JP2711918B2 - Pitch-based carbon fiber - Google Patents

Pitch-based carbon fiber

Info

Publication number
JP2711918B2
JP2711918B2 JP1299226A JP29922689A JP2711918B2 JP 2711918 B2 JP2711918 B2 JP 2711918B2 JP 1299226 A JP1299226 A JP 1299226A JP 29922689 A JP29922689 A JP 29922689A JP 2711918 B2 JP2711918 B2 JP 2711918B2
Authority
JP
Japan
Prior art keywords
fiber
pitch
fibers
diameter
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1299226A
Other languages
Japanese (ja)
Other versions
JPH03161523A (en
Inventor
宏 江尻
秀一 斉藤
哲夫 山田
Original Assignee
株式会社ペトカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ペトカ filed Critical 株式会社ペトカ
Priority to JP1299226A priority Critical patent/JP2711918B2/en
Priority to EP19900121410 priority patent/EP0428944B1/en
Priority to DE1990625376 priority patent/DE69025376T2/en
Publication of JPH03161523A publication Critical patent/JPH03161523A/en
Priority to US08/080,013 priority patent/US5407614A/en
Application granted granted Critical
Publication of JP2711918B2 publication Critical patent/JP2711918B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/145Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from pitch or distillation residues

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は構成単繊維の直径が大きい炭素繊維に関す
る。また、本発明は液晶ピッチ系の連続したモノフィラ
メント、ないしはそれに近い構成単繊維の本数の少ない
連続した炭素繊維に関する。なお、本発明の液晶ピッチ
とは、光学的異方性成分含有ピッチあるいは熱や応力に
より容易に光学的異方性に転化するピッチの総称であ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a carbon fiber having a large diameter of a constituent monofilament. Further, the present invention relates to a continuous monofilament of a liquid crystal pitch system or a continuous carbon fiber having a small number of constituent single fibers close thereto. The liquid crystal pitch of the present invention is a general term for a pitch containing an optically anisotropic component or a pitch which is easily converted to optically anisotropic by heat or stress.

構成単繊維直径の大きい炭素繊維は導電材料(発熱
体、電極材)、電磁波シールド材料、帯電防止材料、耐
熱耐薬品資材(濾過布、作業衣、防護服、保護具、保温
材)等に使用される。従来の炭素繊維は構成単繊維が細
く単繊維本数が多いため毛羽が立ち易い等の欠点があ
り、このような産業資材の原料としては取り扱いに不便
である。
Carbon fiber with a large single fiber diameter is used for conductive materials (heating elements, electrode materials), electromagnetic wave shielding materials, antistatic materials, heat and chemical resistant materials (filter cloth, work clothes, protective clothing, protective equipment, heat insulating materials), etc. Is done. Conventional carbon fibers have disadvantages such as easy formation of fluff due to the fact that the constituent single fibers are thin and the number of single fibers is large, and it is inconvenient to handle such raw materials of industrial materials.

構成単繊維の直径が大きい炭素繊維は繊維複合材料の
強化材として、腰が強く、マトリックス成分の流れによ
って変形し難い利点がある。特にマトリックス成分が金
属のような表面張力が極めて大きい材料の場合、ある種
の熱可塑性樹脂のように極めて粘性の大きい材料の場合
等であっても、本発明の炭素繊維は、マトリックス成分
の流れによって移動して偏在化する傾向が小さいので繊
維複合材料の強化材として優れた性能を示す。
A carbon fiber having a large diameter of a constituent single fiber has an advantage that it is strong as a reinforcing material of a fiber composite material and is hardly deformed by a flow of a matrix component. In particular, even when the matrix component is a material having an extremely high surface tension such as a metal, or a material having an extremely high viscosity such as a certain thermoplastic resin, the carbon fiber of the present invention can be used for the flow of the matrix component. As a result, it exhibits excellent performance as a reinforcing material for a fiber composite material, since it has a small tendency to move and be unevenly distributed.

構成単繊維本数の少ない炭素繊維、特にモノフィラメ
ントはCVD法等によりホウ素、炭化ケイ素、窒化ケイ素
等を被覆する方法で製造されるセラミック繊維等の芯材
料として優れた性能を示す。
Carbon fibers having a small number of constituent single fibers, particularly monofilaments, exhibit excellent performance as a core material such as ceramic fibers produced by a method of coating boron, silicon carbide, silicon nitride or the like by a CVD method or the like.

[従来の技術] ガラスのような脆性材料の場合、非常に細く成形する
と強度が大きくなることが知られている。これは成形時
の歪み等により、ある確率で傷が発生し、細く成形する
と試験片の中に傷が含まれる確率が小さくなるため、細
くなるほど急速に強度が大きくなると説明されている。
[Background Art] It is known that in the case of a brittle material such as glass, the strength becomes large when formed into a very thin shape. It is described that the scratches occur at a certain probability due to distortion at the time of molding and the like, and the probability of the scratches being included in the test piece decreases when the test piece is thinly formed.

このような現象は従来から炭素繊維の場合にも存在す
ることが報告されている。PAN系の炭素繊維の場合、繊
維直径が小さくなると強度が大きくなるため、時代の経
過と共に次第に細い繊維が作られるようになっている。
等方性ピッチ系の炭素繊維の場合、大谷は繊維直径と強
度の関係を調べ、直径が10μmより大きくなると急速に
強度が低下することを報告している[Carbon 3、31〜38
(1965)]。メソフェーズピッチ系の炭素繊維の場合、
D.M.RiggsおよびJ.G.Vennerは炭化温度1500℃および200
0℃のものは繊維直径8μm以下で450KSI以上の強度を
有すること、繊維直径が大きくなるほど強度が急激に低
下し直径13.5μmでは250KSI以下になることを報告して
いる。(16th Biennial Conference on Carbon) このような状況から従来は直径20μm以上の液晶ピッ
チ系炭素繊維のモノフィラメント特に連続したモノフィ
ラメントが得られることは、期待されていなかった。
It has been reported that such a phenomenon also exists in the case of carbon fibers. In the case of PAN-based carbon fibers, as the fiber diameter decreases, the strength increases, so that fine fibers are gradually produced with the passage of time.
In the case of isotropic pitch-based carbon fiber, Otani investigated the relationship between fiber diameter and strength, and reported that strength rapidly decreased when the diameter was larger than 10 μm [Carbon 3, 31-38].
(1965)]. In the case of mesophase pitch-based carbon fiber,
DMRiggs and JGVenner have carbonization temperatures of 1500 ° C and 200
It is reported that the fiber at 0 ° C. has a strength of 450 KSI or more at a fiber diameter of 8 μm or less, and that the strength decreases rapidly as the fiber diameter increases, and becomes 250 KSI or less at a diameter of 13.5 μm. (16th Biennial Conference on Carbon) Under such circumstances, it was not expected that a monofilament, particularly a continuous monofilament, of a liquid crystal pitch-based carbon fiber having a diameter of 20 μm or more was conventionally obtained.

従来から合成繊維モノフィラメントは、紡糸口金から
紡糸液を押し出して固化させた後、連続して延伸、熱処
理を行い、さらに引き続いて繊維を一本ないし数本ずつ
分繊して巻き取ることにより、製造されている。
Conventionally, synthetic fiber monofilaments are manufactured by extruding a spinning solution from a spinneret, solidifying it, performing continuous drawing and heat treatment, and subsequently separating and winding one or several fibers at a time. Have been.

この方法は簡略で高度の技術を要しないものでありな
がら、製品の品質精度がよく、ポリアミド、ポリエステ
ル、ポリオレフィン等、多くの合成樹脂に対して使用さ
れているものである。
Although this method is simple and does not require advanced technology, it has good product quality accuracy and is used for many synthetic resins such as polyamide, polyester and polyolefin.

またポリアミドのように強度、伸度の大きい繊維で
は、比較的単繊維デニールの大きいフィラメント糸を、
解撚しながら一本あるいは二本ずつ分繊して巻き取る方
法も用いられる。
For fibers with high strength and elongation, such as polyamide, filament yarn with relatively large single fiber denier is used.
A method of separating and winding one by two or two while untwisting is also used.

ピッチ繊維の場合には、紡出後の単繊維の強度が極端
に低いためこれらの方法を採用することは困難である。
紡糸後のピッチ繊維は集束後直ちに巻き取るか、ケンス
の中もしくは多孔質ベルトの上に採取する。ピッチ繊維
はボビンに巻かれた状態、ケンスに収納された状態、あ
るいはベルトの上で傷が付かないようにして不融化およ
び炭化される。分繊のような手荒な加工は、炭化の進ん
だ状態でないと実施出来ないのは当然であるが、たとえ
炭化後であっても、多数の細い単繊維が集束し炭化され
た状態の炭素繊維を分繊し、連続したモノフィラメント
を取り出すことは強度的にも技術的にも非常に困難であ
る。
In the case of pitch fibers, it is difficult to employ these methods because the strength of the spun single fibers is extremely low.
The pitch fiber after spinning is wound up immediately after bunching, or collected in a can or on a porous belt. The pitch fibers are infusibilized and carbonized in a state of being wound on a bobbin, in a state of being housed in a can, or on a belt without being damaged. It is natural that rough processing such as fiber separation cannot be performed unless carbonization is advanced, but even after carbonization, carbon fibers in a state where many fine single fibers are bundled and carbonized. It is very difficult in terms of strength and technology to separate continuous monofilaments.

[発明が解決しようとする課題] 従来の炭素繊維の主な用途は複合材料の繊維による強
化であるため、衣服用繊維のように構成単繊維本数の少
ない糸の需要は極めて少なかった。
[Problems to be Solved by the Invention] Since the main use of the conventional carbon fiber is reinforcement with a fiber of a composite material, the demand for a yarn having a small number of constituent single fibers, such as a fiber for clothes, was extremely small.

しかし近年炭素繊維の品質の改良が進み、その独特の
物性が産業資材用の繊維として注目を集めるようになっ
ている。そのため一般の合成繊維と同程度の太さの糸の
需要が急速に増加する傾向がある。
However, in recent years, the quality of carbon fibers has been improved, and their unique physical properties have attracted attention as fibers for industrial materials. Therefore, there is a tendency that demand for a yarn having a thickness similar to that of a general synthetic fiber is rapidly increased.

このような炭素繊維の新規の需要を満たすためには、
弾性率及び引張強度の高いモノフィラメントが必要であ
る。しかし従来の炭素繊維は、単繊維の直径が10μm程
度から大きくなると、急速に強度が低下する問題がある
ことが知られている。
To meet this new demand for carbon fiber,
A monofilament having a high modulus of elasticity and high tensile strength is required. However, it is known that the conventional carbon fiber has a problem that the strength is rapidly reduced when the diameter of the single fiber is increased from about 10 μm.

この問題を解決するためにモノフィラメントの製造条
件について検討を進めていたところ、弾性率が高く、単
繊維直径が変化しても強度が大きく変化しない液晶ピッ
チ系炭素繊維を見いだし、本発明に至ったものである。
In order to solve this problem, while studying the production conditions of the monofilament was advanced, the elastic modulus was high, and a liquid crystal pitch-based carbon fiber in which the strength did not change significantly even when the diameter of the single fiber changed, led to the present invention. Things.

[課題を解決する手段] 本発明は平均繊維直径が22μm以上の連続した液晶ピ
ッチ系単繊維で構成される炭素繊維である。
Means for Solving the Problems The present invention is a carbon fiber composed of continuous liquid crystal pitch-based single fibers having an average fiber diameter of 22 μm or more.

本発明の炭素繊維は80,000kg f/mm2以上の弾性率及び
200kg f/mm2以上の引張強度を有する。
The carbon fiber of the present invention has an elastic modulus of 80,000 kg f / mm 2 or more and
Has a tensile strength of 200 kg f / mm 2 or more.

また本発明の炭素繊維は従来の炭素繊維のような多数
の単繊維からなるマルチフィラメントとして使用するこ
ともできるが、構成する単繊維本数が1本であるモノフ
ィラメントであることが特に好ましい。
Further, the carbon fiber of the present invention can be used as a multifilament composed of a large number of single fibers like a conventional carbon fiber, but is preferably a monofilament having one single fiber.

本発明の炭素繊維は比較的高軟化点で分子量分布の狭
い液晶ピッチ、好ましくは軟化点270〜360℃、光学的異
方性成分含有率85〜100%の石油系ピッチから製造され
たものである。軟化点が270℃以下のピッチを使用する
場合、溶融物の粘度が低く、繊維直径が大きいものを紡
糸することが困難になるとともに、低分子量成分が多く
なると、炭素繊維中の欠陥が増加し強度が低下する問題
がある。従って液晶ピッチは、減圧処理等によって低分
子量成分を除去しておくことが好ましい。軟化点が360
℃以上のピッチを使用する場合、紡糸時にドローレゾナ
ンスを起こし易くなり、均一な直径の繊維を作り難くな
る問題がある。液晶ピッチを製造する際に、熱処理初期
に生成するメソフェーズを分離除去することによって高
分子量になり易い成分や異物等を除去したピッチを原料
として熱処理することは有効な方法の一つである。光学
異方性成分含有率が小さくなると繊維直径の増加に伴な
う繊維強度の低下が大きくなり、また、光学的等方性成
分が増加すると紡糸性が低下するので好ましくない。光
学異方性成分含有率は85%以上であることが好ましく、
実質的に100%であることが特に好ましい。
The carbon fiber of the present invention is produced from a liquid crystal pitch having a relatively high softening point and a narrow molecular weight distribution, preferably a petroleum pitch having a softening point of 270 to 360 ° C and an optically anisotropic component content of 85 to 100%. is there. When a pitch having a softening point of 270 ° C. or less is used, the viscosity of the melt is low, and it becomes difficult to spin a fiber having a large fiber diameter.If the low molecular weight component is large, defects in the carbon fiber increase. There is a problem that strength is reduced. Therefore, it is preferable to remove low molecular weight components from the liquid crystal pitch by a decompression treatment or the like. Softening point is 360
When a pitch of not less than ° C. is used, draw resonance tends to occur during spinning, and there is a problem that it is difficult to produce a fiber having a uniform diameter. When manufacturing a liquid crystal pitch, it is an effective method to perform a heat treatment using a pitch from which a component or a foreign substance which tends to have a high molecular weight is removed by separating and removing a mesophase generated at an early stage of the heat treatment. If the content of the optically anisotropic component is small, the fiber strength is greatly reduced with an increase in the fiber diameter, and if the optically isotropic component is increased, the spinnability is undesirably reduced. The content of the optically anisotropic component is preferably 85% or more,
Particularly preferred is substantially 100%.

液晶ピッチとしては通常の流れ模様を持つ光学異方性
ピッチのほか、重質油やピッチ類から溶剤抽出により、
容易に光学異方性に転化する成分を集めたもの、あるい
は光学異方性ピッチを還元して、容易に光学異方性に転
化する等方性ピッチにしたもの等の中から選ぶことがで
きる。重質油やピッチ類としては石油系のものが特に好
ましい。
As liquid crystal pitch, in addition to optically anisotropic pitch with normal flow pattern, solvent extraction from heavy oil and pitches,
It can be selected from a collection of components that can be easily converted to optical anisotropy, or an isotropic pitch that can be easily converted to optical anisotropy by reducing the optically anisotropic pitch. . Petroleum-based oils and pitches are particularly preferable.

本発明の炭素繊維の製造において、溶融ピッチを、下
流方向に向かって断面積が増大する紡糸孔から紡糸する
ことが好ましい。このような紡糸孔を使用する利点の一
つは、紡糸孔での圧力低下を大きくし、各紡糸孔からの
ピッチの吐出量を均一化することである。もう一つの利
点としては、ピッチ分子の配向を割れ易いラジアル型か
ら、割れ難いランダム型や褶曲したラジアル型に変える
能力があることである。本発明のような直径の大きい繊
維の場合、第1図に示されるように、表層と中心部がラ
ジアル、その中間部がランダムという特異な3層構造に
なることが多いことがわかった。なお低速度で紡糸する
程製造される炭素繊維の弾性率が高くなる傾向がみられ
た。
In the production of the carbon fiber of the present invention, the molten pitch is preferably spun from a spinning hole whose cross-sectional area increases in the downstream direction. One of the advantages of using such a spinning hole is that the pressure drop in the spinning hole is increased and the discharge amount of the pitch from each spinning hole is made uniform. Another advantage is that it has the ability to change the orientation of pitch molecules from a radial type that is easily broken to a random type or a folded radial type that is difficult to break. In the case of a fiber having a large diameter as in the present invention, as shown in FIG. 1, it was found that the surface layer and the central portion often had a unique three-layer structure in which the surface layer and the central portion were radial and the intermediate portion was random. It was noted that the lower the spinning speed, the higher the modulus of elasticity of the carbon fiber produced.

本発明のように単繊維直径の大きいピッチ繊維を紡糸
する際には冷却を均一に行うことも重要な条件の一つで
あり、冷却が不均一になると、ドローレゾナンスを起こ
して単繊維直径の不均一を生じ易い。
Uniform cooling is also one of the important conditions when spinning a pitch fiber having a large single fiber diameter as in the present invention, and when the cooling becomes uneven, draw resonance occurs and the single fiber diameter is reduced. Non-uniformity is likely to occur.

本発明の炭素繊維の製造において、ピッチ繊維の不融
化の際には昇温速度を遅くする必要があり、加熱空気中
では昇温速度1.0℃/分以下で処理することが好まし
い。昇温速度が大きすぎると繊維中心部の不融化が不十
分になるため発泡して弱点を形成するので好ましくな
い。また昇温速度が小さすぎるとコストが高くなるので
好ましくない。昇温速度は好ましくは0.01〜0.5℃/分
である。
In the production of the carbon fiber of the present invention, it is necessary to lower the heating rate when the pitch fiber is made infusible, and it is preferable to perform the treatment in heated air at a heating rate of 1.0 ° C./min or less. If the rate of temperature rise is too high, the infusibilization of the fiber central portion becomes insufficient, and foaming is formed, which is not preferable. On the other hand, if the heating rate is too low, the cost increases, which is not preferable. The rate of temperature rise is preferably 0.01 to 0.5 ° C./min.

本発明のピッチ繊維の不融化の際にも、通常実施され
ている、例えば酸素濃度を高めた加熱空気中で処理する
等の手段によって不融化反応を促進することができる。
In the case of making the pitch fiber of the present invention infusible, the infusibilization reaction can be promoted by means usually carried out, for example, treatment in heated air having an increased oxygen concentration.

本発明の炭素繊維は炭化工程の初期においては従来の
炭素繊維よりも小さい昇温速度で処理することが好まし
い。特に600℃以上の温度範囲での昇温速度は好ましく
は100℃/分以下、特に好ましくは30℃/分以下であ
る。
It is preferable that the carbon fiber of the present invention be treated at a temperature rising rate smaller than that of the conventional carbon fiber in the early stage of the carbonization step. In particular, the rate of temperature rise in the temperature range of 600 ° C. or higher is preferably 100 ° C./min or less, particularly preferably 30 ° C./min or less.

本発明の炭素繊維は溶融紡糸したピッチ繊維を直ちに
巻き取るか、ケンスの中に収納するかあるいは多孔質の
ベルト上に載せて不融化及び炭化処理を行った後種々の
加工に供することが好ましい。溶融紡糸直後のピッチ繊
維は直径が大きいとはいっても極めて弱くかつ脆いの
で、これを一本ないしは数本の単繊維で取り扱うことに
は最大限の注意を払う必要がある。しかしこれを不融化
処理し、炭化処理すれば強度は大きくなり、脆さも少な
くなって、単繊維一本ないし数本の糸の、普通の糸とし
ての取り扱いが可能になる。
It is preferable that the carbon fiber of the present invention be subjected to various processes after the melt-spun pitch fiber is immediately wound, housed in a can, or placed on a porous belt and subjected to infusibilization and carbonization treatment. . Although pitch fibers immediately after melt-spinning have a large diameter, they are extremely weak and brittle, so it is necessary to pay utmost care to handle them with one or several single fibers. However, if this is infusibilized and carbonized, the strength is increased and the brittleness is reduced, and one or several single fibers can be handled as ordinary yarns.

この段階では、太い繊維束から、構成する単繊維本数
がほぼ等しい複数の繊維束に分割することが可能とな
り、細いマルチフィラメント糸やモノフィラメントをこ
の方法で製造することもできる。この場合、好ましくは
ピッチ繊維の製造から若干炭化が進行して脆さが少なく
なるまでの間、単繊維の本数を多くして処理し、その後
ほぼ等しい単繊維本数を持つ複数の繊維束に分割し、構
成単繊維本数の少ない糸あるいは構成する単繊維本数を
1本とした炭素繊維のモノフィラメントを製造すること
ができる。
At this stage, it is possible to divide a thick fiber bundle into a plurality of fiber bundles having substantially the same number of single fibers, and a thin multifilament yarn or monofilament can be produced by this method. In this case, it is preferable to increase the number of single fibers and reduce the brittleness from the production of the pitch fibers until the carbonization slightly progresses and the brittleness is reduced. Then, it is possible to produce a yarn having a small number of constituent single fibers or a carbon fiber monofilament in which the number of constituent single fibers is one.

従来の炭素繊維では単繊維直径が大きくなるほど強度
は小さくなる傾向があると言われているが、本発明の炭
素繊維の場合、この傾向は顕著ではなく、引張強度200k
g f/mm2以上でかつ弾性率が80,000kg f/mm2以上であ
る。一方、単繊維直径が大きくなると耐摩耗性が改善さ
れるので、他のマトリックス材料で被覆することなく、
繊維集合体のままで使用する場合には、単繊維直径が大
きいことが好ましい。
It is said that the strength of conventional carbon fibers tends to decrease as the single fiber diameter increases, but in the case of the carbon fibers of the present invention, this tendency is not remarkable, and the tensile strength is 200 k.
gf / mm 2 or more and elastic modulus is 80,000 kg f / mm 2 or more. On the other hand, since the wear resistance is improved when the diameter of the single fiber is increased, without coating with another matrix material,
When the fiber aggregate is used as it is, the diameter of the single fiber is preferably large.

しかし単繊維直径が大きくなると不融化が難しくな
り、低温長時間の酸化処理を必要とするようになる。ま
たピッチ繊維の紡糸の際に不均一になり易い傾向があ
る。このような理由から、本発明の炭素繊維の単繊維直
径は好ましくは200μm以下、もっとも好ましくは150μ
m以下である。
However, when the diameter of the single fiber is large, infusibilization becomes difficult, and an oxidation treatment at a low temperature for a long time is required. In addition, the pitch fibers tend to be non-uniform during spinning. For these reasons, the single fiber diameter of the carbon fiber of the present invention is preferably 200 μm or less, most preferably 150 μm.
m or less.

PANあるいはレーヨン系の炭素繊維は、単繊維の直径
が大きくなると急激に強度が低下する。この理由は繊維
の強度が傷が表面に存在する確率に依存し、直径の増大
に伴い傷の存在する確率が大きくなるためと言われてい
る。
The strength of a PAN or rayon-based carbon fiber rapidly decreases as the diameter of a single fiber increases. It is said that the reason for this is that the strength of the fiber depends on the probability that the flaw exists on the surface, and the probability of the presence of the flaw increases as the diameter increases.

ところが本発明の液晶ピッチ系の炭素繊維は、単繊維
の直径が大きくなった場合の強度の低下が少なく、剛直
性、形態保持性に優れた特性を有する。また比表面積が
小さいため、耐食加工が容易である利点を有する。表面
がチタンカーバイド、シリコンカーバイド等で被覆され
ることにより、溶融金属のように炭素を強く腐食する物
質に対する耐食性を確保でき、溶融金属をマトリックス
とする複合材料の強化材として優れた性能を有する。
However, the liquid crystal pitch-based carbon fiber of the present invention has characteristics in which a decrease in strength when the diameter of a single fiber is large is small, and is excellent in rigidity and shape retention. Further, since the specific surface area is small, there is an advantage that the corrosion resistance processing is easy. When the surface is coated with titanium carbide, silicon carbide, or the like, corrosion resistance to substances that strongly corrode carbon, such as molten metal, can be ensured, and it has excellent performance as a reinforcing material for a composite material containing molten metal as a matrix.

またこれらの耐食性材料の被覆層を長くして、チタン
カーバイド、シリコンカーバイド等を主体の繊維とする
ことができ、さらにホウ素、窒化ケイ素等をさらに被覆
することができる。
Further, the coating layer of such a corrosion-resistant material can be made longer to make fibers mainly composed of titanium carbide, silicon carbide or the like, and further coated with boron, silicon nitride or the like.

本発明の炭素繊維モノフィラメントは、強度、耐食
性、剛直性、形態保持性等が優れている。また複合材料
の繊維強化材料として使う場合、成形時にマトリックス
成分の流動によって、繊維の配置や配列に乱れを生じ、
それによって成形品に欠陥を生じる事が少ない利点を有
する。
The carbon fiber monofilament of the present invention is excellent in strength, corrosion resistance, rigidity, shape retention and the like. Also, when used as a fiber reinforced material for composite materials, the flow of matrix components during molding causes disturbances in the arrangement and arrangement of fibers,
Thereby, there is an advantage that a defect is less likely to occur in the molded product.

本発明によると、直径22μm以上の結晶ピッチ系炭素
繊維の製造が可能となるが、特に後段の処理に於ける操
作性の点からは、直径30μm以上の液晶ピッチ系炭素繊
維が好ましい。
According to the present invention, it is possible to produce crystal pitch-based carbon fibers having a diameter of 22 μm or more, but liquid crystal pitch-based carbon fibers having a diameter of 30 μm or more are particularly preferable from the viewpoint of operability in the subsequent processing.

本発明の炭素繊維の製造において、分繊を行う場合に
は好ましくはピッチ繊維を薄い板状に成形しつつ巻取
り、引き続いて該板状の形状を保った状態で不融化及び
炭化を行う。成形に際しては糊剤あるいは集束性のよい
油剤を付着させ、薄い板状の形が反転や***を生じない
ように巻取る。
In the production of the carbon fiber of the present invention, when performing fiber separation, it is preferable to wind the pitch fiber while forming it into a thin plate shape, and then to perform infusibilization and carbonization while maintaining the plate shape. At the time of molding, a sizing agent or an oil agent having a good bunching property is adhered, and the thin plate is wound up so as not to cause inversion or division.

この巻取の際に、好ましくは巻取機の綾振りガイドと
して、単繊維の相対位置の移動を生じない程度に狭い隙
間を持つものを用いる。この隙間はガイドの形状として
形成させても良く、また繊維束の偏平化装置と幅広のガ
イドとの組み合わせであっても良い。この綾振りガイド
の隙間は、好ましくは繊維直径の2倍よりも小さいもの
とする。
In this winding, preferably, a traverse guide of the winding machine having a gap as small as not to move the relative position of the single fiber is used. This gap may be formed in the shape of a guide, or may be a combination of a flattening device for a fiber bundle and a wide guide. The gap of the traverse guide is preferably smaller than twice the fiber diameter.

巻取ったこの薄い板状の繊維束は、反転や***を生じ
ないようにして巻き出し、本発明の炭素繊維に分繊す
る。この場合ピッチの紡糸から炭化工程まで、巻取るこ
となく連続して処理することも可能である。しかし各工
程の好適な処理速度に差があるので、ピッチの紡糸後に
巻取ることが好ましい。
The wound thin plate-shaped fiber bundle is unwound without causing inversion or splitting, and separated into carbon fibers of the present invention. In this case, it is also possible to continuously process from the pitch spinning to the carbonization step without winding. However, since there is a difference in a suitable processing speed in each step, it is preferable to wind the yarn after spinning the pitch.

[作用] 本発明は強度及び弾性率に優れた、繊維直径の大きい
連続した液晶ピッチ系単繊維で構成される炭素繊維であ
る。
[Effect] The present invention is a carbon fiber composed of continuous liquid crystal pitch-based single fibers having a large fiber diameter and excellent strength and elastic modulus.

このような炭素繊維が得られる理由は明らかでない
が、高軟化点で分子量分布の狭い液晶ピッチの使用、下
流方向に向かって断面積が増大する紡糸孔の使用等の相
乗的な効果により、繊維直径が大きくても高い強度及び
弾性率を有し、炭化後でも割れ等の欠陥が生成しない特
異な微細構造の繊維が製造されたのではないかと推察さ
れる。また石油系のピッチは石炭系等のピッチにくらべ
てピッチ中に含まれる炭素粒子のような非流動性の夾雑
物の存在量が極度に少ないので、単繊維直径が大きくて
も強度が優れた単位繊維が得られると考えられる。
It is not clear why such carbon fibers can be obtained, but the synergistic effects of using a liquid crystal pitch having a high softening point and a narrow molecular weight distribution and using a spinning hole whose cross-sectional area increases in the downstream direction, etc. It is presumed that fibers having a unique microstructure having high strength and elastic modulus even with a large diameter and having no defects such as cracks even after carbonization were produced. In addition, petroleum-based pitch has extremely small amount of non-flowable impurities such as carbon particles contained in the pitch compared to coal-based pitch, so that the strength is excellent even when the diameter of the single fiber is large. It is believed that unit fibers are obtained.

[実施例] 次に本発明を実施例により、さらに具体的に説明す
る。
[Examples] Next, the present invention will be described more specifically with reference to Examples.

実施例 1 軟化点318℃、光学異方性成分含有率100%の石油系ピ
ッチを原料とし、紡糸孔の最狭部の直径0.1mm、紡糸孔
の出口の直径0.25mmの紡糸孔を有する口金を用い、紡糸
温度329.2℃で窒素を吹付けながら、溶融紡糸を行っ
た。ピッチの吐出量0.054g/ホール・分、巻取速度30m/
分であった。紡出した繊維はオイリングの後、繊維が平
行にほぼ密着するような形で巻き取れる速度でトラバー
スさせながら巻き取った。
Example 1 A spinneret having a spinning hole having a softening point of 318 ° C. and a petroleum pitch having an optically anisotropic component content of 100% as a raw material and having a diameter of 0.1 mm at the narrowest portion of the spinning hole and a diameter of 0.25 mm at the outlet of the spinning hole. And melt spinning was performed while blowing nitrogen at a spinning temperature of 329.2 ° C. Pitch discharge amount 0.054g / hole / min, winding speed 30m /
Minutes. After oiling, the spun fiber was wound while being traversed at a speed at which the fiber could be wound in such a manner that the fiber was closely adhered in parallel.

紡出された繊維を昇温速度0.1℃/分で300℃まで昇温
し、300℃に30分間保って不融化処理し、さらに昇温速
度5℃/分で700℃まで昇温して軽度の炭化を行った。
引き続き最高温度2500℃の炉に連続的に供給して昇温速
度12℃/分で昇温して炭化処理した。
The spun fiber is heated up to 300 ° C at a heating rate of 0.1 ° C / min, kept at 300 ° C for 30 minutes to infusibilize it, and then heated up to 700 ° C at a heating rate of 5 ° C / min to be mild. Was carbonized.
Subsequently, the mixture was continuously supplied to a furnace having a maximum temperature of 2500 ° C., and carbonized by heating at a rate of 12 ° C./min.

得られた繊維は直径約32μmの太さのものであった。
引張強度は275kg f/mm2、弾性率は85,000kg f/mm2であ
った。繊維横断面を観察したところ、第1図に示したよ
うに表層と中心部がラジアル状でその中間部がランダム
状の断面構造であり、割れ欠けおよびボイドの存在は認
められなかった。
The obtained fiber had a diameter of about 32 μm.
Tensile strength 275kg f / mm 2, an elastic modulus of 85,000kg f / mm 2. When the cross section of the fiber was observed, as shown in FIG. 1, the surface layer and the central portion had a radial cross-sectional structure and the intermediate portion had a random cross-sectional structure, and no cracks and voids were recognized.

なお2500℃で炭化する際に、昇温速度を36℃/分に上
げたところ強度が198kg f/mm2まで低下し、120℃/分と
したところ85kg f/mm2まで低下した。
In addition, when carbonizing at 2500 ° C., the strength decreased to 198 kg f / mm 2 when the heating rate was increased to 36 ° C./min, and decreased to 85 kg f / mm 2 when the temperature was increased to 120 ° C./min.

実施例 2 実施例1の紡糸口金のかわりに、紡糸孔の最狭部の直
径0.1mm、紡糸孔の出口の直径0.25mmの紡糸孔を100個有
する口金を用い、同様のピッチを用いて、紡糸温度330
℃でピッチ繊維を紡糸した。ピッチの吐出量5.4g/分、
巻取速度30m/分であった。
Example 2 Instead of the spinneret of Example 1, a spinneret having 100 spinning holes having a diameter of 0.1 mm at the narrowest part of the spinning hole and a diameter of 0.25 mm at the outlet of the spinning hole was used. Spinning temperature 330
The pitch fiber was spun at ℃. 5.4g / min pitch discharge rate,
The winding speed was 30 m / min.

紡出した繊維はポリアクリルアミド系のサイジング剤
を用いて集束し、幅4mmのテープ状の成形物として巻き
取った。巻取ったテープは実施例1と同様にして不融化
処理し、さらに最高温度2700℃で炭化処理した。処理の
間は繊維束が裏返ったり、割れたりしないようにした。
The spun fibers were bundled using a polyacrylamide-based sizing agent and wound up as a 4 mm wide tape-like molded product. The wound tape was infusibilized in the same manner as in Example 1, and carbonized at a maximum temperature of 2700 ° C. During the treatment, the fiber bundle was not turned over or cracked.

炭化処理後、得られた繊維を分繊し、10本のマルチフ
ィラメントとして巻き取った。得られた繊維は直径約32
μmの単繊維約10本からなるマルチフィラメントで優れ
た加工性を有しており、引張強度は295kg f/mm2、弾性
率は92,000kg f/mm2であった。
After the carbonization treatment, the obtained fibers were separated and wound up as ten multifilaments. The resulting fiber has a diameter of about 32
has excellent processability multifilament composed of a single fiber of about ten [mu] m, the tensile strength of 295kg f / mm 2, an elastic modulus of 92,000kg f / mm 2.

実施例 3 実施例1の紡糸口金と同様の紡糸口金を用い、種々の
軟化点、光学異方性成分含有率を有する石油系ピッチを
用いて、紡糸温度を軟化点+18℃とし繊維直径を変えて
溶融紡糸を行った。得られたピッチ繊維を実施例1と同
様にして不融化および炭化した。用いたピッチの軟化
点、光学異方性成分含有率および得られた繊維性能を第
1表に示す。
Example 3 Using a spinneret similar to the spinneret of Example 1, using a petroleum pitch having various softening points and optically anisotropic component contents, changing the spinning temperature to the softening point + 18 ° C. and changing the fiber diameter To perform melt spinning. The obtained pitch fiber was infusibilized and carbonized in the same manner as in Example 1. Table 1 shows the softening point of the pitch used, the content of the optically anisotropic component, and the obtained fiber performance.

実施例 4 コールタールピッチを熱処理してメソフェーズ小球体
の含有率を約2%とし、平均孔径1.2μmの焼結合金フ
ィルターにより濾過して、精製ピッチを得た。
Example 4 Coal tar pitch was heat-treated to a content of mesophase microspheres of about 2%, and filtered through a sintered alloy filter having an average pore diameter of 1.2 μm to obtain a purified pitch.

この精製ピッチを更に熱処理して軟化点316℃、光学
異方性成分含有率90%、キノリン不溶分45%とした後、
実施例1と同様にして溶融紡糸を行い、不融化および炭
化を行った。
This refined pitch was further heat-treated to have a softening point of 316 ° C, an optically anisotropic component content of 90%, and a quinoline-insoluble content of 45%.
Melt spinning was performed in the same manner as in Example 1, and infusibilization and carbonization were performed.

得られた炭素繊維の直径は約34μm、引張強度220kg
f/mm2、弾性率81,000kg f/mm2であった。この値は従来
の直径の大きい炭素繊維に比べて優れているが、実施例
1と比較すると弾性率、強度ともやや見劣りがする。
The diameter of the obtained carbon fiber is about 34 μm and the tensile strength is 220 kg.
f / mm 2 and elastic modulus 81,000 kg f / mm 2 . Although this value is superior to the conventional carbon fiber having a large diameter, the elastic modulus and the strength are slightly inferior to those of Example 1.

[発明の効果] 本発明は構成単繊維直径の大きい炭素繊維に関する。
本発明は液晶ピッチ系の連続したモノフィラメント、な
いしはそれに近い構成単繊維の本数の少ない炭素繊維で
ある。
[Effect of the Invention] The present invention relates to a carbon fiber having a large diameter of a constituent single fiber.
The present invention is a liquid crystal pitch-based continuous monofilament or a carbon fiber having a small number of constituent monofilaments close thereto.

炭素繊維の構成単繊維直径の大きい炭素繊維は導電材
料(発熱体、電極材)電磁波シールド材料、帯電防止材
料、耐熱耐薬品資材(濾過布、作業衣、防護服、保護
具、保温材)等に使用される。従来の炭素繊維は構成単
繊維が細く単繊維本数が多いため毛羽が立ち易い等の欠
点があり、このような一般的な産業資材の原料としては
取り扱いに不便である。
Composition of carbon fiber Carbon fiber with a large single fiber diameter is a conductive material (heating element, electrode material), electromagnetic wave shielding material, antistatic material, heat and chemical resistant material (filter cloth, work clothes, protective clothing, protective equipment, heat insulating material), etc. Used for Conventional carbon fibers have disadvantages such as easy formation of fluff because the constituent single fibers are thin and the number of single fibers is large, and they are inconvenient to handle as a raw material of such general industrial materials.

構成単繊維の直径が大きい炭素繊維は繊維複合材料の
強化材として、腰が強く、マトリックス成分の流れによ
って変形し難い利点がある。特にマトリックス成分が金
属のような表面張力が極めて大きい材料の場合、ある種
の熱可塑性樹脂のように極めて粘性の大きい材料の場合
等であっても、本発明の炭素繊維はマトリックス成分の
流れによって移動して偏在化する傾向が小さいので繊維
複合材料の強化材として優れた性能を示す。
A carbon fiber having a large diameter of a constituent single fiber has an advantage that it is strong as a reinforcing material of a fiber composite material and is hardly deformed by a flow of a matrix component. In particular, even when the matrix component is a material having an extremely large surface tension such as a metal, or a material having an extremely large viscosity such as a certain thermoplastic resin, the carbon fiber of the present invention is not affected by the flow of the matrix component. Since it has a small tendency to move and be unevenly distributed, it exhibits excellent performance as a reinforcing material for a fiber composite material.

構成単繊維本数の少ない炭素繊維、特にモノフィラメン
トはCVD法等によりホウ素、炭化ケイ素、窒化ケイ素等
を被覆する方法で製造されるセラミック繊維等の芯材料
として優れた性能を示す。
Carbon fibers having a small number of constituent single fibers, particularly monofilaments, exhibit excellent performance as a core material such as ceramic fibers produced by a method of coating boron, silicon carbide, silicon nitride or the like by a CVD method or the like.

【図面の簡単な説明】[Brief description of the drawings]

第1図は繊維横断面によって、繊維の形状を表す電子顕
微鏡写真である。
FIG. 1 is an electron micrograph showing the shape of the fiber by the fiber cross section.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−275426(JP,A) 特開 昭63−315614(JP,A) 特公 昭54−1810(JP,B2) ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-61-275426 (JP, A) JP-A-63-315614 (JP, A) JP-B-54-1810 (JP, B2)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】2500℃以上の温度で炭化処理された、弾性
率が80,000kg f/mm2以上、引張強度が200kg f/mm2
上、平均繊維直径が22μm以上の連続した液晶ピッチ系
単繊維で構成される炭素繊維。
1. A were carbonized at 2500 ° C. or higher, the elastic modulus 80,000kg f / mm 2 or more, a tensile strength of 200 kg f / mm 2 or more, the average fiber diameter is more than 22μm continuous liquid crystal pitch based single Carbon fiber composed of fibers.
【請求項2】構成する単繊維が1本であることを特徴と
する請求項1記載の炭素繊維。
2. The carbon fiber according to claim 1, wherein the single fiber comprises one fiber.
JP1299226A 1989-11-17 1989-11-17 Pitch-based carbon fiber Expired - Lifetime JP2711918B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1299226A JP2711918B2 (en) 1989-11-17 1989-11-17 Pitch-based carbon fiber
EP19900121410 EP0428944B1 (en) 1989-11-17 1990-11-08 Pitch based carbon fibers
DE1990625376 DE69025376T2 (en) 1989-11-17 1990-11-08 Pitch-based carbon fibers
US08/080,013 US5407614A (en) 1989-11-17 1993-04-20 Process of making pitch-based carbon fibers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1299226A JP2711918B2 (en) 1989-11-17 1989-11-17 Pitch-based carbon fiber

Publications (2)

Publication Number Publication Date
JPH03161523A JPH03161523A (en) 1991-07-11
JP2711918B2 true JP2711918B2 (en) 1998-02-10

Family

ID=17869780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1299226A Expired - Lifetime JP2711918B2 (en) 1989-11-17 1989-11-17 Pitch-based carbon fiber

Country Status (3)

Country Link
EP (1) EP0428944B1 (en)
JP (1) JP2711918B2 (en)
DE (1) DE69025376T2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4005183A (en) * 1972-03-30 1977-01-25 Union Carbide Corporation High modulus, high strength carbon fibers produced from mesophase pitch
JPS5842708B2 (en) * 1977-06-07 1983-09-21 松下電器産業株式会社 Electric motor
JPS61275426A (en) * 1985-05-30 1986-12-05 Mitsui Cokes Kogyo Kk Pitch-based carbon fiber and production thereof
JPS63315614A (en) * 1987-06-19 1988-12-23 Mitsubishi Oil Co Ltd Production of highly electrically conductive graphite fiber
US4915926A (en) * 1988-02-22 1990-04-10 E. I. Dupont De Nemours And Company Balanced ultra-high modulus and high tensile strength carbon fibers

Also Published As

Publication number Publication date
EP0428944A2 (en) 1991-05-29
EP0428944B1 (en) 1996-02-14
EP0428944A3 (en) 1991-08-28
DE69025376D1 (en) 1996-03-28
JPH03161523A (en) 1991-07-11
DE69025376T2 (en) 1996-06-20

Similar Documents

Publication Publication Date Title
JP7268594B2 (en) Polyphenylene sulfide short fibers, fiber structures, filter felts and bag filters
WO2005059213A1 (en) Method for producing pitch-based carbon fiber sliver and spun yarn
JPH026624A (en) Carbon fiber well-balanced in ultrahigh modulus and high tensile force
JP2711918B2 (en) Pitch-based carbon fiber
US5437927A (en) Pitch carbon fiber spinning process
US5407614A (en) Process of making pitch-based carbon fibers
CA2009528C (en) Pitch carbon fiber spinning process
JPWO2010084856A1 (en) Pitch-based carbon fiber web, pitch-based carbon short fibers, and manufacturing method thereof
US5202072A (en) Pitch carbon fiber spinning process
JPS58220821A (en) Acrylic carbon fiber bundle with high strength and elongation and its production
JP3849852B2 (en) Nonwoven fabric and filter
CN111088535B (en) Oiling method of low-silicon polyacrylonitrile protofilament
JP2695355B2 (en) Carbon fiber production method
JP2834779B2 (en) Manufacturing method of pitch fiber
JPS61186520A (en) Production of pitch carbon yarn
JP3644271B2 (en) Method for producing pitch-based carbon fiber
JP2930166B2 (en) Carbon fiber production method
CN110685029B (en) Oiling method of polyacrylonitrile-based carbon fiber precursor
JP4601875B2 (en) Carbon fiber manufacturing method
JPS59168115A (en) Melt spinning for pitch
JPS6278220A (en) Production of ribbon-like carbon fiber
EP0387829A2 (en) Carbon fibers and non-woven fabrics
JP2708684B2 (en) Pitch-based carbon fiber bundle
JPS59168113A (en) Melt-spinning of multifilaments for carbon fiber
JPS62268820A (en) Production of pitch based carbon fiber