JP2714072B2 - Method of forming titanium nitride film by dynamic mixing - Google Patents

Method of forming titanium nitride film by dynamic mixing

Info

Publication number
JP2714072B2
JP2714072B2 JP63300572A JP30057288A JP2714072B2 JP 2714072 B2 JP2714072 B2 JP 2714072B2 JP 63300572 A JP63300572 A JP 63300572A JP 30057288 A JP30057288 A JP 30057288A JP 2714072 B2 JP2714072 B2 JP 2714072B2
Authority
JP
Japan
Prior art keywords
film
titanium
titanium nitride
nitride film
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63300572A
Other languages
Japanese (ja)
Other versions
JPH02149663A (en
Inventor
弘祥 定村
宏 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63300572A priority Critical patent/JP2714072B2/en
Publication of JPH02149663A publication Critical patent/JPH02149663A/en
Application granted granted Critical
Publication of JP2714072B2 publication Critical patent/JP2714072B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、金属、および、非金属の表面改質技術に係
り、特に、窒素イオンビームとチタン金属の蒸着を同時
に照射して試料表面に窒化チタン膜を形成する方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a metal and non-metal surface modification technology, and more particularly, to simultaneously irradiating a nitrogen ion beam and titanium metal vapor deposition on a sample surface. The present invention relates to a method for forming a titanium nitride film.

〔従来の技術〕[Conventional technology]

構造部材の耐食性や耐摩耗性などを向上させるため、
試料表面に被膜を形成する方法は種々あり、数mTorrか
ら数Torrの窒素雰囲気中でチタンを溶解し蒸発させて窒
化チタン膜を形成するPVD法や、チタン系ガスと窒素系
ガスとの混合ガスを1000℃前後の高温下で反応させて試
料表面に窒化チタン膜を形成するCVD法などがある。し
かし、これらには一長一短があり、PVD法では膜の付着
強度が劣り、CVD法では、高温下で処理するため基材と
の密着性は良いが、基材の変形が問題となり、更に、結
晶粒が粗大化するなど種々の物性変化を伴うという問題
がある。
In order to improve the corrosion resistance and wear resistance of structural members,
There are various methods for forming a film on the sample surface, such as the PVD method of dissolving and evaporating titanium in a nitrogen atmosphere of several mTorr to several Torr to form a titanium nitride film, or a mixed gas of titanium-based gas and nitrogen-based gas. Is reacted at a high temperature of about 1000 ° C. to form a titanium nitride film on the sample surface. However, these have advantages and disadvantages.The adhesion strength of the film is poor in the PVD method, and the adhesion to the substrate is good in the CVD method because it is processed at high temperature, but the deformation of the substrate becomes a problem, There is a problem that various physical property changes, such as coarsening of grains, occur.

一方、これらの問題点を解決する方法として窒素イオ
ンとチタンの蒸着とを同時に照射して試料表面に窒化チ
タン膜を形成する、いわゆる、ダイナミツクミキシング
法による膜形成法が提案されている。例えば、特開昭61
−190064号公報には、この方法による窒化チタン膜の形
成方法が提案されている。しかし、この方法によればチ
タンの蒸発原子の入射数が毎秒3×1022〜3×1023個/
cm2必要であると述べられている。ここで単位時間当た
りのチタン蒸発原子数Tiは、蒸着速度をR(cm/sec)、
チタンの密度をρ(g/cm3)、チタンの1モルをM(g/m
ol)とすると n:アボガドロ数 6×1023/mol で表わされる。チタンの場合、ρ=4.51g/mol、M=47.
9g/molを代入すると(1)式からチタンの蒸着速度はR
=0.53〜5.3cm/secとなる。さらに、N/Ti≦1.0から、こ
こで因みにN=Ti、即ち、N/Ti=1.0の割合で膜を形成
させようとした時、Nの入射数は以下のようになる。
On the other hand, as a method for solving these problems, there has been proposed a so-called dynamic mixing method of forming a titanium nitride film on a sample surface by simultaneously irradiating nitrogen ions and titanium with vapor deposition. For example, JP-A-61
Japanese Patent Publication No. -190064 proposes a method for forming a titanium nitride film by this method. However, according to this method, the incident number of evaporated atoms of titanium is 3 × 10 22 to 3 × 10 23 per second.
cm 2 is stated to be required. Here, the number of evaporated titanium atoms per unit time, Ti, is obtained by setting the deposition rate to R (cm / sec),
The density of titanium is ρ (g / cm 3 ), and 1 mole of titanium is M (g / m 3
ol) n: Avogadro number 6 × 10 23 / mol. In the case of titanium, ρ = 4.51 g / mol, M = 47.
Substituting 9 g / mol, from equation (1), the deposition rate of titanium is R
= 0.53 to 5.3 cm / sec. Further, from N / Ti ≦ 1.0, when the film is formed at the ratio of N = Ti, that is, N / Ti = 1.0, the number of incident N is as follows.

Nの単位時間当たりの入射数は e:電子の電荷重 1.6×10-19クーロン D:イオンビームの電流密度 従つて、Dは(1),(2)式からD=4.8×103〜4.
8×104A/cm2となる。即ち、N/Ti≦1.0であるという条件
により窒素イオンの必要数を減少することができ、これ
によつて装置、具体的にはイオン源の消費電力を減らす
ことが出来ると述べられているが、Tiの蒸着速度、およ
び、イオンビームを加速するための電流は、いずれも膨
大な値であり、これらの点について考慮されていなかつ
た。また、TiとNの比を変えることにより形成された膜
は種々の結晶をもつようになるが、従来技術ではこれら
の点についても考慮されていなかつた。
The number of incidents of N per unit time is e: charge weight of electron 1.6 × 10 −19 coulomb D: current density of ion beam Therefore, D is calculated from the formulas (1) and (2) as D = 4.8 × 10 3 to 4.
It becomes 8 × 10 4 A / cm 2 . In other words, it is stated that the required number of nitrogen ions can be reduced under the condition that N / Ti ≦ 1.0, thereby reducing the power consumption of the apparatus, specifically, the ion source. The deposition rate of Ti, the current for accelerating the ion beam, and the current for accelerating the ion beam are all enormous values, and these points have not been considered. Also, the film formed by changing the ratio of Ti to N has various crystals, but these points have not been considered in the prior art.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上記従来技術による方法では、窒化チタン膜を形成す
る時の単位時間におけるチタンの蒸着速度およびイオン
ビームの加速電流の値について考慮がされておらず、窒
化チタン膜を形成する上で問題があつた。
In the method according to the prior art, the deposition rate of titanium and the value of the accelerating current of the ion beam per unit time when forming the titanium nitride film are not taken into consideration, and there is a problem in forming the titanium nitride film. .

例えば、蒸発源の場合、通常、用いられている電子線
加熱式蒸発源では、蒸着速度は数Å/sec〜数+Å/sec程
度であり、前述の方法による蒸着速度0.53〜5.3cm/sec
を得るには、膨大な電源容量の蒸発源となり、蒸着速度
が0.53cm/sec〜5.3cm/secでは薄膜の形成にはなり得な
い。イオン源についても、ダイナミツクミキシングによ
る薄膜形成の場合、イオンビームの加速電流はチタンの
蒸着速度、および、TiとNの比を考え合せ0.1〜数十mA/
cm2程度であり、前述の蒸発源の場合と同様である。
For example, in the case of an evaporation source, in the electron beam heating type evaporation source which is usually used, the evaporation rate is about several Å / sec to several + Å / sec, and the evaporation rate by the above method is 0.53 to 5.3 cm / sec.
In order to obtain a thin film, it becomes an evaporation source with a huge power supply capacity, and a deposition rate of 0.53 cm / sec to 5.3 cm / sec cannot form a thin film. Regarding the ion source, in the case of forming a thin film by dynamic mixing, the accelerating current of the ion beam is 0.1 to several tens mA / considering the deposition rate of titanium and the ratio of Ti to N.
cm 2, which is similar to the case of the above-mentioned evaporation source.

さらに、TiとNの比を変えて窒化チタン膜を形成した
場合、Ti/Nの比を変えることにより種々の結晶をもつた
膜が形成されるが、この点についても考慮されていなか
つた。
Further, when a titanium nitride film is formed by changing the ratio of Ti to N, a film having various crystals is formed by changing the ratio of Ti / N, but this point has not been considered.

本発明の目的は、TiとNの比を制御し、形成する膜の
結晶の制御を可能にし、金色を呈した窒化チタン薄膜の
形成方法を提供することにある。
An object of the present invention is to provide a method for forming a golden titanium nitride thin film by controlling the ratio of Ti to N and controlling the crystal of the film to be formed.

〔課題を解決するための手段〕 上記目的は、膜形成の条件として、試料への単位時間
当たりの窒素イオンの入射数NをN=1×1015〜1×10
16個/cm2・secの範囲で、イオンビームの照射角は45
°、窒素イオンの入射数Nとチタン金属の単位時間当た
りの蒸発分子数Tiの割合が、Ti/N≧0.5の比で膜形成を
行い、任意の膜を形成したのち、イオンビームのみを注
入することにより達成される。
[Means for Solving the Problems] The object of the present invention is to set the number N of incident nitrogen ions per unit time to a sample as N = 1 × 10 15 to 1 × 10
The irradiation angle of the ion beam is 45 within the range of 16 / cm 2 · sec.
°, the ratio of the number of incident nitrogen ions N and the number of evaporated molecules Ti of titanium metal per unit time is such that Ti / N ≥ 0.5. Film formation is performed, and after forming an arbitrary film, only the ion beam is injected. It is achieved by doing.

〔作用〕[Action]

本発明では、単位時間当たりの窒素イオンの入射数N
が1×1015〜1×1016個/cm2・secの範囲なので、容易
にイオンビームを加速させることができる。
In the present invention, the number of incident nitrogen ions per unit time N
Is in the range of 1 × 10 15 to 1 × 10 16 / cm 2 · sec, so that the ion beam can be easily accelerated.

また、チタンの蒸発源でも、その蒸着速度は数Å/sec
〜数十Å/sec程度なので、通常の電子線加熱式蒸発源を
用いて容易に膜の形成を行う事が出来る。
The evaporation rate of titanium is also several Å / sec.
Since it is about Å / sec to about tens of Å / sec, the film can be easily formed using a normal electron beam heating type evaporation source.

〔実施例〕〔Example〕

以下、本発明の実施例を第1図により説明する。 Hereinafter, an embodiment of the present invention will be described with reference to FIG.

窒素イオンには、イオン源1から引き出されたイオン
ビーム2を用いる。窒素イオンビーム量は、ガスコント
ローラ3からイオン源1の中に導入される窒素ガス量と
イオン源内で生じさせるアーク放電のパワーにより規定
される。チタン蒸着には、電子線加熱蒸発器4を用い
る。チタン6の蒸発量は制御装置5で調整される電子線
パワーにより規定される。なお、7は試料、8は真空容
器、9は真空ポンプ、10は冷却水、11はイオンビーム電
源、12はシヤツタである。
The ion beam 2 extracted from the ion source 1 is used for nitrogen ions. The amount of nitrogen ion beam is defined by the amount of nitrogen gas introduced into the ion source 1 from the gas controller 3 and the power of arc discharge generated in the ion source. An electron beam heating evaporator 4 is used for titanium deposition. The amount of evaporation of the titanium 6 is determined by the electron beam power adjusted by the controller 5. In addition, 7 is a sample, 8 is a vacuum container, 9 is a vacuum pump, 10 is cooling water, 11 is an ion beam power supply, and 12 is a shutter.

膜形成の条件は、窒素イオンの単位時間当たりの入射
数NはN=1×1015〜1×1016個/cm2・sec、その際の
窒素雰囲気ガス圧は1×10-4〜2×10-4Torr、そして、
窒素イオンの入射数Nと試料への単位時間当たりのチタ
ン原子の入射数Tiの割合Ti/Nが0.5≦Ti/Nとして膜形成
を行う。
Conditions for film formation, the incident number N per unit time of the nitrogen ions is N = 1 × 10 15 ~1 × 10 16 pieces / cm 2 · sec, a nitrogen atmosphere gas pressure at that time is 1 × 10 -4 to 2 × 10 -4 Torr, and
The film formation is performed with the ratio of the number of incident nitrogen atoms N to the number of titanium atoms per unit time to the sample, Ti / N, being 0.5 ≦ Ti / N.

発明者らは、前述の条件で、種々の窒化チタン膜を形
成して以下のことを見い出した。
The inventors have found the following by forming various titanium nitride films under the above-described conditions.

第2図は、前述の条件のダイナミツクミキシング法に
よりステンレス鋼表面へ形成した窒化チタン膜の結晶領
域を示す。図中の横軸は単位時間当たりのチタン蒸着速
度R(Å/sec)である。即ち、単位時間当たりのチタン
原子の入射数Tiを表わす。ここでRとTiの関係は(1)
式のようである。一方、縦軸は窒素イオン電流密度D
(mA.cm2)である。即ち、単位時間当たりの窒素イオン
の入射数Nを表わす。ここでNとDの関係は(2)式で
示すようである。ところで、Ti/Nの比をTi=Nとした時
のRとDの関係は(1),(2)式から となる。
FIG. 2 shows a crystal region of a titanium nitride film formed on a stainless steel surface by the dynamic mixing method under the above-described conditions. The horizontal axis in the figure is the titanium deposition rate R per unit time (Å / sec). That is, it represents the number Ti of incident titanium atoms per unit time. Here, the relationship between R and Ti is (1)
It looks like an expression. On the other hand, the vertical axis represents the nitrogen ion current density D
(MA.cm 2 ). That is, it represents the number N of incident nitrogen ions per unit time. Here, the relationship between N and D is as shown in equation (2). By the way, when the ratio of Ti / N is Ti = N, the relationship between R and D is obtained from the equations (1) and (2). Becomes

因みに、D=1mA/cm2におけるRはR≒11Å/secとな
る。ここで、Ti/Nの比をR/Dの比におきかえ、その比を
Kとして次のように表わす。
Incidentally, R at D = 1 mA / cm 2 is R {11} / sec. Here, the ratio of Ti / N is replaced with the ratio of R / D, and the ratio is represented as K as follows.

発明者らの実験から得た知見によれば、Kの値がK≦0.
5では、スパツタリングされ膜は形成されない。Kの値
を徐々に増し、K≧0.5になると膜が形成されるように
なり、窒化チタンの結晶膜が得られる。そして、Kの値
が増すにつれその結晶膜はTiN、次に、TiNとTi2Nの混合
膜、次に、TiNとTi2NとTiの混合膜、そしてTiのみの結
晶膜が得られるようになり、TiNの結晶は得られなくな
る。
According to the knowledge obtained from the experiments of the inventors, the value of K is K ≦ 0.
In 5, the film is sputtered and no film is formed. When the value of K is gradually increased, and when K ≧ 0.5, a film is formed, and a crystal film of titanium nitride is obtained. Then, the crystal film is TiN as the value of K increases, then, a mixed film of TiN and Ti 2 N, then to mixed film of TiN and Ti 2 N and Ti, and the crystalline film of Ti only is obtained And no TiN crystal can be obtained.

一方、膜の結晶構造は最も基礎的な物性であり、特
に、構造薄膜では耐摩耗、耐食性、硬さ、機能性薄膜で
は透磁率、密度、透過率などその膜質を大きく左右す
る。従つて発明者らは、前述の実験結果に注目し、目的
に合せTiNのみの結晶膜の他、Ti2NやTiなど種々の混合
膜を作り得ることを可能とした。これは窒化チタンの薄
膜形成のみにとどまらず、他の薄膜、例えば、窒化アル
ミや、窒化シリコンなどについても応用が可能である。
On the other hand, the crystal structure of the film is the most basic physical property. In particular, the structural thin film greatly affects the film quality such as abrasion resistance, corrosion resistance and hardness, and the functional thin film such as magnetic permeability, density and transmittance. Accordingly, the inventors have paid attention to the above-mentioned experimental results, and have made it possible to produce various mixed films such as Ti 2 N and Ti in addition to a crystal film of TiN only according to the purpose. This can be applied not only to the formation of a thin film of titanium nitride but also to other thin films such as aluminum nitride and silicon nitride.

また、発明者らは、前述したように膜を形成したの
ち、チタンの蒸着を停止し、窒素イオンビームの照射角
を45°にして数分〜数十分間照射することにより膜の色
調を呈するようになることを見い出した。
Further, after forming the film as described above, the inventors stop the deposition of titanium, and set the irradiation angle of the nitrogen ion beam at 45 ° and irradiate the film for several minutes to several tens minutes to adjust the color tone of the film. I found it to be present.

〔発明の効果〕〔The invention's effect〕

本発明によれば、Ti/Nの比を制御し膜の形成を行うこ
とにより、種々の結晶をもつた窒化チタンの混合膜を形
成することが可能であり、耐摩耗、耐食性、高硬度の構
造用薄膜を容易に形成することができる。
According to the present invention, it is possible to form a mixed film of titanium nitride having various crystals by controlling the ratio of Ti / N to form a film, and has abrasion resistance, corrosion resistance, and high hardness. The structural thin film can be easily formed.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の一実施例の窒化チタン膜を形成する
薄膜形成装置の系統図、第2図は、形成膜の結晶領域を
示す実験結果の説明図である。 1…イオン源、2…イオンビーム、3…ガスコントロー
ラ、4…電子線加熱式蒸発器、5…制御装置、6…チタ
ン、7…試料、8…真空容器、9…真空ポンプ、10…冷
却水、11…イオンビーム電源、12…シヤツタ。
FIG. 1 is a system diagram of a thin film forming apparatus for forming a titanium nitride film according to one embodiment of the present invention, and FIG. 2 is an explanatory view of an experimental result showing a crystal region of the formed film. DESCRIPTION OF SYMBOLS 1 ... Ion source, 2 ... Ion beam, 3 ... Gas controller, 4 ... Electron beam heating type evaporator, 5 ... Control device, 6 ... Titanium, 7 ... Sample, 8 ... Vacuum container, 9 ... Vacuum pump, 10 ... Cooling Water, 11 ... Ion beam power supply, 12 ... Shutter.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】窒素イオンビームとチタン金属との蒸着を
同時に行い、試料表面に窒化チタン膜を形成する方法に
おいて、 前記窒素イオンの単位時間当たりの入射数NをN=1×
1015〜1×1016個/cm2・secの範囲で照射し、ビームの
照射角度は45°、前記窒素イオンの前記入射数Nと前記
チタン金属の単位時間当たりの蒸発原子数Tiの割合がTi
/N≧0.5の条件で任意の厚さの膜を形成したのち、蒸着
を停止し、窒素イオンビームのみを照射して被膜形成を
行うことを特徴とするダイナミツクミキシングによる窒
化チタン膜の形成方法。
1. A method for simultaneously depositing a nitrogen ion beam and titanium metal to form a titanium nitride film on the surface of a sample, wherein the number N of incident nitrogen ions per unit time is N = 1 ×
Irradiation in the range of 10 15 to 1 × 10 16 / cm 2 · sec, the irradiation angle of the beam is 45 °, the ratio of the number of incident N of the nitrogen ions and the number of evaporated atoms Ti per unit time of the titanium metal Is Ti
A method for forming a titanium nitride film by dynamic mixing, comprising: forming a film of an arbitrary thickness under the condition of /N≧0.5, stopping the vapor deposition, and irradiating only a nitrogen ion beam to form a film. .
JP63300572A 1988-11-30 1988-11-30 Method of forming titanium nitride film by dynamic mixing Expired - Lifetime JP2714072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63300572A JP2714072B2 (en) 1988-11-30 1988-11-30 Method of forming titanium nitride film by dynamic mixing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63300572A JP2714072B2 (en) 1988-11-30 1988-11-30 Method of forming titanium nitride film by dynamic mixing

Publications (2)

Publication Number Publication Date
JPH02149663A JPH02149663A (en) 1990-06-08
JP2714072B2 true JP2714072B2 (en) 1998-02-16

Family

ID=17886455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63300572A Expired - Lifetime JP2714072B2 (en) 1988-11-30 1988-11-30 Method of forming titanium nitride film by dynamic mixing

Country Status (1)

Country Link
JP (1) JP2714072B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040035528A (en) * 2002-10-22 2004-04-29 송오성 Coloring of titanium using ion implantation

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63137158A (en) * 1986-11-27 1988-06-09 Nissin Electric Co Ltd Formation of thin aluminum film

Also Published As

Publication number Publication date
JPH02149663A (en) 1990-06-08

Similar Documents

Publication Publication Date Title
JP2892231B2 (en) Ti-Si-N-based composite hard film and method for producing the same
JP3027502B2 (en) Abrasion-resistant amorphous hard film and method for producing the same
JPH0541694B2 (en)
JP2714072B2 (en) Method of forming titanium nitride film by dynamic mixing
JPH09508942A (en) Method and apparatus for plasma-activated deposition
US5919342A (en) Method for depositing golden titanium nitride
Lim et al. Effect of substrate bias voltage on the thermal stability of Cu/Ta/Si structures deposited by ion beam deposition
JPH02149661A (en) Method and device for forming thin film
JP3439993B2 (en) Magnetron sputtering equipment
JP3121435B2 (en) Thin film formation method
JPS62199763A (en) Formation of tin film
JPH01301859A (en) Thin film formation
JP2636577B2 (en) Method of forming titanium nitride film
JPH01168857A (en) Formation of titanium nitride film
JPS61190064A (en) Formation of thin titanium nitride film
JPS63156325A (en) Manufacture of thin film and apparatus therefor
JPH0725523B2 (en) Titanium nitride thin film
JPH11199377A (en) Formation of crystalline thin membrane
JP3389639B2 (en) Control method of internal stress of film
JPH02259063A (en) Formation of metallic film
Hans et al. The interdependency of microstructure, stress and wear for ion beam modified tool steels
JPS63262457A (en) Preparation of boron nitride film
Popović et al. Nickel film orientation change by nitrogen ion bombardment during deposition
JPH0611908B2 (en) Corrosion resistant coated composite material and method for producing the same
Erington et al. Pulsed laser deposition of magneto-optic material