JP2713980B2 - Fe-based soft magnetic alloy - Google Patents

Fe-based soft magnetic alloy

Info

Publication number
JP2713980B2
JP2713980B2 JP63118335A JP11833588A JP2713980B2 JP 2713980 B2 JP2713980 B2 JP 2713980B2 JP 63118335 A JP63118335 A JP 63118335A JP 11833588 A JP11833588 A JP 11833588A JP 2713980 B2 JP2713980 B2 JP 2713980B2
Authority
JP
Japan
Prior art keywords
alloy
magnetic
soft magnetic
crystal grains
iron loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63118335A
Other languages
Japanese (ja)
Other versions
JPH01290747A (en
Inventor
正巳 岡村
孝雄 沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14734120&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2713980(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63118335A priority Critical patent/JP2713980B2/en
Priority to EP89304926A priority patent/EP0342922B1/en
Priority to DE68921021T priority patent/DE68921021T2/en
Priority to KR1019890006739A priority patent/KR930011234B1/en
Publication of JPH01290747A publication Critical patent/JPH01290747A/en
Priority to US07/711,415 priority patent/US5178689A/en
Application granted granted Critical
Publication of JP2713980B2 publication Critical patent/JP2713980B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、Fe基軟磁性合金に関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to an Fe-based soft magnetic alloy.

(従来技術) 従来から、スイッチングレギュレータなど高周波で使
用する磁心としては、パーマロイ、フェライトなどの結
晶質材料が用いられている。
(Prior Art) Conventionally, crystalline materials such as permalloy and ferrite have been used for magnetic cores used at high frequencies such as switching regulators.

しかしながら、パーマロイは比抵抗が小さいので高周
波での鉄損が大きくなる。また、フェライトは高周波で
の損失は小さいが、磁束密度もせいぜい5000Gと小さ
く、そのため大きな動作磁束密度での使用時にあって
は、飽和に近くなりその結果鉄損が増大する。近時、ス
イッチングレギュレータに使用される電源トランス、平
滑チョークコイル、コモンモードチョークコイルなど高
周波で使用される磁心においては、形状の小形化が望ま
れているが、その場合、動作磁束密度の増大が必要とな
るため、フェライトの鉄損増大は実用上大きな問題とな
る。
However, since permalloy has a low specific resistance, iron loss at a high frequency increases. Ferrite has a small loss at high frequencies, but also has a small magnetic flux density of at most 5000 G. Therefore, when used with a large operating magnetic flux density, it is close to saturation, resulting in an increase in iron loss. Recently, it has been desired to reduce the size of magnetic cores used at high frequencies such as power transformers used in switching regulators, smoothing choke coils, and common mode choke coils. Because of the necessity, an increase in iron loss of ferrite is a serious problem in practical use.

このため、結晶構造を持たない非晶質磁性合金が、高
透磁率、低保磁力など優れた軟磁気特性を示すので最近
注目を集めて一部実用化されている。これらの非晶質磁
性合金は、Fe、Co、Niなどを基本とし、これに非晶質化
元素(メタロイド)としてP、C、B、Si、Al、Geなど
を包含するものである。
For this reason, amorphous magnetic alloys having no crystal structure have recently been attracting attention and have been put to practical use because they exhibit excellent soft magnetic properties such as high magnetic permeability and low coercive force. These amorphous magnetic alloys are based on Fe, Co, Ni, etc., and include P, C, B, Si, Al, Ge, etc. as an amorphizing element (metalloid).

しかしながら、これら非晶性質磁性合金の全てが高周
波領域で鉄損が小さいというわけではない。例えば、Fe
基非晶質合金は、安価であり50〜60Hzの低周波領域では
ケイ素鋼の約1/4という非常に小さい鉄損を示すが、10
〜50Hzという高周波領域にあっては著しく大きな鉄損を
示し、とてもスイッチングレギュレータ等の高周波領域
での使用に適合するものではない。これを改善するため
に、Feの一部をNb、Mo、Cr等の非磁性金属で置換するこ
とにより低磁歪化し、低鉄損、高透磁率を図っている
が、例えば樹脂モールド時の樹脂の硬化収縮等による磁
気特性の劣化も比較的大きく、高周波領域で用いられる
軟磁性材料としては、充分な特性を得られるに至ってい
ない。
However, not all of these amorphous magnetic alloys have low iron loss in the high frequency range. For example, Fe
The base amorphous alloy is inexpensive and exhibits a very small iron loss of about 1/4 of silicon steel in the low frequency range of 50 to 60 Hz, but 10
In the high frequency range of ~ 50Hz, it shows a remarkably large iron loss and is not very suitable for use in a high frequency range such as a switching regulator. In order to improve this, low magnetostriction, low iron loss and high magnetic permeability are achieved by replacing a part of Fe with a nonmagnetic metal such as Nb, Mo, Cr, etc. Deterioration of magnetic properties due to curing shrinkage and the like is relatively large, and sufficient properties have not yet been obtained as a soft magnetic material used in a high frequency range.

一方、Co基非晶質合金は、高周波領域で低鉄損、高角
形比が得られるため可飽和リアクトルなどの電子機器用
磁性部品に実用化されるが、コストが比較的高いもので
ある。
On the other hand, Co-based amorphous alloys are practically used for magnetic components for electronic devices such as saturable reactors because of their low iron loss and high squareness in the high frequency range, but their costs are relatively high.

(発明が解決しようとする課題) 以上に述べたように、Fe基非晶合金は安価な軟磁性材
料でありながら、磁歪が比較的大きく、Co基非晶質合金
に比べ鉄損、透磁率とも劣っており、高周波領域におけ
る用途には問題があった。一方Co基非晶質合金は磁気特
性は良好であるものの、素材の値段が高いため工業上有
利ではなかった。
(Problems to be Solved by the Invention) As described above, an Fe-based amorphous alloy is an inexpensive soft magnetic material, but has relatively large magnetostriction, and iron loss and magnetic permeability compared to a Co-based amorphous alloy. However, there was a problem in use in the high frequency range. On the other hand, although the Co-based amorphous alloy has good magnetic properties, it is not industrially advantageous due to the high price of the material.

したがって本発明は、上記問題点に鑑み、高周波領域
において高飽和磁束密度で優れた軟磁気特性を有する軟
磁性合金を提供することを目的とする。
Therefore, an object of the present invention is to provide a soft magnetic alloy having a high saturation magnetic flux density and excellent soft magnetic characteristics in a high frequency region in view of the above problems.

[発明の概要] (課題を解決するための手段と作用) 上記目的を達成するためにFe基合金について種々検討
を重ねた結果、一般式 Fe100-a-b-cCuaMbYc M:周期律表IV a,V a,VI a族元素またはMn,Co,Ni,Alから
選ばれる少なくとも1種以上 Y:Si,B,Pから選ばれる少なくとも1種以上 3<a≦8 (原子%) 0.1≦b≦8 3.1≦a+b≦12 15≦c≦28 で表わされ、微細結晶粒を有する合金が軟磁性材料に優
れた特性を有することを初めて見い出し本発明に至った
ものである。
SUMMARY OF THE INVENTION (action a means for solving the problems) As a result of extensive studies about the Fe-based alloy in order to achieve the above object, the general formula Fe 100-abc Cu a M b Y c M: Periodic Table IVa, Va, VIa Group element or at least one element selected from Mn, Co, Ni, Al Y: at least one element selected from Si, B, P 3 <a ≦ 8 (atomic%) 0.1 ≤ b ≤ 8 3.1 ≤ a + b ≤ 12 15 ≤ c ≤ 28, and it has been found for the first time that an alloy having fine crystal grains has excellent properties as a soft magnetic material, leading to the present invention.

本発明は上記組成を有する合金中に特に微細結晶粒を
有することを特徴とする。
The present invention is characterized in that the alloy having the above composition has particularly fine crystal grains.

特に微細結晶粒は、合金中に面積比で30%以上存在す
ることが好ましく、さらには前記微細結晶粒中に50〜30
0Aの結晶粒が80%以上存在することが好ましい。
In particular, the fine crystal grains are preferably present in the alloy in an area ratio of 30% or more, and more preferably 50 to 30% in the fine crystal grains.
It is preferable that 80% or more of the crystal grains of 0A exist.

以下に、本発明合金の組成限定理由および微細結晶粒
の限定理由について説明する。
The reasons for limiting the composition of the alloy of the present invention and the reasons for limiting the fine crystal grains will be described below.

まず組成限定理由について説明する。 First, the reasons for limiting the composition will be described.

Cuは耐食性を高め、結晶粒の粗大化を防ぐと共に、鉄
損、透磁率など軟磁気特性を改善するのに有効な元素で
あるが、あまり少ないと添加の効果が得られず、逆にあ
まり多いと磁気特性の劣化を生じるために、その範囲を
3を越えて8原子%以下とした。好ましくは3を越えて
5原子%以下である。
Cu is an element effective in improving corrosion resistance, preventing crystal grain coarsening, and improving soft magnetic properties such as iron loss and magnetic permeability.However, if the amount is too small, the effect of addition cannot be obtained, and If the amount is too large, the magnetic properties deteriorate, so the range is set to more than 3 and 8 atomic% or less. Preferably it is more than 3 and 5 atomic% or less.

Mは結晶粒径の均一化に有効であると共に、磁歪およ
び磁気異方性を低減させ軟磁気特性の改善および温度変
化に対する磁気特性の改善に有効な元素であるが、その
量があまり少ないと添加の効果が得られず、逆にあまり
多いと飽和磁束密度が低くなるため、その量を0.1〜10
原子%とした。好ましくは1〜7原子%、さらに好まし
くは1.5〜5原子%である。ここでMにおける各添加元
素は上記効果と共にさらにそれぞれ、IV a族元素は最適
磁気特性を得るための熱処理条件の範囲の拡大、V a族
元素およびMnは耐脆化性の向上および切断等の加工性の
向上、VI a族元素は耐食性の向上および表面性状の向
上、Alは結晶粒の微細化と共に磁気異方性の低減に有効
であり、これにより磁歪、軟磁気特性の改善、等の効果
を有している。
M is an element that is effective in uniformizing the crystal grain size, and is also effective in reducing magnetostriction and magnetic anisotropy to improve soft magnetic properties and magnetic properties against temperature change. The effect of addition cannot be obtained, and conversely if it is too large, the saturation magnetic flux density becomes low.
Atomic%. Preferably it is 1 to 7 at%, more preferably 1.5 to 5 at%. Here, each additive element in M further has the above-mentioned effects, and the group IVa element further expands the range of heat treatment conditions for obtaining optimum magnetic characteristics, and the group Va element and Mn improve the brittleness resistance and cut. Group VIa elements are effective in improving corrosion resistance and surface properties, and Al is effective in reducing magnetic anisotropy as well as refining crystal grains, thereby improving magnetostriction and soft magnetic properties. Has an effect.

前記Mの元素中特に低鉄損化にはNb,Mo,Cr,Mn,Ni,Wが
好ましく、特に高飽和磁束密度化のためにはCoが好まし
い。
Among the elements of M, Nb, Mo, Cr, Mn, Ni, and W are preferable for reducing iron loss, and Co is particularly preferable for increasing saturation magnetic flux density.

Yは製造時における合金の非結晶化に有効な元素であ
り、その量があまり少ないと製造時における超急冷の効
果が得られにくく上記状態が得られず、逆にあまり多い
と飽和磁束密度が低くなり上記状態が得られにくくなる
ため、優れた磁気特性が得られなくなるため、その量を
15〜28原子%とした。好ましくは18〜26原子%である。
特に(Si,C)/(P,B)の比は1以上が好ましい。
Y is an element effective for non-crystallization of the alloy at the time of production. If the amount is too small, the effect of super-quenching at the time of production is hardly obtained, and the above-mentioned state cannot be obtained. It becomes difficult to obtain the above-mentioned state because of lowering, and it becomes impossible to obtain excellent magnetic properties.
15 to 28 atomic%. Preferably it is 18 to 26 atomic%.
In particular, the ratio of (Si, C) / (P, B) is preferably 1 or more.

上記本発明のFe基軟磁性合金は、例えば液体急冷法に
より、非晶質合金薄帯を得た後、あるいは、アトマイズ
法などにより急冷粉末を得た後前記非晶質合金の結晶化
温度に対し−50〜+120℃、好ましくは−30〜+100℃の
温度で1分〜10時間、好ましくは10分〜5時間の熱処理
を行い、意図する微細結晶を析出させる方法、等による
得ることが可能となる。
The Fe-based soft magnetic alloy of the present invention is, for example, a liquid quenching method, after obtaining an amorphous alloy ribbon, or after obtaining a quenched powder by an atomizing method or the like, the crystallization temperature of the amorphous alloy On the other hand, it can be obtained by a method of performing heat treatment at a temperature of -50 to + 120 ° C, preferably -30 to + 100 ° C for 1 minute to 10 hours, preferably 10 minutes to 5 hours to precipitate an intended fine crystal. Becomes

また、スパッタ法,蒸着法等により、上記と同様の特
性を薄膜として得ることも可能となる。
Further, it is also possible to obtain the same characteristics as the above as a thin film by a sputtering method, a vapor deposition method, or the like.

次に本発明のFe基軟磁合金の微細結晶粒について述べ
る。
Next, the fine crystal grains of the Fe-based soft magnetic alloy of the present invention will be described.

本発明の合金中において、あまり微細結晶粒が少ない
と、すなわち非晶質相があまり多いと鉄損が大きく、透
磁率が低く、磁歪が大きく、樹脂モールドによる磁気特
性の劣化が増大するため、合金中の微細結晶粒は面積比
で30%以上存在することが好ましい。
In the alloy of the present invention, if there are too few fine crystal grains, that is, if there are too many amorphous phases, the iron loss is large, the magnetic permeability is low, the magnetostriction is large, and the deterioration of the magnetic properties due to the resin mold increases, The fine crystal grains in the alloy preferably exist in an area ratio of 30% or more.

さらに上記微細結晶粒中においても結晶粒径があまり
小さいと磁気特性の改善が図れず、逆にあまり大きいと
磁気特性の劣化が発生するため、上記微細結晶粒中にお
いても、結晶粒径50〜300Aの結晶が80%以上存在するこ
とが好ましい。
Further, even in the fine crystal grains, if the crystal grain size is too small, the magnetic properties cannot be improved.On the contrary, if the crystal grain size is too large, the magnetic properties deteriorate. Preferably, at least 80% of 300A crystals are present.

本発明のFe基軟磁性合金は高周波での軟磁気特性に優
れているため、例えば磁気ヘッド、薄膜ヘッド、大電力
用を含む高周波トランス、可飽和リアクトル、コモンモ
ードチョークコイル、ノーマルモードチョークコイル、
高電圧パルス用ノイズフィルタ、レーザ電源等に用いら
れる磁気スイッチなど高周波で用いられる磁心、電流セ
ンサー、方位センサー、セキュリティセンサー,トルク
センサー等の各種センサー用の磁性材料等磁性部品の合
金として優れた特性を示している。
Since the Fe-based soft magnetic alloy of the present invention is excellent in soft magnetic properties at high frequencies, for example, a magnetic head, a thin film head, a high-frequency transformer including a high power, a saturable reactor, a common mode choke coil, a normal mode choke coil,
Excellent characteristics as an alloy of magnetic parts such as magnetic material used for high frequency such as noise filter for high voltage pulse, magnetic switch used for laser power supply, magnetic material for various sensors such as current sensor, direction sensor, security sensor, torque sensor, etc. Is shown.

(実施例) Fe75-aCuaNb3Si12B10なる合金においてa=0,2,4,6,
8,10について母合金を作成し、単ロール法により約15μ
mの非晶質合金薄帯を得た。
(Example) Fe 75-a Cu a Nb 3 Si 12 B 10 becomes a in alloys = 0,2,4,6,
Create a mother alloy for 8, 10
m of amorphous alloy ribbon was obtained.

上記薄帯につき合金の第1発熱ピークから得られる結
晶化温度(昇温速度10deg/minで測定)より20℃高い温
度で80分間の熱処理を行った。
The ribbon was subjected to a heat treatment at a temperature 20 ° C. higher than the crystallization temperature (measured at a heating rate of 10 deg / min) obtained from the first exothermic peak of the alloy for 80 minutes.

得られた薄帯の耐食性を1NHCl中100時間に浸漬した場
合における初期値に対する減量分として測定した。その
結果を第1図にまた、上記非晶質合金薄帯を巻回し、外
径18mm、内径12mm、高さ4.5mmのトロイダル状磁心に成
形し、前記と同様の温度で熱処理を行った。
The corrosion resistance of the obtained ribbon was measured as a weight loss from an initial value when immersed in 1N HCl for 100 hours. The results are shown in FIG. 1. The above-mentioned amorphous alloy ribbon was wound, formed into a toroidal magnetic core having an outer diameter of 18 mm, an inner diameter of 12 mm, and a height of 4.5 mm, and heat-treated at the same temperature as described above.

得られた磁心の飽和磁化を試料振動型磁力計(VSM)
により測定した。その結果を併せて第1図に示す。
The saturation magnetization of the obtained magnetic core is measured using a sample vibration magnetometer (VSM).
Was measured by FIG. 1 also shows the results.

第1図より明らかなように耐食性はCu添加により大幅
に改善され、3原子%を越えるとその値は0.5%以下と
なっている。また、Cu量が8原子%を越えると飽和磁化
が7.5KGとなりCo基非晶質合金と同様の値となってしま
う。したがって、耐食性と飽和磁化を満足するにはCuの
値は3原子%を越えて8原子%以下である。
As is clear from FIG. 1, the corrosion resistance is greatly improved by the addition of Cu, and when it exceeds 3 atomic%, the value becomes 0.5% or less. On the other hand, when the Cu content exceeds 8 atomic%, the saturation magnetization becomes 7.5 KG, which is the same value as that of the Co-based amorphous alloy. Therefore, to satisfy the corrosion resistance and the saturation magnetization, the value of Cu is more than 3 atomic% and 8 atomic% or less.

なお鉄損はX=0原子%を除きB=2KG,f=100KHzで
の鉄損を測定したところ、290〜330mW/ccにあり低鉄損
化を実現している。
The iron loss was measured at B = 2 KG and f = 100 KHz except for X = 0 atomic%, and was found to be 290 to 330 mW / cc, realizing low iron loss.

上記合金組成の中でFe71.5Cu3.5Nb13Si13B9の合金薄
帯を巻回し外径18mm、内径12mm、高さ4.5mmのトロイダ
ル状磁心に成形した後、第1表に示す条件で熱処理を行
った。なお比較として熱処理条件を約430℃で約80分間
の熱処理を行った磁心を製作した。得られた磁心にはTE
M観察により微細結晶粒は析出していないことを確認し
た。
After winding a thin ribbon of Fe 71.5 Cu 3.5 Nb 13 Si 13 B 9 in the above alloy composition to form a toroidal magnetic core having an outer diameter of 18 mm, an inner diameter of 12 mm, and a height of 4.5 mm, under the conditions shown in Table 1, Heat treatment was performed. As a comparison, a magnetic core was prepared by performing heat treatment at about 430 ° C. for about 80 minutes. The obtained magnetic core has TE
It was confirmed by M observation that fine crystal grains did not precipitate.

上記本発明の微細結晶粒を存在する磁心と比較例り微
細結晶が存在しない磁心についてそれぞれ5個用いB=
2KG,f=100KHzでの熱処理後の鉄損とエポキシ樹脂モー
ルド後の鉄損、磁歪、1KHz,10mOeでの透磁率および飽和
磁束密度を測定し、それらの平均値を第1表に示す。
Five pieces were used for each of the above-described magnetic cores having fine crystal grains of the present invention and the comparative example, and
Iron loss after heat treatment at 2KG, f = 100KHz, iron loss after epoxy resin molding, magnetostriction, permeability at 1KHz, 10mOe and saturation magnetic flux density were measured, and the average values are shown in Table 1.

上記第1表より明らかなように、本発明の合金は微細
結晶粒を設けることにより、同組成の非晶質合金薄帯よ
りなる磁心に比べ鉄損特に樹脂モールド後の鉄損が低
く、低磁歪で高透磁率であり、高周波において優れた軟
磁気特性を示している。
As is evident from Table 1 above, the alloy of the present invention, by providing fine crystal grains, has a lower iron loss, especially after resin molding, compared to a magnetic core made of an amorphous alloy ribbon having the same composition. It has high magnetic permeability due to magnetostriction and exhibits excellent soft magnetic characteristics at high frequencies.

[発明の効果] 本発明の合金は、所望の合金組成において、微細結晶
粒を設けることにより、高周波領域において高飽和磁束
密度で優れた軟磁気特性を有するFe基軟磁性合金を提供
することが可能となる。
[Effects of the Invention] The alloy of the present invention can provide a Fe-based soft magnetic alloy having a high saturation magnetic flux density and excellent soft magnetic properties in a high frequency region by providing fine crystal grains in a desired alloy composition. It becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明合金のCuの添加による耐食性と飽和磁
化の変化を示すグラフである。
FIG. 1 is a graph showing changes in corrosion resistance and saturation magnetization of the alloy of the present invention due to addition of Cu.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一般式 Fe100-a-b-cCuaMbYc M:周期律表IV a,V a,VI a族元素またはMn,Co,Ni,Alから
選ばれる少なくとも1種以上 Y:Si,B,P,Cから選ばれる少なくとも1種以上 3<a≦8 (原子%) 0.1≦b≦8 3.1≦a+b≦12 15≦c≦28 で表わされ、微細結晶粒を有することを特徴とする高飽
和磁束密度で優れた軟磁気特性を有するFe基軟磁性合
金。
1. A general formula Fe 100-abc Cu a M b Y c M: periodic table IV a, V a, VI a group element or Mn, Co, Ni, at least one selected from Al Y: Si At least one selected from, B, P and C 3 <a ≦ 8 (atomic%) 0.1 ≦ b ≦ 8 3.1 ≦ a + b ≦ 12 15 ≦ c ≦ 28, characterized by having fine crystal grains Fe-based soft magnetic alloy with high saturation magnetic flux density and excellent soft magnetic properties.
【請求項2】微細結晶粒は合金中に面積比で30%以上存
在し、その中で結晶粒径50〜300Aの結晶が80%以上存在
することを特徴とする請求項1のFe基軟磁性合金。
2. The Fe-based soft alloy according to claim 1, wherein the fine crystal grains are present in the alloy in an area ratio of 30% or more, and the crystals having a crystal grain size of 50 to 300A are present in the alloy in an amount of 80% or more. Magnetic alloy.
JP63118335A 1988-05-17 1988-05-17 Fe-based soft magnetic alloy Expired - Fee Related JP2713980B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63118335A JP2713980B2 (en) 1988-05-17 1988-05-17 Fe-based soft magnetic alloy
EP89304926A EP0342922B1 (en) 1988-05-17 1989-05-16 Fe-based soft magnetic alloy and dust core made therefrom
DE68921021T DE68921021T2 (en) 1988-05-17 1989-05-16 Soft magnetic iron-based alloy and powder core made from it.
KR1019890006739A KR930011234B1 (en) 1988-05-17 1989-05-17 Magnetic materials
US07/711,415 US5178689A (en) 1988-05-17 1991-06-05 Fe-based soft magnetic alloy, method of treating same and dust core made therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63118335A JP2713980B2 (en) 1988-05-17 1988-05-17 Fe-based soft magnetic alloy

Publications (2)

Publication Number Publication Date
JPH01290747A JPH01290747A (en) 1989-11-22
JP2713980B2 true JP2713980B2 (en) 1998-02-16

Family

ID=14734120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63118335A Expired - Fee Related JP2713980B2 (en) 1988-05-17 1988-05-17 Fe-based soft magnetic alloy

Country Status (1)

Country Link
JP (1) JP2713980B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7043877B2 (en) * 2018-02-21 2022-03-30 Tdk株式会社 Soft magnetic alloys and magnetic parts

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2713364B2 (en) * 1988-05-11 1998-02-16 日立金属株式会社 Ultra-microcrystalline soft magnetic alloy with excellent heat resistance

Also Published As

Publication number Publication date
JPH01290747A (en) 1989-11-22

Similar Documents

Publication Publication Date Title
JP5316920B2 (en) Soft magnetic alloys, alloy ribbons with an amorphous phase as the main phase, and magnetic components
US5340413A (en) Fe-NI based soft magnetic alloys having nanocrystalline structure
JPH044393B2 (en)
JPH03219009A (en) Production of fe-base soft-magnetic alloy
JP3719449B2 (en) Nanocrystalline alloy, method for producing the same, and magnetic core using the same
US5019190A (en) Fe-based soft magnetic alloy
JP2710938B2 (en) High saturation magnetic flux density soft magnetic alloy
JP2894561B2 (en) Soft magnetic alloy
KR920007579B1 (en) Soft magnetic materials
JPH03146615A (en) Production of fe-base soft-magnetic alloy
JP2823203B2 (en) Fe-based soft magnetic alloy
US5192375A (en) Fe-based soft magnetic alloy
US5225006A (en) Fe-based soft magnetic alloy
JP3856245B2 (en) Method for producing high permeability nanocrystalline alloy
JP2778697B2 (en) Fe-based soft magnetic alloy
JP2823204B2 (en) Soft magnetic alloy
JP2713980B2 (en) Fe-based soft magnetic alloy
JP2919886B2 (en) Fe-based soft magnetic alloy
US4834814A (en) Metallic glasses having a combination of high permeability, low coercivity, low AC core loss, low exciting power and high thermal stability
JP2704157B2 (en) Magnetic parts
JP2760539B2 (en) Fe-based soft magnetic alloy
JPH053126A (en) Manufacture of wound magnetic core of large squareness ratio in high frequency and wound magnetic core
JP2777161B2 (en) Fe-based soft magnetic alloy
JPH01290745A (en) Fe-base soft-magnetic alloy
JPH0853739A (en) Soft magnetic alloy

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees