JP2711444B2 - Liquid crystal display device - Google Patents

Liquid crystal display device

Info

Publication number
JP2711444B2
JP2711444B2 JP61060752A JP6075286A JP2711444B2 JP 2711444 B2 JP2711444 B2 JP 2711444B2 JP 61060752 A JP61060752 A JP 61060752A JP 6075286 A JP6075286 A JP 6075286A JP 2711444 B2 JP2711444 B2 JP 2711444B2
Authority
JP
Japan
Prior art keywords
liquid crystal
cell
polarizing plate
display
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61060752A
Other languages
Japanese (ja)
Other versions
JPS62218929A (en
Inventor
實 赤塚
憲徳 加藤
和利 沢田
雅仁 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP61060752A priority Critical patent/JP2711444B2/en
Publication of JPS62218929A publication Critical patent/JPS62218929A/en
Application granted granted Critical
Publication of JP2711444B2 publication Critical patent/JP2711444B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1396Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the liquid crystal being selectively controlled between a twisted state and a non-twisted state, e.g. TN-LC cell
    • G02F1/1397Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the liquid crystal being selectively controlled between a twisted state and a non-twisted state, e.g. TN-LC cell the twist being substantially higher than 90°, e.g. STN-, SBE-, OMI-LC cells

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、液晶表示素子に関するものである。 [従来の技術] 従来、TN型液晶表示素子の電極をX−Yマトリクス状
に配してダイナミック駆動し、高密度の表示容量を実現
する手法が安価な方法として、用いられてきた。しか
し、走査可能なライン数は、この素子の電圧−透過率変
化の急峻さによって、支配され、こうした特性改良もほ
ぼ限界に近づいた。一方、液晶分子の捩れ角を180〜360
°と大きくし、かつ電極界面での液晶分子のプレティル
ト角を数度以上と大きくすると、電圧に対する液晶分子
の配列変化が急峻になる。二枚の偏光板でこの素子を挟
んで、光の干渉変化をコントラストとして利用すると、
電圧に対する透過率変化が急峻になり、走査ライン数を
増やしても、視野角が広く、コントラストも高い表示が
可能である事が知られている(例えば、T.J.Scheffe an
d J.Nehring,App.Phys,Lett.,45(10),1021('84)又
は、T.J.Schefferet.al.'85 SID Digest paper,120('8
5)) この表示モードでは、中性の吸収を持つ偏光板を二枚
使用し、その相互の偏光板の相対位置を変える事で、黄
〜緑と青〜青紫の変化、又は、淡紫と紫〜青紫の表示の
主に二つの表示色に限られた表示が可能であり、他の色
調では良好な表示は不可能であった。 [発明が解決しようとする問題点] 従来の表示素子では中性の吸収(可視光部にほぼ均質
な偏光特性)を持つ偏光板を二枚使用していたため、特
定の色調での表示のみ有効であり、あまり表示色のバラ
エティーが少なく、多様な用途へ応用するには限度があ
った。また黄色、赤橙色、あるいは黄緑から暗青色を表
示する素子においては、黄色成分が使用者の好みを左右
し、なるべく中性色化する事が望まれていた。 [問題を解決するための手段] 本発明は、前述の問題点を解決すべくなされたもので
あり、ほぼ水平に配置された一対の透明電極の内表面
で、液晶分子軸が電極面に対し4〜10°傾いてほぼ平行
に配列する様に処理され、周辺をシール材にて封止され
たセル内に、セル間隙dと液晶のピッチpとの比d/pが
0.25〜1.25の誘電異方性が正のネマチックあるいはコレ
ステリック液晶が封入され、200°〜240°のねじれ角と
なるようにされ、セルの外側に一対の偏光板が設置さ
れ、かつ相対向する電極間に電圧を印加する手段を備
え、印加する電圧の大きさに応じて、セル内を通過する
光の干渉状態を変えて光学変化を起し、その少なくとも
一方の偏光板として、400nm〜500nmにおける偏光度が他
の波長領域に対して相対的に低い偏光板を用いた液晶表
示素子である。 本発明でいう可視光の特定波長領域に偏光度を有する
偏光板とは、いわゆるカラー偏光板である。 また、400〜500nmにおける偏光度が他の波長領域に比
べて、相対的に低い偏光板とは、紫、青紫、および青系
のカラー偏光板である。 表示素子のもう一方の側に設置する偏光板としては、
中性の偏光板、もしくは、前記の偏光板、更には他のカ
ラー偏光板のいずれであっても良い。 第1図は、本発明による素子の基本的構成を説明する
ための断面模式図である。 第1図において、1,2は偏光板、3A,3Bはガラス、プラ
スチック等の透明基板、4A,4Bは酸化インジウム−酸化
スズ、酸化スズ等の透明電極、5A,5Bはポリイミド、ポ
リアミド、SiO2、Al2O3等の配向膜、6A,6Bは電極、7A,7
Bはスイッチ、8はシール材を示している。 この図の左側ではスイッチ7Aがオフとされており、そ
の液晶分子はねじれた状態9とされている。又、右側で
はスイッチ7Bがオンとされており、その液晶分子は立ち
上った状態10とされている。 本発明の液晶表示素子では、電圧印加によりセル内を
通過する光の干渉状態を変えて光学変化を起すことによ
り表示を行うために、液晶は電圧無印加時に180〜360°
程度ねじられる。このためには両基板の配向方向を180
〜360°にするとともに、セル間隙をd、液晶のピッチ
をpとすると、液晶のd/pを0.25〜1.25とし、かつ配向
膜と液晶分子の接する点での液晶分子のチルト角を4〜
10°程度とする。 又、偏光板も従来の液晶表示素子とは異り、その偏光
軸が、液晶分子の配向方向と20〜70°程度ずらして配置
し、干渉色を生じる領域で使用する。 なお、電源、スイッチ等は説明の都合上別々に示した
が、通常は1乃至複数のICで形成されればよい。 本発明では、この偏光板1,2の少なくとも一方に可視
光の特定の波長領域に偏光度を有する偏光板を用いる。
これにより従来2種類しか可能でなかった表示色の選択
度が増え、使用者の好みに合せた表示が可能となる。 特に、この偏光板として400〜500nmにおける偏光度が
他の波長領域に比して相対的に低い偏光板、具体的には
紫、青、青紫系のカラー偏光板を使用すれば、黄色系の
あまり見栄のよくない色がでなくなり、青っぽい色の表
示が可能となる。 具体的には、両電極表面における液晶分子の方向と、
隣接した偏光板の偏光軸の方向は、オンとオフにおい
て、コントラスト変化が大きくとれる位置で良く、基本
的には、中性偏光板を両側に用いた場合と、ほぼ同一で
良い。 [作用] 次に本発明による素子の動作を第1図を用いて説明す
る。 図の左半分は電圧が無印加の場合の液晶分子の配列状
態を模式的に示してある。両電極間にわたって、液晶分
子はその分子軸を電極界面にほぼ平行にかつ両電極間で
捩れている。この時偏光板2を通過して偏光された光
は、液晶分子の複屈折性のため、常光成分と異常光成分
に分離される。この両成分は、液晶層中を伝播する速度
が異り、液晶層を通過后に位相のずれ、即ち、光学位相
差を生じ、偏光板を通過した時点で、干渉による着色を
呈する。 図の右半分は、しきい値以上の電圧を印加した場合で
あり、液晶分子の向きは、電極界面から液晶層中央部に
かけて連続的に変化し、液晶層中央では、電極面にほぼ
垂直に配列する。この状態にある液晶層を光が通過する
と、オフ状態と同様の作用により、干渉による着色を生
ずる。オンとオフ時に生ずる着色の濃度が異る場合、あ
るいは色相が変わる場合には、表示が可能であり、これ
は液晶分子の捩れ角、屈折率の異方性、液晶層の厚み、
印加電圧によって変わる。 本発明では、この偏光板の少なくともいずれか一方に
可視光の特定の波長領域に偏光度を有する偏光板を用い
ることにより、この複屈折による色相の変化に巾をもた
せ、表示の色の選択範囲を広くすることができる。 [実施例] 実施例1 ポリイミド系樹脂を電極上に製膜後、表面をラビング
して、液晶の配向膜を形成し、第1図に例示したセル間
隙7.0μmのセルを作製した。このセル中にメルク社の
ネマチック液晶ZLI−2293に少量の光学活性物質を添加
し、オフ時に両電極間で液晶分子が200度捩れる様にコ
ントロールした。このセルの一方の側に可視光部にほぼ
均一な偏光度を有する中性偏光板を、その偏光軸が隣接
する電極上での分子の方向に対し、35度傾く様に設置し
た。もう一方の側には、紫のカラー偏光板をその偏光軸
が隣接する電極面上の液晶分子の軸に対し60°傾く様に
設置し、1/100ディーティ、1/11バイアスのダイナミッ
ク波形で駆動したところ、極く薄い紫色から、濃い紫色
の表示が得られ、黄色の吸収による色のくすみはほとん
どなかった。また偏光軸を±15°ずらしても、ほぼ同色
の色変化が得られた。 実施例2 実施例1とほぼ同一の方法で液晶分子の捩じれ角が24
0度のセルを作成した。カラー偏光板として、青色系を
用いて駆動したところ、淡青色から濃い青色の表示が可
能であった。一方の偏光板の偏光軸を90度ずらすと、表
示の色コントラストは逆転した。 [発明の効果] 以上の如く、本発明は少なくとも一方に、可視光の特
定の波長領域に偏光度を有する偏光板を使用したため、
ほぼ中性に近い淡い青や紫から濃い青や紫を表示する事
ができるため、表示品位を向上できる優れたものであ
る。 以上の実施例においては、偏光板のみを用いたが、こ
れにカラーフィルターを組み合せて、背景および表示色
を共に変化させて、色相を調節して使用する事も有用性
が高い。
Description: TECHNICAL FIELD The present invention relates to a liquid crystal display device. [Prior Art] Conventionally, a technique of arranging electrodes of a TN type liquid crystal display element in an XY matrix and performing dynamic driving to realize a high-density display capacity has been used as an inexpensive method. However, the number of lines that can be scanned is governed by the steepness of the voltage-transmittance change of the device, and such improvement in characteristics has almost reached its limit. On the other hand, the twist angle of the liquid crystal molecules is 180-360.
° and the pretilt angle of the liquid crystal molecules at the electrode interface is increased to several degrees or more, the arrangement change of the liquid crystal molecules with respect to the voltage becomes sharp. If this element is sandwiched between two polarizing plates and the change in light interference is used as contrast,
It is known that a change in transmittance with respect to a voltage becomes steep, and even if the number of scanning lines is increased, a display with a wide viewing angle and high contrast can be displayed (for example, TJScheffe an).
d J. Nehring, App.Phys, Lett., 45 (10), 1021 ('84) or TJSchefferet.al.'85 SID Digest paper, 120 ('8
5)) In this display mode, two polarizers having neutral absorption are used, and the relative positions of the polarizers are changed to change from yellow to green and blue to bluish purple, or change to pale purple. Display limited to mainly two display colors, purple to blue-violet, was possible, and good display was not possible with other colors. [Problems to be Solved by the Invention] Conventional display elements use two polarizing plates having neutral absorption (polarization characteristics almost uniform in the visible light region), so that only a display in a specific color tone is effective. Therefore, there is little variety of display colors, and there is a limit to application to various uses. Further, in an element which displays yellow, red-orange, or yellow-green to dark blue, it has been desired that the yellow component affects the user's preference and is as neutral as possible. Means for Solving the Problems The present invention has been made to solve the above-mentioned problems, and the liquid crystal molecular axis is aligned with the electrode surface on the inner surfaces of a pair of transparent electrodes arranged substantially horizontally. The cells are processed so as to be arranged almost in parallel with an inclination of 4 to 10 °, and the ratio d / p of the cell gap d and the pitch p of the liquid crystal is set in a cell whose periphery is sealed with a sealing material.
A nematic or cholesteric liquid crystal having a positive dielectric anisotropy of 0.25 to 1.25 is encapsulated to have a twist angle of 200 ° to 240 °, a pair of polarizing plates is installed outside the cell, and electrodes facing each other are disposed. A means for applying a voltage in between, according to the magnitude of the applied voltage, changes the interference state of light passing through the cell to cause an optical change, and as at least one of the polarizing plates, at 400 nm to 500 nm This is a liquid crystal display device using a polarizing plate whose degree of polarization is relatively low with respect to other wavelength regions. The polarizing plate having a degree of polarization in a specific wavelength region of visible light as referred to in the present invention is a so-called color polarizing plate. Further, the polarizing plate having a degree of polarization at 400 to 500 nm that is relatively lower than other wavelength regions is a violet, bluish violet, or blue color polarizing plate. As a polarizing plate installed on the other side of the display element,
Any of a neutral polarizing plate, the above-described polarizing plate, and other color polarizing plates may be used. FIG. 1 is a schematic cross-sectional view for explaining a basic configuration of an element according to the present invention. In FIG. 1, 1 and 2 are polarizing plates, 3A and 3B are transparent substrates such as glass and plastic, 4A and 4B are transparent electrodes such as indium oxide-tin oxide and tin oxide, 5A and 5B are polyimide, polyamide, SiO 2 , alignment film of Al 2 O 3 etc., 6A, 6B are electrodes, 7A, 7
B indicates a switch, and 8 indicates a sealing material. On the left side of the figure, the switch 7A is turned off, and the liquid crystal molecules are in a twisted state 9. On the right side, the switch 7B is turned on, and the liquid crystal molecules are in a state 10 of rising. In the liquid crystal display device of the present invention, in order to perform display by changing the interference state of light passing through the cell by applying a voltage and causing an optical change, the liquid crystal is 180 to 360 ° when no voltage is applied.
Twisted degree. For this purpose, the orientation direction of both substrates is set to 180
When the cell gap is d and the pitch of the liquid crystal is p, the d / p of the liquid crystal is 0.25 to 1.25, and the tilt angle of the liquid crystal molecule at the point where the alignment film contacts the liquid crystal molecule is 4 to
It should be about 10 °. Also, the polarizing plate is different from the conventional liquid crystal display element, and its polarizing axis is arranged so as to be shifted from the alignment direction of liquid crystal molecules by about 20 to 70 °, and is used in a region where interference colors occur. Although the power supply, the switch, and the like are separately illustrated for the sake of explanation, the power supply, the switch, and the like are usually formed of one or more ICs. In the present invention, a polarizing plate having a degree of polarization in a specific wavelength region of visible light is used as at least one of the polarizing plates 1 and 2.
As a result, the selectivity of the display color, which was conventionally only possible in two types, is increased, and the display according to the user's preference becomes possible. In particular, as a polarizing plate, the degree of polarization at 400 to 500 nm is relatively low compared to other wavelength regions, specifically, if a purple, blue, or blue-violet color polarizing plate is used, a yellowish polarizing plate is obtained. Colors that are not very good are not displayed, and a bluish color can be displayed. Specifically, the directions of liquid crystal molecules on both electrode surfaces,
The direction of the polarization axis of the adjacent polarizing plate may be at a position where a large contrast change can be obtained between on and off, and is basically the same as when a neutral polarizing plate is used on both sides. [Operation] Next, the operation of the device according to the present invention will be described with reference to FIG. The left half of the figure schematically shows the arrangement of liquid crystal molecules when no voltage is applied. Across the electrodes, the liquid crystal molecules have their molecular axes twisted substantially parallel to the electrode interface and between the electrodes. At this time, the light polarized by passing through the polarizing plate 2 is separated into an ordinary light component and an extraordinary light component due to the birefringence of the liquid crystal molecules. These two components have different speeds of propagating in the liquid crystal layer, cause a phase shift after passing through the liquid crystal layer, that is, cause an optical phase difference, and exhibit coloration due to interference when passing through the polarizing plate. The right half of the figure shows the case where a voltage equal to or higher than the threshold is applied.The orientation of the liquid crystal molecules changes continuously from the electrode interface to the center of the liquid crystal layer, and at the center of the liquid crystal layer, it is almost perpendicular to the electrode surface. Arrange. When light passes through the liquid crystal layer in this state, coloring by interference occurs due to the same action as in the off state. When the density of coloring generated at the time of on and off is different, or when the hue changes, display is possible, which includes a twist angle of liquid crystal molecules, anisotropy of a refractive index, a thickness of a liquid crystal layer,
It depends on the applied voltage. In the present invention, by using a polarizing plate having a degree of polarization in a specific wavelength region of visible light for at least one of the polarizing plates, the hue change due to the birefringence has a certain range, and a display color selection range. Can be widened. Example 1 Example 1 After a polyimide resin was formed on an electrode, the surface was rubbed to form a liquid crystal alignment film, and a cell having a cell gap of 7.0 μm illustrated in FIG. 1 was produced. A small amount of an optically active substance was added to the nematic liquid crystal ZLI-2293 manufactured by Merck in this cell, and the liquid crystal molecules were controlled to be twisted by 200 degrees between both electrodes when the cell was turned off. On one side of the cell, a neutral polarizing plate having a substantially uniform degree of polarization in the visible light portion was placed such that its polarization axis was inclined at 35 degrees with respect to the direction of molecules on the adjacent electrode. On the other side, a purple color polarizer is installed so that its polarization axis is inclined by 60 ° with respect to the axis of the liquid crystal molecules on the adjacent electrode surface, with a dynamic waveform of 1/100 duty and 1/11 bias. When the device was driven, an extremely pale purple to dark purple display was obtained, and there was almost no dull color due to the absorption of yellow. Further, even when the polarization axis was shifted by ± 15 °, almost the same color change was obtained. Example 2 The twist angle of the liquid crystal molecules was 24 in the same manner as in Example 1.
Created a 0 degree cell. When driven by using a blue color system as a color polarizing plate, it was possible to display light blue to deep blue. When the polarization axis of one polarizing plate was shifted by 90 degrees, the color contrast of the display was reversed. [Effects of the Invention] As described above, at least one of the present invention uses a polarizing plate having a degree of polarization in a specific wavelength region of visible light,
Since it is possible to display light blue or purple, which is almost neutral, to dark blue or purple, the display quality can be improved. In the above embodiment, only the polarizing plate is used. However, it is also highly useful to combine the filter with a color filter to change both the background and the display color to adjust the hue.

【図面の簡単な説明】 第1図は本発明の基本的構成を示す断面説明図である。 1,2:偏光板 3A,3B:透明基板 4A,4B:透明電極 5A,5B:配向膜 6A,6B:電源 7A,7B:スイッチ 8:シール材 9:オフ時の液晶分子の配列 10:オン時の液晶分子の配列[Brief description of the drawings] FIG. 1 is an explanatory sectional view showing a basic configuration of the present invention. 1,2: polarizing plate 3A, 3B: Transparent substrate 4A, 4B: Transparent electrode 5A, 5B: alignment film 6A, 6B: Power supply 7A, 7B: Switch 8: Seal material 9: Off-state alignment of liquid crystal molecules 10: Alignment of liquid crystal molecules when on

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−134625(JP,A) 特開 昭62−204230(JP,A) 特開 昭62−31822(JP,A) 特開 昭60−107020(JP,A)   ────────────────────────────────────────────────── ─── Continuation of front page    (56) References JP-A-62-134625 (JP, A)                 JP-A-62-204230 (JP, A)                 JP-A-62-31822 (JP, A)                 JP-A-60-107020 (JP, A)

Claims (1)

(57)【特許請求の範囲】 1.ほぼ平行に配置された一対の透明電極の内表面で、
液晶分子軸が電極面に対し4〜10°傾いてほぼ平行に配
列する様に処理され、周辺をシール材にて封止されたセ
ル内に、セル間隙dと液晶のピッチpとの比d/pが0.25
〜1.25の誘電異方性が正のネマチックあるいはコレステ
リック液晶が封入され、200°〜240°のねじれ角となる
ようにされ、セルの外側に一対の偏光板が設置され、か
つ相対向する電極間に電圧を印加する手段を備え、印加
する電圧の大きさに応じて、セル内を通過する光の干渉
状態を変えて光学変化を起し、その少なくとも一方の偏
光板として、400nm〜500nmにおける偏光度が他の波長領
域に対して相対的に低い偏光板を用いたことを特徴とす
る液晶表示素子。 2.カラーフィルターを組み合わせたことを特徴とする
特許請求の範囲第1項記載の液晶表示素子。
(57) [Claims] On the inner surfaces of a pair of transparent electrodes arranged almost in parallel,
The liquid crystal molecular axis is inclined so as to be 4 to 10 ° with respect to the electrode surface, and is arranged so as to be substantially parallel to each other. In a cell whose periphery is sealed with a sealing material, the ratio d between the cell gap d and the liquid crystal pitch p is set. / p is 0.25
A nematic or cholesteric liquid crystal having a positive dielectric anisotropy of ~ 1.25 is enclosed, and a twist angle of 200 ° ~ 240 ° is provided, a pair of polarizing plates are installed outside the cell, and a gap between electrodes facing each other is provided. A means for applying a voltage, depending on the magnitude of the applied voltage, changes the interference state of light passing through the cell to cause an optical change, and at least one of the polarizing plates, the polarization at 400 nm to 500 nm. A liquid crystal display device using a polarizing plate having a degree relatively lower than other wavelength regions. 2. 2. The liquid crystal display device according to claim 1, wherein a color filter is combined.
JP61060752A 1986-03-20 1986-03-20 Liquid crystal display device Expired - Lifetime JP2711444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61060752A JP2711444B2 (en) 1986-03-20 1986-03-20 Liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61060752A JP2711444B2 (en) 1986-03-20 1986-03-20 Liquid crystal display device

Publications (2)

Publication Number Publication Date
JPS62218929A JPS62218929A (en) 1987-09-26
JP2711444B2 true JP2711444B2 (en) 1998-02-10

Family

ID=13151316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61060752A Expired - Lifetime JP2711444B2 (en) 1986-03-20 1986-03-20 Liquid crystal display device

Country Status (1)

Country Link
JP (1) JP2711444B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3741995B4 (en) * 1987-12-11 2004-10-28 Siemens Ag STN liquid crystal cell

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6231822A (en) * 1985-08-02 1987-02-10 Hitachi Ltd Liquid crystal displaying element
JPS62134625A (en) * 1985-12-09 1987-06-17 Seiko Epson Corp Liquid crystal display body
JPS62204230A (en) * 1986-03-04 1987-09-08 Seiko Instr & Electronics Ltd Liquid crystal display device

Also Published As

Publication number Publication date
JPS62218929A (en) 1987-09-26

Similar Documents

Publication Publication Date Title
KR100248210B1 (en) Liquid crystal display device
JP2621385B2 (en) Electro-optical device
KR19990056726A (en) LCD
JP4357622B2 (en) Liquid crystal display
JP2711444B2 (en) Liquid crystal display device
JP3990754B2 (en) Reflective monochrome liquid crystal display
EP0352792B1 (en) Liquid crystal device
JP3939795B2 (en) Color liquid crystal display
JP2559215B2 (en) Liquid crystal display element
JP2813222B2 (en) Liquid crystal display device
JPH0876077A (en) Electric field control diffraction grating and liquid crystal element
JPH07199205A (en) Liquid crystal display element
JP3628094B2 (en) Liquid crystal display element and optical anisotropic element
JPH09197429A (en) Liquid crystal display element
JP4266209B2 (en) Liquid crystal display element and optical anisotropic element
JPH06294961A (en) Liquid crystal display element and its production
JPH05289097A (en) Liquid crystal display element
JP2815006B2 (en) Electro-optical device
JP2780221B2 (en) Electro-optical device
KR100256303B1 (en) Lcd
KR100488962B1 (en) Dstn mode lcd device
KR20000031215A (en) Liquid crystal displaying device
JP2005301315A (en) Liquid crystal display device and optical anisotropic device
JPH06324335A (en) Liquid crystal display element
JPH1073799A (en) Liquid crystal display element

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term