (en) * 1988-10-03 1990-04-11 Suriid Konpo Res:Kk Three-dimensional multi-axial woven fabric
JP2688606B2 (en) * 1988-12-02 1997-12-10 株式会社高分子加工研究所 Three-dimensional structure with reinforced mesh tubular body
JPH0721596Y2 (en) * 1991-05-15 1995-05-17 東京製綱繊維ロープ株式会社 Multi-layer fiber rope

Also Published As

Publication number Publication date
JPH05321118A (en) 1993-12-07

Similar Documents

Publication Publication Date Title
US5727357A (en) Composite reinforcement
EP0417612B1 (en) Filament-reinforced resinous structural rod
KR101936499B1 (en) Method for manufacturing composite rebar having spiral rib
US4347287A (en) Segmented pultrusions comprising continuous lengths of fiber having selected areas along the lengths containing resin matrix impregnations
US5846364A (en) Reinforced concrete structure, reinforcing device, and method for producing same
EP0206591B1 (en) Reinforcing structural material and reinforced structure reinforced therewith
WO2008076400A2 (en) Flexible fiber reinforced composite rebar
US6048598A (en) Composite reinforcing member
US8511038B2 (en) Concrete panel with fiber reinforced rebar
JP5996557B2 (en) Fiber reinforced reinforcing bars containing molded parts and concrete panels containing molded reinforcing bar parts
CN102186654A (en) Fiber reinforced rebar formed into a coil for transportation
KR102112960B1 (en) Frp-mesh for reinforcing concrete
EP0058783B1 (en) Tubing of hybrid, fibre-reinforced synthetic resin
JP2923221B2 (en) Fiber reinforced plastic rod
JP2714735B2 (en) Large diameter rod made of organic synthetic fiber
JPH0132058B2 (en)
JPH05321406A (en) Thick diameter rod made of organic synthetic fiber
JP3237902B2 (en) Fiber reinforcement and structural material using the same
KR101235676B1 (en) High-strength yarn complex substituting iron rod and method of manufacturing the same
JP2933102B2 (en) FIBER REINFORCING MATERIAL, PROCESS FOR PRODUCING THE SAME, AND STRUCTURAL MATERIAL USING THE SAME
JP3672684B2 (en) Continuous rod-shaped molded product intermediate, method for producing the same, molded product and molded method thereof
JPS6359981B2 (en)
JPH08303018A (en) Concrete structure reinforcing material and concrete structure reinforcing method using the material
JPH0462260B2 (en)
JP4438944B2 (en) Manufacturing method of zigzag shaped fiber reinforced resin molding

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees