JP2713809B2 - Method of forming electrodeposition base coat - Google Patents

Method of forming electrodeposition base coat

Info

Publication number
JP2713809B2
JP2713809B2 JP2222452A JP22245290A JP2713809B2 JP 2713809 B2 JP2713809 B2 JP 2713809B2 JP 2222452 A JP2222452 A JP 2222452A JP 22245290 A JP22245290 A JP 22245290A JP 2713809 B2 JP2713809 B2 JP 2713809B2
Authority
JP
Japan
Prior art keywords
aluminum
film
steel plate
organic polymer
polymer resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2222452A
Other languages
Japanese (ja)
Other versions
JPH04191396A (en
Inventor
陸雄 荻野
新 須田
晃 加藤
孝之 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Parkerizing Co Ltd
Original Assignee
Nihon Parkerizing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Parkerizing Co Ltd filed Critical Nihon Parkerizing Co Ltd
Priority to JP2222452A priority Critical patent/JP2713809B2/en
Publication of JPH04191396A publication Critical patent/JPH04191396A/en
Application granted granted Critical
Publication of JP2713809B2 publication Critical patent/JP2713809B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、アルミニウムまたはアルミニウム合金の板
材または帯材(以下アルミ板材と称する)の表面に優れ
た耐食性、塗装性、加工性を付与する新規な皮膜形成方
法に関するものであり、特にプレス成型等の加工を行
い、溶接、接着、ボルト等の接合方法により鋼板または
亜鉛系メッキ鋼板等(以下、単に鋼板等と称する)と接
合し、組み合わせ、複合素材による同一構成体として使
用されるアルミニウム板材に好適な複合皮膜形成方法に
関するものである。 [従来の技術] 従来、アルミニウムおよびアルミニウム合金の表面処
理方法としてはリン酸クロメート処理方法、クロム酸ク
ロメート処理方法、あるいはリン酸亜鉛処理法が耐食性
及び塗装密着性等を向上する目的で行われている。 近年、自動車の軽量化のためにアルミ板材が車体の一
部に使用され始め、その使用量は年々増加する傾向にあ
る。またその多くは鋼板等と溶接、接着、ボルト等の接
合方法により接合、組合せて使用されている。 従来、自動車車体を構成する鋼板等の表面は塗装前処
理工程として、脱脂、水洗、表面調整、リン酸亜鉛系処
理、水洗の工程によりリン酸亜鉛系皮膜を施した後、電
着塗装を行う事により自動車車体に要求される、耐食
性、塗装密着性、塗装外観等の品質に対応している。 アルミ板材を自動車車体の一部に適用した場合にも当
然前記の品質が必要であり、そのため種々の表面処理方
法が提案されている。 一般的な方法としては、アルミ板材と鋼板等とからで
きた自動車車体構成体を前述のような前処理を行い、ア
ルミ板材および鋼板等の表面にリン酸亜鉛系皮膜を同時
に形成し電着塗装を行う方法があるが、この方法による
とリン酸亜鉛処理液中にアルミニウムイオンが混入し蓄
積するので、それが災いして、正常なリン酸亜鉛系皮膜
の形成を阻害するようになることが知られている。 この問題を改善する方法としては、アルミ板材ででき
た自動車車体構成部を他の鋼板等による構成部と分けて
別々に前処理を行う方法が提案されるが、この場合には
塗装前処理装置が2セット必要になり設備コストが増加
するので経済的に不利である。 他方、特開昭61−96074号公報に上記の欠点を解決す
る方法として、アルミ板材製構成部品にあらかじめクロ
メート処理を行ったのち、鋼板等の構成部と溶接、接
着、ボルト等の接合方法により接合、組み合わせて自動
車車体を構成し、リン酸亜鉛系処理液中へのアルミニウ
ムイオンの溶出を防ぐ方法が開示されている。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a novel material which imparts excellent corrosion resistance, coating properties and workability to the surface of a plate or strip of aluminum or an aluminum alloy (hereinafter referred to as an aluminum plate). In particular, it performs a process such as press molding, and joins with a steel plate or a zinc-based plated steel plate (hereinafter simply referred to as a steel plate or the like) by a joining method such as welding, bonding, or bolting, and combining, The present invention relates to a method for forming a composite film suitable for an aluminum plate material used as the same structure using a composite material. [Prior art] Conventionally, as a surface treatment method of aluminum and aluminum alloy, a phosphoric acid chromate treatment method, a chromate chromate treatment method, or a zinc phosphate treatment method has been performed for the purpose of improving corrosion resistance and paint adhesion. I have. In recent years, aluminum plate materials have begun to be used for a part of a vehicle body in order to reduce the weight of automobiles, and the amount of use thereof tends to increase year by year. Many of them are used in combination with a steel plate or the like by welding, bonding, bolting or the like. Conventionally, the surface of a steel plate or the like constituting an automobile body is subjected to electrodeposition coating after a zinc phosphate-based coating is applied by a degreasing, water-washing, surface conditioning, zinc phosphate-based treatment, and water-washing process as a pre-coating process. In response to such requirements, the quality of the corrosion resistance, paint adhesion, paint appearance, etc., required for automobile bodies is met. Even when an aluminum plate material is applied to a part of an automobile body, the above-mentioned quality is naturally required. Therefore, various surface treatment methods have been proposed. As a general method, an automobile body structure made of an aluminum plate material and a steel plate is subjected to the above-described pretreatment, and a zinc phosphate-based film is simultaneously formed on the surface of the aluminum plate material and the steel plate to form an electrodeposition coating. However, according to this method, aluminum ions are mixed and accumulated in the zinc phosphate treatment solution, which may cause disaster and hinder the formation of a normal zinc phosphate-based film. Are known. As a method for solving this problem, a method has been proposed in which an automobile body component part made of an aluminum plate material is separately pretreated separately from components made of other steel plates or the like. However, two sets are required, and equipment cost increases, which is economically disadvantageous. On the other hand, JP-A-61-96074 discloses a method for solving the above-mentioned drawbacks in which a component made of an aluminum plate is preliminarily subjected to a chromate treatment, and is then joined to a component such as a steel plate by welding, bonding, bolting, or the like. A method is disclosed in which an automobile body is formed by joining and combining to prevent elution of aluminum ions into a zinc phosphate-based treatment solution.

【発明が解決しようとする課題】[Problems to be solved by the invention]

しかしながら、本発明者等の新たな知見によると、こ
の方法ではリン酸亜鉛系処理液中にクロメート皮膜から
クロムイオンが溶出し、それがリン酸亜鉛系処理液中に
蓄積して鋼板の表面に対し正常なリン酸亜鉛系皮膜の形
成を阻害するという問題が起こる。 本発明は、電着塗装に先立って行うリン酸塩皮膜形成
において、処理液へのクロムイオンの溶出を防止した、
アルミ板材の電着塗装下地皮膜形成方法の提供を課題と
している。 即ち本発明は、アルミ板材と鋼板等を組合せた成形部
材に塗装前処理(リン酸塩皮膜形成処理)を施すに際し
て、鋼板等の塗装前処理性が阻害されることがない、成
形部材の電着塗装下地皮膜形成方法を提供するものであ
る。 [課題を解決するための手段および作用] 本発明は、アルミ板材の複合皮膜形成方法、更に詳細
には鋼板等と組合せて、あるいは組合せずに単独で自動
車車体の構成体として使用されるアルミ板材の表面への
複合皮膜形成方法に関するものであり、プレス成型等に
より加工される前に、あらかじめアルミ板材の表面をク
ロム酸、リン酸または硝酸、フッ化水素酸の3種類の酸
を必須成分として含む水溶液にてクロメート処理を行っ
たのち水洗し乾燥し、金属クロム換算で10〜150mg/m2
クロメート皮膜層を形成させ、ついで該皮膜上に平均粒
径が10〜500μmのシリカゾルを有機高分子樹脂1重量
部に対して0.2〜1.2重量部含有するシリカゾル・有機高
分子樹脂組成物(混合物)を塗布した後、乾燥すること
により皮膜重量が0.2〜5g/m2のシリカゾル・有機高分子
樹脂皮膜層を施すことにより複合皮膜を形成させる方法
に関するものである。このような複合皮膜を形成したア
ルミ板材をプレス成型等の加工を施し、あるいは加工せ
ずに鋼板等と組合せ、または鋼板等と組合せずに自動車
車体を構成することにより、該複合皮膜は塗装前処理工
程のアルカリ洗浄に侵される事がなく、且つリン酸亜鉛
処理浴中へのアルミニウムイオン、クロムイオンの溶出
を防止し、従って鋼板等の表面に対する塗装前処理性を
阻害せず、且つ、アルミ板材で構成された車体部に優れ
た耐食性、塗装性等の性能を付与するものである。 本発明の方法は、まずアルミ板材の表面にクロメート
皮膜を金属クロム換算で10〜150mg/m2形成させる。本ク
ロメート皮膜形成のために使用されるクロメート処理剤
について具体的に説明すると、例えばクロム酸として0.
4〜10g/l、リン酸として1.5〜50g/l、フッ化水素酸とし
て0.05〜5g/lの3種類の酸又はこれに更に硝酸0.1〜10g
/lを含む水溶液もしくは、クロム酸として0.4〜10g/l、
硝酸として0.1〜10g/l、フッ化水素酸として0.05〜5g/l
の3種類の酸を含む水溶液等が挙げられる。クロム酸濃
度が0.4g/l未満、リン酸濃度が1.5g/l未満、フッ化水素
酸濃度が0.05g/l未満では形成するクロメート皮膜の重
量が、金属クロム換算で10〜150mg/m2に達するのに時間
がかかり能率的でない、同様にクロム酸として0.4g/l未
満、硝酸として0.1g/l未満、フッ化水素酸として0.05g/
l未満の場合も金属クロム換算で10〜150mg/m2に達する
のに時間がかかり能率的でない。 該クロメート皮膜が金属クロム換算で10mg/m2未満で
は耐食性が十分ではなく、150mg/m2超では耐食性能が飽
和するだけでなく、塗装の前処理工程でのクロム溶出量
が増加するので好ましくない。 次に、該クロメート皮膜上にシリカゾルを有機高分子
樹脂1重量部に対しシリカゾルを0.2〜1.2重量部含有す
る有機高分子樹脂組成物を塗布し、次いで乾燥すること
により、該有機高分子樹脂組成物の皮膜重量が0.2〜5g/
m2の皮膜層を形成させる。有機高分子樹脂としては、ア
クリル酸、アクリル酸エステル酸、メタクリル酸、及び
メタクリル酸エステル類を主体としたアクリル系重合
物、分子中に2個以上の水酸基を持つポリオール類と分
子中に2個のイソシアネート基を持つポリイソシアネー
ト類との反応によるウレタン系樹脂、エピクロルヒドリ
ンとビスフェノールAを主体とするエポキシ樹脂系、ア
ルキッド樹脂系等を水に溶解もしくは分散し水系樹脂液
としたもの、または上記樹脂を溶解もしくは分散し得る
有機溶剤に溶解もしくは分散した有機溶剤系樹脂液が使
用できるが特定するものではない。 次に、シリカゾルとしては平均粒径が10〜500μmが
使用できる。平均粒径が10μm未満では該有機高分子樹
脂組成物による皮膜の耐食性が十分ではなく、500μm
超では該有機高分子樹脂組成物による皮膜の形成が困難
である。使用できるシリカゾルを具体的に挙げると例え
ばアエロジル#200、#300、#380(日本アエロジル
製)、スノーテックス−O、−N、−C(日産化学
製)、等が使用できる。 シリカゾルの含有量が有機高分子樹脂1重量部に対し
て固形分で0.2重量部未満では正常な電着塗膜の形成が
困難となり、1.2重量部超では形成される皮膜が脆くな
り加工性が劣化する。皮膜重量が0.2g/m2未満では塗装
の前処理でのクロム溶出の抑制が不十分であり、且つ耐
食性も劣化する。5g/m2超ではコストが増加し経済上不
利となるだけでなく正常な電着塗膜の形成が困難とな
る。 このようにして複合表面処理皮膜を施したアルミ板材
は加工性が良好であるため自動車車体構成部とするプレ
ス成型性に優れ、且つ他の鋼板部分と組合せて塗装前処
理を行っても、リン酸亜鉛処理浴中にアルミニウムイオ
ン、クロムイオンは蓄積せず、従って鋼板部分の塗装前
処理性を阻害せず、且つ、アルミ板材で構成される車体
部分に耐食性、塗装性、塗装密着性等の優れた性能を付
与するものである。 以下に実施例を比較例と共に挙げ本発明の効果を具体
的に説明する。 [実施例] アルミニウム合金板(材質:A5082,H32)を素材として
使用して、下記工程にて複合表面処理を行った。 (1)使用薬剤及び条件 アルカリ脱脂剤:ファインクリーナ#359(日本パーカ
ライジング製)、20g/l、60℃、30秒、スプレー。 クロメート処理剤組成及び条件について表1に示し
た。 有機高分子樹脂組成物の組成内容については表2に示
した。付着量は固形分濃度とバーコーターNo.で調節し
た。 (2)性能試験方法 (a)耐クロム溶出性試験 複合皮膜形成アルミ板材をあとで(3)で述べる条件
で塗装前処理し、その前後におけるクロム付着 量を蛍光X線で測定(mg/m2)し、耐クロム溶出性とし
て下式によって表示した。すなわち%の値が小さい程耐
クロム溶出性が優れていることを示し、0の値は本試験
において全く塗装前処理に影響されていないことを示
す。 (b)耐食性 試験片(複合皮膜形成アルミ板材、サイズ70mm×150m
m)をエリクセン試験機にて6mm押出した後、JIS−Z−2
371に規定された塩水噴霧試験を500時間行い、試験片の
全面積に対する白錆発生状態から耐食性を評価した。 ◎:白錆発生面積 0% ○:同上 10%未満 △:同上 10%以上30%未満 ×:同上 30%以上 (c)ED塗装後外観 試験片(複合皮膜形成アルミ板材、サイズ70mm×150m
m)を塗装前処理後、自動車用カチオン電着塗装を行
い、塗膜の外観を目視にて判定した。 ◎:異常なし。 ○:塗膜面にやや凹凸有り。 △:塗膜面に凹凸有り。 ×:塗膜面に凹凸無数に有り。 (d)摩擦摩耗試験 バウデン式摩擦摩耗試験機((株)オリエンティック
製、EMF−2)を使用し摩擦係数を測定した。 測定条件:球径……8mmφ 荷重……100g プレス油無し 温度……室温 (3)塗装前処理工程 条件、薬剤種; 脱脂:FC−L4460(日本パーカライジング製)、A剤:20g
/l、B剤:12g/l、スプレー:43℃×2分。 表面調整:PL−ZN(日本パーカライジング製)、1g/l、
スプレー:30秒。 化成:PB−L3020(日本パーカライジング製)、M剤:48g
/l、AD−4813:5g/l、AD−4856:17g/l、浸漬、43℃×2
分。 (4)試験結果 実施例、比較例の性能試験結果を表3に示した。 実施例1〜11は、クロメート処理条件は表1のNo1ま
たは4で本発明の範囲内にある。また樹脂組成物は表2
の有機高分子樹脂組成物のNo.1,4,5,6で本発明のシリカ
ゾル/樹脂であり、膜厚も本発明の範囲内にある。この
ため耐クロム溶出性、耐食性、ED塗装外観性はいずれも
良好である。 比較例は、No1およびNo3はクロメート皮膜が厚過ぎ
る。No2およびNo4はクロメート皮膜が薄過ぎる。No5は
有機高分子樹脂組成物の膜厚が薄過ぎ、No6は厚過ぎ
る。No7は有機高分子樹脂組成物のシリカゾル/樹脂の
値が小さ過ぎ、No8はこの値が大き過ぎる。No9は有機高
分子樹脂組成物を使用していない。これ等の原因で比較
例No1〜No9の性能は不十分である。 [発明の効果] 以上述べた如く、本発明による複合皮膜を形成した被
処理材は、耐クロム溶出性、耐食性、電着塗装性に優れ
ている。また耐クロム溶出性が優れているため、アルミ
ニウム板材と鋼板等を組合せた成形部材に塗装前処理を
施すに際して鋼板等の正常な塗装前処理性が阻害される
ことがない。本発明の方法ではクロムイオンの溶出が防
止されているために廃水処理が簡単である。
However, according to a new finding of the present inventors, in this method, chromium ions are eluted from the chromate film in the zinc phosphate-based treatment solution, and the chromium ions accumulate in the zinc phosphate-based treatment solution and form on the surface of the steel sheet. On the other hand, there is a problem that the formation of a normal zinc phosphate-based film is inhibited. The present invention, in forming a phosphate film prior to electrodeposition coating, to prevent elution of chromium ions to the processing solution,
It is an object of the present invention to provide a method for forming an electrodeposition coating undercoat on an aluminum plate. That is, according to the present invention, when performing a pre-painting treatment (phosphate film forming treatment) on a formed member obtained by combining an aluminum plate material and a steel plate, the pre-painting property of the steel plate or the like is not impaired. An object of the present invention is to provide a method for forming a coating base coat. Means and Action for Solving the Problems The present invention relates to a method for forming a composite film of an aluminum plate, and more particularly, an aluminum plate used alone or in combination with a steel plate or the like as a component of an automobile body. The method relates to a method of forming a composite film on the surface of aluminum plate. Before processing by press molding, etc., the surface of the aluminum plate is preliminarily composed of three kinds of acids, chromic acid, phosphoric acid or nitric acid, and hydrofluoric acid as essential components. aqueous solution washed with water and dried after performing a chromate treatment by including, reckoned as metal chromium to form a chromate film layer of 10-150 mg / m 2, and then an average particle size of organic high silica sol 10~500μm on said coating After applying a silica sol / organic polymer resin composition (mixture) containing 0.2 to 1.2 parts by weight with respect to 1 part by weight of the molecular resin, the silica sol having a coating weight of 0.2 to 5 g / m 2 is applied by drying. The present invention relates to a method for forming a composite film by applying an organic polymer resin film layer. By subjecting the aluminum sheet material having such a composite film to processing such as press molding, or combining it with a steel sheet or the like without processing, or forming an automobile body without combining with a steel sheet or the like, the composite film is coated before painting. It is not affected by the alkali cleaning in the treatment process, and prevents the elution of aluminum ions and chromium ions into the zinc phosphate treatment bath. The purpose is to impart excellent corrosion resistance, paintability, and other performances to a vehicle body made of a plate material. In the method of the present invention, first, a chromate film is formed on the surface of an aluminum plate at 10 to 150 mg / m 2 in terms of metal chromium. The chromating agent used for forming the present chromate film is specifically described as follows.
4 to 10 g / l, 1.5 to 50 g / l for phosphoric acid, 0.05 to 5 g / l for hydrofluoric acid or 0.1 to 10 g of nitric acid
/ l aqueous solution or 0.4 to 10 g / l as chromic acid,
0.1 to 10 g / l as nitric acid, 0.05 to 5 g / l as hydrofluoric acid
And aqueous solutions containing the three types of acids. Less than chromic acid concentration 0.4 g / l, less than phosphoric acid concentration 1.5 g / l, the weight of the chromate film is hydrofluoric acid concentration to form less than 0.05 g / l is, 10-150 mg / m 2 reckoned as metal chromium It takes time to reach and is inefficient, likewise less than 0.4 g / l as chromic acid, less than 0.1 g / l as nitric acid, 0.05 g / l as hydrofluoric acid
In the case of less than l, it takes a long time to reach 10 to 150 mg / m 2 in terms of metallic chromium, which is not efficient. Not have sufficient corrosion resistance is less than 10 mg / m 2 in said chromate film is reckoned as metal chromium, not only corrosion resistance is saturated at 150 mg / m 2 greater, since chromium elution amount in the pretreatment step of the coating is increased preferably Absent. Next, an organic polymer resin composition containing 0.2 to 1.2 parts by weight of silica sol with respect to 1 part by weight of the organic polymer resin is applied on the chromate film, and then dried to obtain the organic polymer resin composition. The film weight of the object is 0.2-5g /
to form a coating layer of m 2. Examples of the organic polymer resin include acrylic polymers mainly composed of acrylic acid, acrylic acid ester acid, methacrylic acid, and methacrylic acid ester, polyols having two or more hydroxyl groups in a molecule and two in a molecule. Urethane resin by reaction with polyisocyanates having an isocyanate group of, an epoxy resin based on epichlorohydrin and bisphenol A, an alkyd resin or the like dissolved or dispersed in water to form an aqueous resin liquid, or the above resin An organic solvent-based resin solution dissolved or dispersed in an organic solvent that can be dissolved or dispersed can be used, but is not specified. Next, an average particle diameter of 10 to 500 μm can be used as the silica sol. When the average particle size is less than 10 μm, the corrosion resistance of the film by the organic polymer resin composition is not sufficient,
If the amount is too large, it is difficult to form a film using the organic polymer resin composition. Specific examples of the silica sol that can be used include, for example, Aerosil # 200, # 300, # 380 (manufactured by Nippon Aerosil), Snowtex-O, -N, -C (manufactured by Nissan Chemical Industries). If the content of silica sol is less than 0.2 parts by weight as solids relative to 1 part by weight of the organic polymer resin, it is difficult to form a normal electrodeposition coating film, and if the content exceeds 1.2 parts by weight, the formed film becomes brittle and processability becomes poor. to degrade. When the coating weight is less than 0.2 g / m 2 , the elution of chromium in the pretreatment of coating is not sufficiently suppressed, and the corrosion resistance is also deteriorated. If it exceeds 5 g / m 2 , the cost increases, which is not only economically disadvantageous, but also makes it difficult to form a normal electrodeposition coating film. Since the aluminum sheet material coated with the composite surface treatment film in this way has good workability, it is excellent in press formability as a component of an automobile body, and even if the pretreatment for painting is performed in combination with other steel sheet parts, Aluminum ions and chromium ions do not accumulate in the zinc acid treatment bath, so they do not impede the pre-painting property of the steel plate part, and the body parts made of aluminum plate have corrosion resistance, paintability, paint adhesion, etc. It gives excellent performance. Hereinafter, the effects of the present invention will be specifically described with reference to examples and comparative examples. Example A composite surface treatment was performed in the following steps using an aluminum alloy plate (material: A5082, H32) as a material. (1) Chemicals used and conditions Alkaline degreaser: Fine Cleaner # 359 (manufactured by Nippon Parkerizing), 20 g / l, 60 ° C, 30 seconds, spray. Table 1 shows the composition and conditions of the chromate treatment agent. Table 2 shows the composition of the organic polymer resin composition. The amount of adhesion was adjusted by the solid content concentration and the bar coater No. (2) Performance test method (a) Chromium elution resistance test A composite coating-formed aluminum sheet material was pre-treated for coating under the conditions described in (3) later, and chromium adhesion before and after that The amount was measured by X-ray fluorescence (mg / m 2 ) and expressed as the chromium elution resistance by the following formula. That is, the smaller the value of%, the better the chromium elution resistance, and the value of 0 indicates that the coating was not affected by the pretreatment at all in this test. (B) Corrosion resistance test piece (composite film-formed aluminum plate, size 70mm × 150m
m) was extruded 6 mm with an Erichsen tester, and then JIS-Z-2
The salt spray test specified in 371 was performed for 500 hours, and the corrosion resistance was evaluated from the state of white rust occurrence on the entire area of the test piece. ◎: White rust generation area 0% ○: Same as above, less than 10% △: Same as above, 10% or more and less than 30% ×: Same as above, 30% or more (c) Appearance after ED coating Specimen (composite film-formed aluminum plate, size 70mm × 150m)
m) was subjected to a cationic electrodeposition coating for automobiles after coating pretreatment, and the appearance of the coating film was visually determined. A: No abnormality. :: Some unevenness on the coating film surface. Δ: Unevenness on the coating film surface. ×: There are countless irregularities on the coating film surface. (D) Friction and wear test The friction coefficient was measured using a Bowden-type friction and wear tester (EMF-2, manufactured by Orientic Co., Ltd.). Measurement conditions: Ball diameter: 8 mmφ Load: 100 g No press oil Temperature: Room temperature (3) Pretreatment for painting Conditions, drug type; Degreasing: FC-L4460 (manufactured by Nippon Parkerizing), Agent A: 20 g
/ l, agent B: 12 g / l, spray: 43 ° C x 2 minutes. Surface adjustment: PL-ZN (manufactured by Nippon Parkerizing), 1g / l,
Spray: 30 seconds. Chemical: PB-L3020 (manufactured by Nippon Parkerizing), M agent: 48 g
/ l, AD-4813: 5 g / l, AD-4856: 17 g / l, immersion, 43 ° C x 2
Minutes. (4) Test Results Table 3 shows the performance test results of the examples and the comparative examples. In Examples 1 to 11, the chromating conditions are No. 1 or 4 in Table 1 and are within the scope of the present invention. Table 2 shows the resin composition.
No. 1, 4, 5, and 6 of the organic polymer resin composition of the present invention are the silica sol / resin of the present invention, and the film thickness is also within the scope of the present invention. Therefore, chromium elution resistance, corrosion resistance, and ED coating appearance are all good. In Comparative Examples, the chromate films of No. 1 and No. 3 were too thick. For No2 and No4, the chromate film is too thin. In No. 5, the thickness of the organic polymer resin composition is too thin, and in No. 6, the thickness is too large. In No. 7, the value of the silica sol / resin of the organic polymer resin composition is too small, and in No. 8, this value is too large. No. 9 does not use an organic polymer resin composition. For these reasons, the performances of Comparative Examples No. 1 to No. 9 are insufficient. [Effects of the Invention] As described above, the material to be treated on which the composite film according to the present invention is formed has excellent chromium elution resistance, corrosion resistance, and electrodeposition coating properties. Further, since the chromium elution resistance is excellent, a normal pre-painting treatment of a steel plate or the like is not hindered when a pre-coating treatment is performed on a formed member obtained by combining an aluminum plate material and a steel plate. Since the elution of chromium ions is prevented in the method of the present invention, wastewater treatment is simple.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C25D 13/20 C25D 13/20 C (72)発明者 青木 孝之 東京都中央区日本橋1丁目15番1号 日 本パーカライジング株式会社内 (56)参考文献 特開 昭61−96074(JP,A) 特開 昭62−152579(JP,A) 特開 昭58−224175(JP,A)──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical display location C25D 13/20 C25D 13/20 C (72) Inventor Takayuki Aoki 1-15 Nihonbashi, Chuo-ku, Tokyo No. 1 In Japan Parkerizing Co., Ltd. (56) References JP-A-61-96074 (JP, A) JP-A-62-152579 (JP, A) JP-A-58-224175 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】アルミニウム又はアルミニウム合金の部材
と、鋼板及び/又は亜鉛系メッキ鋼板の部材とが組み合
わされてなる成形部材にリン酸塩処理を施す、成形部材
の電着塗装下地皮膜形成方法において、予めアルミニウ
ム又はアルミニウム合金の部材に、クロム酸0.4〜10g/
L、りん酸1.5〜50g/L、フッ化水素酸0.05〜5g/Lを主成
分とする水溶液を用いた反応型クロメート皮膜をクロム
換算で10〜150mg/m2形成させ、更に平均粒径が10〜500
μmのシリカゾルを有機高分子樹脂1重量部に対し0.2
〜1.2重量部含有するシリカゾル・有機高分子樹脂混合
物を用いた乾燥皮膜を0.2〜5g/m2形成させ、これを鋼板
及び/又は亜鉛系メッキ鋼板の部材と組み合わせた成形
部材にリン酸塩処理を施すことを特徴とする、成形部材
の電着塗装下地皮膜形成方法。
1. A method for forming an electrodeposition coating base film on a formed member, comprising subjecting a formed member obtained by combining an aluminum or aluminum alloy member to a steel plate and / or a galvanized steel plate member to a phosphate treatment. , 0.4 to 10 g / chromic acid on aluminum or aluminum alloy
L, phosphate 1.5~50g / L, hydrofluoric 0.05~5g / L 10~150mg / m 2 was formed in terms of chromium reaction type chromate film using an aqueous solution containing as a main component, and further the average particle size 10-500
μm of silica sol is added to 0.2 parts by weight of organic polymer resin.
The dry film using sol-organic polymer resin mixture containing 1.2 parts by weight 0.2-5 g / m 2 is formed, phosphating in moldings which was combined with members of steel and / or galvanized steel sheet A method for forming an electrodeposition coating undercoat on a molded member, comprising:
【請求項2】アルミニウム又はアルミニウム合金の部材
と、鋼板及び/又は亜鉛系メッキ鋼板の部材とが組み合
わされてなる成形部材にリン酸塩処理を施す、成形部材
の電着塗装下地皮膜形成方法において、予めアルミニウ
ム又はアルミニウム合金の部材に、クロム酸0.4〜10g/
L、硝酸0.1〜10g/L、フッ化水素酸0.05〜5g/Lを主成分
とする水溶液を用いた反応型クロメート皮膜をクロム換
算で10〜150mg/m2形成させ、更に平均粒径が10〜500μ
mのシリカゾルを有機高分子樹脂1重量部に対し0.2〜
1.2重量部含有するシリカゾル・有機高分子樹脂混合物
を用いた乾燥皮膜を0.2〜5g/m2形成させ、これを鋼板及
び/又は亜鉛系メッキ鋼板の部材と組み合わせた成形部
材にリン酸塩処理を施すことを特徴とする、成形部材の
電着塗装下地皮膜形成方法。
2. A method for forming an electrodeposition base coat on a molded member, comprising subjecting a molded member obtained by combining an aluminum or aluminum alloy member to a steel plate and / or a galvanized steel plate member to a phosphate treatment. , 0.4 to 10 g / chromic acid on aluminum or aluminum alloy
L, nitrate 0.1 to 10 g / L, hydrofluoric 0.05~5g / L 10~150mg / m 2 was formed in terms of chromium reaction type chromate film using an aqueous solution containing as a main component, and further the average particle size of 10 ~ 500μ
m of silica sol to 0.2 to 1 part by weight of organic polymer resin
The dry film using sol-organic polymer resin mixture containing 1.2 parts by weight 0.2-5 g / m 2 to form, this steel plate and / or phosphate treatment to the molded member in combination with a member of the zinc-based plated steel sheet A method for forming an electrodeposition coating undercoat on a molded member, the method comprising:
JP2222452A 1990-08-27 1990-08-27 Method of forming electrodeposition base coat Expired - Lifetime JP2713809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2222452A JP2713809B2 (en) 1990-08-27 1990-08-27 Method of forming electrodeposition base coat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2222452A JP2713809B2 (en) 1990-08-27 1990-08-27 Method of forming electrodeposition base coat

Publications (2)

Publication Number Publication Date
JPH04191396A JPH04191396A (en) 1992-07-09
JP2713809B2 true JP2713809B2 (en) 1998-02-16

Family

ID=16782634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2222452A Expired - Lifetime JP2713809B2 (en) 1990-08-27 1990-08-27 Method of forming electrodeposition base coat

Country Status (1)

Country Link
JP (1) JP2713809B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58224175A (en) * 1982-06-23 1983-12-26 Nippon Kokan Kk <Nkk> Manufacture of surface-treated steel plate with superior adhesive strength to paint after degreasing
JPS6196074A (en) * 1984-10-15 1986-05-14 Mazda Motor Corp Chemical conversion treatment of product consisting of combined aluminum material and steel material
JPS62152579A (en) * 1985-12-27 1987-07-07 Nippon Kokan Kk <Nkk> Manufacture of steel plate of super high corrosion resistance and rust proofness

Also Published As

Publication number Publication date
JPH04191396A (en) 1992-07-09

Similar Documents

Publication Publication Date Title
US6835459B2 (en) Conductive organic coatings
JP2003513141A (en) Conductive organic paint
WO1998018870A1 (en) Coating composition and resin-coated metal sheet
JP2788131B2 (en) Method for forming composite film on aluminum or aluminum alloy surface
JP2001089868A (en) Substrate treating agent for precoated metallic sheet, coated substrate treated metallic sheet coated with the same and precoated metallic sheet excellent in working adhesion of coating film using the same
JP3139795B2 (en) Metal surface treatment agent for composite film formation
JP2713809B2 (en) Method of forming electrodeposition base coat
JP2834686B2 (en) Organic composite coated steel sheet with excellent chromium elution resistance and post-processing corrosion resistance
JPH0243040A (en) Lubricating resin treated steel plate excellent in corrosion resistance
JPS6155592B2 (en)
JPH0586916B2 (en)
JP2831118B2 (en) Method for forming composite coating used for preparing electrodeposition coating base of aluminum or aluminum alloy
JPS5996291A (en) One-side zinc-plated steel sheet
JP3195510B2 (en) Paint composition for thin film coated steel sheet
JPH09170084A (en) Galvanized steel sheet excellent in press formability and its production
JP2000070842A (en) Resin coated steel panel for car repairing part
JPH07278844A (en) Organic-coated rustproof steel sheet excellent in spot weldability
JP2753666B2 (en) Resin-coated steel sheet with excellent electrodeposition coating properties
JPH05237449A (en) Lubricating resin treated steel panel excellent in press moldability and processed part corrosion resistance
JP2009545668A (en) Anti-corrosion layer with improved properties
JP3358297B2 (en) Composite zinc alloy plated metal plate
JPH07258895A (en) Double layer galvanized steel sheet excellent in press workability and corrosion resistance
JP2004197166A (en) Method for manufacturing chromium-free surface-treated galvanized steel sheet
JP3358468B2 (en) Zinc-based composite plated metal sheet and method for producing the same
JPH1016130A (en) Organic composite coated steel plate of superior processability and corrosion resistance after processing