JP2707736B2 - Single crystal growth method - Google Patents

Single crystal growth method

Info

Publication number
JP2707736B2
JP2707736B2 JP1171438A JP17143889A JP2707736B2 JP 2707736 B2 JP2707736 B2 JP 2707736B2 JP 1171438 A JP1171438 A JP 1171438A JP 17143889 A JP17143889 A JP 17143889A JP 2707736 B2 JP2707736 B2 JP 2707736B2
Authority
JP
Japan
Prior art keywords
single crystal
raw material
crystal
crucible
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1171438A
Other languages
Japanese (ja)
Other versions
JPH0350180A (en
Inventor
敬治 白田
紘一 佐々
憲治 冨澤
信之 内田
泰三 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to US07/490,931 priority Critical patent/US5078830A/en
Priority to CA002012323A priority patent/CA2012323A1/en
Priority to EP90104923A priority patent/EP0392210B1/en
Priority to DE69009831T priority patent/DE69009831T2/en
Priority to KR1019900004827A priority patent/KR960009701B1/en
Publication of JPH0350180A publication Critical patent/JPH0350180A/en
Application granted granted Critical
Publication of JP2707736B2 publication Critical patent/JP2707736B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt
    • C30B15/12Double crucible methods
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/14Heating of the melt or the crystallised materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/22Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1032Seed pulling
    • Y10T117/1036Seed pulling including solid member shaping means other than seed or product [e.g., EDFG die]

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、CZ法を用いてGaAs,Si等の半導体や各種金
属の単結晶を育成するための単結晶育成方法に係わり、
特に、育成中の単結晶の外径変動や円筒度低下を防止す
るための改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a single crystal growing method for growing single crystals of semiconductors and various metals such as GaAs and Si using CZ method,
In particular, the present invention relates to an improvement for preventing a change in the outer diameter of a single crystal during growth and a reduction in cylindricity.

「従来の技術」 上記CZ法は、ルツボ内に保持した原料融液に種結晶を
浸漬し、この種結晶を引き上げることにより単結晶を育
成する方法であり、結晶特性および収率を向上するため
に、特に直胴部の形状制御が極めて重要である。
"Conventional technology" The CZ method is a method of growing a single crystal by immersing a seed crystal in a raw material melt held in a crucible and pulling up the seed crystal to improve crystal characteristics and yield. Particularly, control of the shape of the straight body is extremely important.

この形状制御手段として従来、例えばシリコン単結晶
の製造では、フュージョンリング検出法や光反射法等の
ように、光で固液界面位置を検出し、引き上げ速度、ヒ
ータ温度、引き上げ軸および下軸の回転数等をフィード
バック制御し、単結晶の直胴部外径を一定に保つ光学的
方法が一般に採られている。
Conventionally, as the shape control means, for example, in the production of a silicon single crystal, a solid-liquid interface position is detected by light, such as a fusion ring detection method or a light reflection method, and a pulling speed, a heater temperature, a pulling shaft and a lower shaft are detected. An optical method is generally employed in which the number of revolutions and the like are feedback-controlled to keep the outer diameter of the single crystal straight body constant.

一方、GaAsやGaP等の化合物半導体単結晶の製造にお
いては、融液からの高解離圧成分の逃散を防ぐために、
ルツボ内の融液表面をB2O3等の液体封止材で覆うLEC法
が多用されているが、この場合には液体封止材の濁りや
高圧ガスによる揺らぎの影響で前記光学的方法が使用で
きない。そこで、X線透過装置によって固液界面の形状
を観察するTVイメージ法や、育成装置の引き上げ軸また
はルツボ下軸の一方または双方に荷重センサを付設し、
荷重変化から単結晶の外径を推定する重量法も試みられ
ているが、前記TVイメージ法はX線使用のため安全性や
量産性の点で問題があり、重量法では誤差が大きい。
On the other hand, in the production of compound semiconductor single crystals such as GaAs and GaP, in order to prevent the escape of high dissociation pressure components from the melt,
The LEC method in which the surface of the melt in the crucible is covered with a liquid sealing material such as B 2 O 3 is often used. In this case, the optical method is used due to the turbidity of the liquid sealing material and fluctuations due to high-pressure gas. Cannot be used. Therefore, a TV image method for observing the shape of the solid-liquid interface using an X-ray transmission device, or a load sensor attached to one or both of the pulling shaft and the crucible lower shaft of the growing device,
A weight method for estimating the outer diameter of a single crystal from a change in load has also been attempted, but the TV image method has problems in safety and mass productivity due to the use of X-rays, and the weight method has a large error.

そこで、LEC法に適した直径制御方法として、特開昭5
1-64482号公報では、コラクル方式引き上げ法が開示さ
れている。この方法は液体封止材よりも重く原料融液よ
り軽い直径制御治具(コラクル)を原料融液表面に浮か
べ、このコラクルに形成された円形口を通して単結晶を
引き上げるもので、この方法によれば高精度で直径制御
が行なえる利点を有する。
Therefore, as a diameter control method suitable for the LEC method, Japanese Patent Application Laid-Open
Japanese Patent Application Laid-Open No. 1-64482 discloses a method of raising a collage system. In this method, a diameter control jig (collac), which is heavier than the liquid sealing material and lighter than the raw material melt, is floated on the surface of the raw material melt, and a single crystal is pulled up through a circular opening formed in the collage. This has the advantage that the diameter can be controlled with high precision.

また、化合物半導体の引き上げ方法としては、前記LE
C法を改良したLEK法と呼ばれる方法もある。これは、ル
ツボ内に保持したGaAs融液上にB2O3を浮かべる点でLEC
法と同様であるが、B2O3層を通して単結晶を引き上げる
代わりに、ルツボ内の原料融液温度を漸次降下させるこ
とにより、融液上面に浸漬した種結晶を始点として、ル
ツボ壁との間に極く僅かな隙間を空けた状態で単結晶を
下方に向けて成長させることを特徴として、単結晶はB2
O3層を通過しない。なお、その際、固化による体積増大
を補正する分だけ種結晶を引き上げ、単結晶がルツボ壁
と接触しないようにする。
Further, as a method of pulling up a compound semiconductor, the LE
There is also a method called the LEK method, which is an improvement on the C method. This is because LEO floats B 2 O 3 on a GaAs melt held in a crucible.
Similar to the method, but instead of pulling the single crystal through the B 2 O 3 layer, the temperature of the raw material melt in the crucible is gradually lowered, so that the seed crystal immersed on the upper surface of the melt is used as a starting point and the crucible wall a single crystal in a state of spaced very small gaps as a feature to grow downward while the single crystal is B 2
It does not pass through the O 3 layer. At this time, the seed crystal is pulled up by an amount to correct the volume increase due to solidification, so that the single crystal does not contact the crucible wall.

この方法によれば、温度勾配の大きいB2O3層を単結晶
が通過しなくて済むため、通過の際にB2O3層から受ける
熱応力により、転位欠陥が発生することを防止できる利
点がある。
According to this method, since the single crystal does not have to pass through the B 2 O 3 layer having a large temperature gradient, dislocation defects can be prevented from being generated due to thermal stress received from the B 2 O 3 layer during passage. There are advantages.

「発明が解決しようとする課題」 しかしながら、上述した単結晶育成方法は、いずれも
次のような問題を有していた。
"Problems to be Solved by the Invention" However, each of the above-described methods for growing a single crystal has the following problems.

すなわち、光やX線、重量検出等の手段により単結晶
直径を検出してフィードバック制御する方法では、精度
の向上に限界があり、第5図に示すように若干のくびれ
発生や軸線の歪みが避けられず、単結晶の直胴部を完全
な円柱状にすることは不可能だった。
That is, in the method of performing feedback control by detecting the diameter of a single crystal by means of light, X-rays, weight detection, etc., there is a limit to the improvement of accuracy, and as shown in FIG. Inevitably, it was impossible to make the single crystal straight body completely cylindrical.

またCZ法では、固液界面垂直方向の温度勾配を小さく
して単結晶育成を行なうことにより結晶欠陥が低減でき
ることが知られており、収率の点からは引き上げの高速
度化が要求されているが、このように温度勾配を小さく
して高速引き上げを行なうと、単結晶からの抜熱が不十
分になりやすく、前記形状不良の問題が一層顕著となっ
て安定な形状制御が困難になる欠点も有していた。
Also, it is known that the CZ method can reduce crystal defects by growing a single crystal by reducing the temperature gradient in the direction perpendicular to the solid-liquid interface, and from the viewpoint of yield, a higher pulling rate is required. However, when high-speed pulling is performed with such a small temperature gradient, heat removal from the single crystal tends to be insufficient, and the problem of the shape defect becomes more remarkable, and stable shape control becomes difficult. It also had disadvantages.

一方、前記のコラクル方式LEC法では、直径制御精度
が良好である反面、コラクルの遊動が原因となって融液
温度分布が乱れるため、近年重要視されているGaAs〈10
0〉単結晶を引き上げると双晶が発生しやすく、実際に
は〈111〉単結晶の製造しか行なえないうえ、融液中に
治具を入れるため、汚染が生じるおそれが解消しきれな
い。
On the other hand, in the above-mentioned collapsible LEC method, although the diameter control accuracy is good, the melt temperature distribution is disturbed due to the floating of the collac.
0> When a single crystal is pulled, twins are likely to be generated. In practice, only a <111> single crystal can be produced. In addition, since a jig is put into the melt, the risk of contamination cannot be completely solved.

なお、双晶発生を防ぐために、コラクルの遊動を防止
する部材を付加する方法も提案されているが、装置の構
造が複雑になり工業的には現実的でないうえ、汚染の可
能性がさらに増大してしまう欠点を有する。
In order to prevent twinning, there has been proposed a method of adding a member for preventing the floating of the collage. However, the structure of the apparatus becomes complicated, which is not industrially practical, and the possibility of contamination is further increased. It has the disadvantage of doing so.

さらに、前述のLEK法では、単結晶がB2O3に覆われた
まま成長し、単結晶の成長速度が確認できないため、前
記ルツボ壁に単結晶が接触しないように引き上げること
はかなり難しく、万一接触した際には単結晶に双晶化や
多結晶化が起こったり、ルツボを破壊する等の問題が生
じる欠点を有し、工業的レベルでの実施は困難であっ
た。
Furthermore, in the above-described LEK method, the single crystal grows while being covered with B 2 O 3 , and since the growth rate of the single crystal cannot be confirmed, it is quite difficult to pull up the single crystal so as not to contact the crucible wall, In the unlikely event of contact, the single crystal has problems such as twinning or polycrystallization and breakage of the crucible, and has been difficult to implement on an industrial level.

そこで本発明者らは、育成中の単結晶の外径変動を詳
細に検討し、この種の外径変動には、固液界面近傍のメ
ニスカス(表面張力で生じる曲面)の不安定さが関与し
ていることを突き止めた。さらに本発明者らは、ルツボ
と単結晶との間のメニスカス形状を制御することにより
単結晶の径方向の成長を抑制し、外径制御が行なえるの
ではないかという観点から実験を試行し、その結果、ル
ツボの内壁面と単結晶との間隔をある所定の範囲に設定
すると、メニスカスが安定して単結晶の外径変動が抑え
られるという新規な知見を得るに至った。
Therefore, the present inventors studied in detail the variation of the outer diameter of a single crystal during growth, and this type of outer diameter variation involves instability of a meniscus (curved surface generated by surface tension) near a solid-liquid interface. I figured out what I was doing. Furthermore, the present inventors conducted experiments from the viewpoint that the growth of the single crystal in the radial direction was suppressed by controlling the meniscus shape between the crucible and the single crystal, and that the outer diameter could be controlled. As a result, when the distance between the inner wall surface of the crucible and the single crystal is set to a predetermined range, a new finding has been obtained that the meniscus is stabilized and the outer diameter variation of the single crystal is suppressed.

本発明は、上記事情に鑑みてなされたものであり、単
結晶および原料融液の固液界面近傍のメニスカスを安定
化させることにより、単結晶の胴部の外径変動を抑える
ことができる単結晶育成方法を提供することを目的とし
ている。
The present invention has been made in view of the above circumstances, and stabilizes a meniscus in the vicinity of a solid-liquid interface between a single crystal and a raw material melt, thereby suppressing variation in the outer diameter of the body of the single crystal. It is intended to provide a crystal growing method.

「課題を解決するための手段」 本発明は上記知見に基づいてなされたもので、以下、
具体的な構成を第1図および第2図を参照しつつ説明す
る。
"Means for Solving the Problems" The present invention has been made based on the above-mentioned findings.
A specific configuration will be described with reference to FIGS. 1 and 2.

第1図中符号1はルツボ(原料融液容器)、2はサセ
プタ、3は下軸、4は種結晶5を保持するホルダ、6は
引き上げ機構である。
In FIG. 1, reference numeral 1 denotes a crucible (a raw material melt container), 2 denotes a susceptor, 3 denotes a lower shaft, 4 denotes a holder for holding a seed crystal 5, and 6 denotes a lifting mechanism.

この方法では、ルツボ1として原料融液Yと濡れない
材料を使用する。例えば、GaAsを育成する場合にはpBN
や石英、Siにはグラファイト、銅等の金属にはグラファ
イト等が好適である。なお、ルツボ1はその全体が前記
材料で構成されていなくてもよく、少なくとも周壁部の
内壁面が上記材料で構成されていればよい。
In this method, a material that does not wet the raw material melt Y is used as the crucible 1. For example, when growing GaAs, pBN
Graphite or the like is suitable for metal such as graphite, quartz, and Si, and copper for Si or the like. The crucible 1 does not need to be entirely made of the above-mentioned material, and it is sufficient that at least the inner wall surface of the peripheral wall portion is made of the above-mentioned material.

育成時にはまず、ルツボ1内で多結晶原料を溶解して
原料融液Yを生成し、その中央に種結晶5を浸漬したう
え引き上げ機構6により単結晶Tを順次引き上げる。そ
の際、ヒータ(図示略)への通電量等を調節して、原料
融液Yの表面温度が単結晶Tからルツボ1の内壁面に向
けて僅かに正の温度勾配を有するよう、かつ前記内壁面
の近傍において融液温度が結晶成長温度より僅かに高く
なるように温度制御する。これにより、育成される単結
晶Tは常に外径がルツボ1の内径に近付くにつれて抑制
される傾向を生じる。
At the time of growth, first, a polycrystalline raw material is dissolved in a crucible 1 to generate a raw material melt Y, a seed crystal 5 is immersed in the center thereof, and a single crystal T is sequentially pulled up by a pulling mechanism 6. At this time, the surface temperature of the raw material melt Y has a slightly positive temperature gradient from the single crystal T toward the inner wall surface of the crucible 1 by adjusting the amount of electricity supplied to a heater (not shown) and the like. Temperature control is performed so that the melt temperature is slightly higher than the crystal growth temperature in the vicinity of the inner wall surface. Thereby, the grown single crystal T tends to be suppressed as the outer diameter approaches the inner diameter of the crucible 1 at all times.

育成時にはさらに、ルツボ1の内壁面と単結晶Tの外
周面との離間距離G(cm)、単結晶Tの半径R(cm)、
原料融液Yの表面張力σ(dyn/cm)、原料融液Yの密度
ρm(g/cm3)、雰囲気ガスの密度をρf(g/cm3)、重
力加速度をg(cm/s2)とした場合に、 A={2σ/(ρm−ρf)g}0.5 H=A{1+(A/4R)20.5−A2/4R で表されるH、および前記Gが、次式を満たすことが
必要である。
At the time of growing, the separation distance G (cm) between the inner wall surface of the crucible 1 and the outer peripheral surface of the single crystal T, the radius R (cm) of the single crystal T,
The surface tension σ (dyn / cm) of the raw material melt Y, the density ρm (g / cm 3 ) of the raw material melt Y, the density of the atmosphere gas ρf (g / cm 3 ), and the gravitational acceleration g (cm / s 2) ), A = {2σ / (ρm−ρf) g} 0.5 H = A {1+ (A / 4R) 20.5− A 2 / 4R It is necessary to satisfy

0.75≦G/H≦2 なお、融液表面を液体封止材で覆うLEC法を適用する場
合には、前記ρfとして、雰囲気ガス密度の代わりに液
体封止材の密度を用いる。
0.75 ≦ G / H ≦ 2 When applying the LEC method in which the surface of the melt is covered with a liquid sealing material, the density of the liquid sealing material is used as ρf instead of the atmospheric gas density.

前記,は、オイラー・ラプラス方程式を解くこと
により得られるもので、第2図を用いてこれらの限定理
由を説明する。
The above is obtained by solving the Euler-Laplace equation, and the reasons for these limitations will be described with reference to FIG.

第2図は単結晶成長部の概略図である。図中Hは原料
融液の仮想水平面(ルツボ1が無い場合の融液面)から
の固液界面までの高さを示し、このHの値は、固液界面
における単結晶の外周面が鉛直(α=90°)である場
合、前記式で算出される。
FIG. 2 is a schematic view of a single crystal growth part. In the figure, H indicates the height from the virtual horizontal plane (the melt surface without the crucible 1) of the raw material melt to the solid-liquid interface, and the value of H indicates that the outer peripheral surface of the single crystal at the solid-liquid interface is vertical. (Α = 90 °), it is calculated by the above equation.

内径15〜155mmのpBN製ルツボおよび石英製ルツボを用
い、結晶直径を変えてGaAs単結晶をそれぞれ多数育成し
た。第3図はG/Hと結晶径変動値との相関を示すグラフ
であり、液体封止材を用いない場合(UNLEC法)、液体
封止材を用いた場合(LEC法)のいずれにおいても、G/H
が0.75〜2の範囲で明らかに結晶直径の変動が小さくな
り、直径制御効果が得られていることがわかる。
Using a pBN crucible and a quartz crucible having an inner diameter of 15 to 155 mm, a large number of GaAs single crystals were grown with varying crystal diameters. FIG. 3 is a graph showing the correlation between the G / H and the crystal diameter variation value, in both the case where the liquid sealing material is not used (UNLEC method) and the case where the liquid sealing material is used (LEC method). , G / H
Is in the range of 0.75 to 2, the fluctuation of the crystal diameter is clearly reduced, and it can be seen that the diameter control effect is obtained.

G/Hの値は原料融液の種類に拘わらずメニスカス形状
を最もよく反映する変数であり、G/H<0.75の範囲では
単結晶Tまたはルツボ1の偏心等によりこれらが接触
し、単結晶の成長を阻害するおそれがある。また、G/H
≧2では、第5図から明らかなように、メニスカス部分
に対するルツボ内壁面からの反発力(メニスカス部分に
働く表面張力により生じる力で、メニスカス部分を上向
きに窄ませようとする)が不足し、単結晶の拡径傾向と
反発力との均衡がとれず、結晶直径の変動が大きくなっ
て、十分な直径制御効果が得られない。なお、GaAs単結
晶を育成する場合にはGを3.5〜10mmとすることが望ま
しい。Gが3.5mm未満では単結晶Tがルツボ1に接触す
るおそれが生じ、10mm以上では直径制御効果が得られな
い。
The value of G / H is a variable that best reflects the meniscus shape irrespective of the type of the raw material melt. In the range of G / H <0.75, they come into contact with each other due to the eccentricity of the single crystal T or the crucible 1. Growth may be inhibited. Also, G / H
In the case of ≧ 2, as is clear from FIG. 5, the repulsive force of the meniscus portion from the inner wall surface of the crucible (the force generated by the surface tension acting on the meniscus portion to try to constrict the meniscus portion upward) is insufficient. The diameter expansion tendency and the repulsive force of the single crystal cannot be balanced, and the fluctuation of the crystal diameter becomes large, so that a sufficient diameter control effect cannot be obtained. When growing a GaAs single crystal, it is desirable that G be 3.5 to 10 mm. If G is less than 3.5 mm, the single crystal T may come into contact with the crucible 1, and if it is 10 mm or more, the effect of controlling the diameter cannot be obtained.

上記構成からなる単結晶育成方法によれば、育成につ
れて単結晶Tが拡径しようとする力と、メニスカスMの
ルツボに接する部分に働く表面張力による反発力とを平
衡させることにより、メニスカスMの形状を安定化さ
せ、単結晶Tの直胴部の直径変動を防いで、くびれが少
なく円筒度の高い単結晶を育成することが可能である。
また、コラクル等の特殊な部材を融液中に浸漬する必要
がないため、汚染発生のおそれがない。
According to the method for growing a single crystal having the above configuration, the force of expanding the single crystal T as the crystal grows and the repulsive force due to the surface tension acting on the portion of the meniscus M in contact with the crucible are balanced, so that the It is possible to stabilize the shape and prevent a change in the diameter of the straight body of the single crystal T, thereby growing a single crystal with less constriction and high cylindricity.
Further, since it is not necessary to immerse a special member such as a collage in the melt, there is no possibility of contamination.

また、B2O3等の液体封止材を使用した場合にも、LEK
法と異なり単結晶Tの成長を確認できるため、単結晶T
とルツボ1との接触のおそれが少なく、欠陥発生を防ぐ
ことが可能である。
Also, when a liquid sealing material such as B 2 O 3 is used, LEK
Unlike the method, the growth of the single crystal T can be confirmed.
There is little risk of contact with the crucible 1 and the occurrence of defects can be prevented.

さらに、単結晶Tのくびれ発生や円筒度低下を防ぐこ
とができる分、固液界面における温度勾配を小さくする
ことができるので、転位密度を低下して単結晶の品質向
上が図れる。
Further, the temperature gradient at the solid-liquid interface can be reduced as much as the occurrence of constriction and a decrease in cylindricity of the single crystal T can be reduced, so that the dislocation density can be reduced and the quality of the single crystal can be improved.

なお、上記の例は1重ルツボを用いたCZ法に本発明を
適用した例であったが、第4図に示すように2重ルツボ
に適用することも可能である。符号10はルツボ1内に同
軸に直立固定された円筒形の仕切りであり、この仕切り
10の下端には内外を連通する連通孔11が形成されてい
る。この仕切り10は、少なくともその内壁面が前記同様
の原料融液Yと濡れない材料により構成されていればよ
い。また、仕切り10の内側(および外側)の原料融液Y
上にB2O3等の液体封止材を浮かべ、LEC法を適用しても
よい。
Although the above example is an example in which the present invention is applied to the CZ method using a single crucible, it can be applied to a double crucible as shown in FIG. Reference numeral 10 denotes a cylindrical partition fixed upright coaxially in the crucible 1.
A communication hole 11 is formed at the lower end of the communication hole 10 for communication between the inside and the outside. The partition 10 only needs to be made of a material that at least has an inner wall surface that does not get wet with the raw material melt Y as described above. The raw material melt Y inside (and outside) the partition 10
A LEC method may be applied by floating a liquid sealing material such as B 2 O 3 thereon.

このような2重ルツボを用いた場合にも、前記式,
,を満たすように各寸法を設定することにより、メ
ニスカスMの形状を安定化させ、単結晶Tの直胴部の直
径変動を防いで、くびれが少なく円筒度の高い単結晶を
育成することができる。
Even when such a double crucible is used, the above equation,
By setting the dimensions so as to satisfy the above conditions, the shape of the meniscus M can be stabilized, the diameter of the straight body of the single crystal T can be prevented from fluctuating, and a single crystal with less constriction and high cylindricity can be grown. it can.

また、この方法では、1重ルツボに比してルツボ1の
容量を大きくできるので、より長尺の単結晶が得られる
利点を有するうえ、仕切り10とルツボ1内壁との間に連
続的に多結晶原料を供給することもでき、そうすればバ
ッチ式に比してより長尺の単結晶を製造することが可能
である。
Further, in this method, the capacity of the crucible 1 can be increased as compared with a single crucible, so that there is an advantage that a longer single crystal can be obtained, and moreover, a large number of continuous single crystals can be continuously provided between the partition 10 and the inner wall of the crucible 1. A crystal raw material can be supplied, so that a longer single crystal can be produced as compared with a batch type.

「実施例」 以下、実施例を挙げて本発明の効果を実証する。"Examples" Hereinafter, the effects of the present invention will be demonstrated with reference to examples.

(実施例1) 内径85.1mmのpBN製ツルボを使用し、気密容器内にお
いてヒ素蒸気圧1atmの雰囲気下で1600gのGaAs融液をル
ツボ内に生成し、固液界面での鉛直方向の温度勾配を8
℃/cm、結晶回転5rpm、ルツボ回転5rpm、引き上げ速度5
mm/hの条件で5回の結晶成長を行なった。
(Example 1) Using a pBN crucible having an inner diameter of 85.1 mm, 1600 g of GaAs melt was generated in a crucible under an atmosphere of arsenic vapor pressure of 1 atm in an airtight container, and a vertical temperature gradient at a solid-liquid interface was generated. 8
° C / cm, crystal rotation 5rpm, crucible rotation 5rpm, pulling speed 5
Crystal growth was performed five times under the condition of mm / h.

その結果、平均結晶径71.8mm、径変動1.0mm、転位密
度3×103cm-2の良好な単結晶が得られた。
As a result, a good single crystal having an average crystal diameter of 71.8 mm, a diameter variation of 1.0 mm, and a dislocation density of 3 × 10 3 cm −2 was obtained.

(実施例2) 内径99.0mmのpBN製ルツボを使用し、アルゴン圧5atm
の雰囲気下で2600gのGaAs融液をルツボ内に生成し、固
液界面での鉛直方向の温度勾配を12℃/cm、結晶回転5rp
m、ルツボ回転5rpm、引き上げ速度5mm/hの条件で3回の
LEC法による結晶成長を行なった。なお、液体封止材と
してはB2O3を300g使用した。
(Example 2) Using a pBN crucible having an inner diameter of 99.0 mm, an argon pressure of 5 atm
2600g of GaAs melt is generated in the crucible under the atmosphere of the above, the vertical temperature gradient at the solid-liquid interface is 12 ° C / cm, and the crystal rotation is 5rp.
m, crucible rotation 5rpm, lifting speed 5mm / h
Crystal growth by LEC method was performed. Note that 300 g of B 2 O 3 was used as a liquid sealing material.

その結果、平均結晶径85.6mm、径変動1.4mm、転位密
度1×104cm-2の良好な単結晶が得られた。
As a result, a good single crystal having an average crystal diameter of 85.6 mm, a diameter variation of 1.4 mm, and a dislocation density of 1 × 10 4 cm −2 was obtained.

(実施例3) 内径122.4mmのpBN製ルツボを使用し、アルゴン圧5atm
の雰囲気下で5000gのGaAs融液をルツボ内に生成し、固
液界面での鉛直方向の温度勾配を12℃/cm、結晶回転5rp
m、ルツボ回転5rpm、引き上げ速度5mm/hの条件で6回の
LEC法による結晶成長を行なった。なお、液体封止材と
してはB2O3を600g使用した。
(Example 3) Using a pBN crucible having an inner diameter of 122.4 mm, using an argon pressure of 5 atm
5,000 g of GaAs melt in a crucible under an atmosphere of 12 ° C, a vertical temperature gradient at the solid-liquid interface of 12 ° C / cm, and a crystal rotation of 5 rp
m, crucible rotation 5rpm, lifting speed 5mm / h 6 times
Crystal growth by LEC method was performed. Note that 600 g of B 2 O 3 was used as a liquid sealing material.

その結果、平均結晶径108.8mm、径変動1.4mmとなり、
転位密度2×104cm-2の良好な単結晶が得られた。
As a result, the average crystal diameter was 108.8 mm, the diameter variation was 1.4 mm,
A good single crystal having a dislocation density of 2 × 10 4 cm −2 was obtained.

(実施例4) 内径65.0mmのグラファイト製ルツボを使用し、アルゴ
ン圧8torrの雰囲気下で7000gのCu融液をルツボ内に生成
し、固液界面での固液界面に垂直な方向の温度勾配を10
0℃/cm、結晶回転15rpm、ルツボ回転15rpm、引き上げ速
度2mm/minにて2回の結晶成長を行なった。
(Example 4) Using a graphite crucible having an inner diameter of 65.0 mm, 7000 g of a Cu melt was generated in the crucible under an atmosphere of argon pressure of 8 torr, and a temperature gradient in a direction perpendicular to the solid-liquid interface at the solid-liquid interface. To 10
Crystal growth was performed twice at 0 ° C./cm, crystal rotation at 15 rpm, crucible rotation at 15 rpm, and pulling rate of 2 mm / min.

その結果、平均結晶径50.2mm、径変動0.9mmの良好な
単結晶が得られた。
As a result, a good single crystal having an average crystal diameter of 50.2 mm and a diameter variation of 0.9 mm was obtained.

(実施例5) 内径122mmの石英製ルツボの内部に、石英製で内径65m
mの円筒形仕切りを固定し、気密容器内においてアルゴ
ン圧5atmの雰囲気下で1500gのGaAs融液をルツボ内に生
成し、固液界面での鉛直方向の温度勾配を12℃/cm、結
晶回転5rpm、ルツボ回転5rpm、引き上げ速度5mm/hの条
件で3回の結晶成長を行なった。
(Example 5) Inside a quartz crucible having an inner diameter of 122 mm, a quartz inner diameter of 65 m
A cylindrical partition of m is fixed, and 1500 g of GaAs melt is generated in a crucible under an atmosphere of 5 atm of argon pressure in an airtight container, and the vertical temperature gradient at the solid-liquid interface is 12 ° C / cm, and the crystal is rotated. Crystal growth was performed three times under the conditions of 5 rpm, crucible rotation of 5 rpm, and pulling speed of 5 mm / h.

その結果、平均結晶径52.0mm、径変動0.95mm、転位密
度3×103cm-2の良好な単結晶が得られた。
As a result, a good single crystal having an average crystal diameter of 52.0 mm, a diameter variation of 0.95 mm, and a dislocation density of 3 × 10 3 cm −2 was obtained.

(比較例1) 内径85.1mmのpBN製ルツボを使用し、ヒ素蒸気圧1atm
の雰囲気下で1600gのGaAs融液をルツボ内に生成し、固
液界面に垂直な方向の温度勾配を8℃/cm、結晶回転5rp
m、ルツボ回転5rpm、引き上げ速度5mm/hの条件で2回の
結晶成長を行なった。
(Comparative Example 1) Arsenic vapor pressure 1 atm using a pBN crucible with an inner diameter of 85.1 mm
A 1600 g GaAs melt is generated in a crucible under an atmosphere of a temperature of 8 ° C./cm in a direction perpendicular to the solid-liquid interface, and a crystal rotation of 5 rp
Crystal growth was performed twice under the conditions of m, crucible rotation of 5 rpm, and pulling speed of 5 mm / h.

その結果、平均結晶径81.1mm、径変動2.2mmとなった
が、2回とも育成中に結晶がルツボに接触して双晶が発
生し、単結晶は得られなかった。
As a result, the average crystal diameter was 81.1 mm, and the diameter variation was 2.2 mm. However, during both growths, the crystals came into contact with the crucible and twins were generated, and no single crystal was obtained.

(比較例2) 内径122.4mmのpBN製ルツボを使用し、アルゴン圧5atm
の雰囲気下で3000gのGaAs融液をルツボ内に生成し、固
液界面において鉛直方向の温度勾配を12℃/cm、結晶回
転5rpm、ルツボ回転5rpm、引き上げ速度5mm/hの条件で
手動制御により目標結晶径85mmとして10回のLEC法によ
る結晶成長を行なった。液体封止材としてはB2O3を600g
を使用した。
(Comparative Example 2) Using a pBN crucible having an inner diameter of 122.4 mm, using an argon pressure of 5 atm
3,000 g of GaAs melt is generated in the crucible under the atmosphere of the above, and the temperature gradient in the vertical direction at the solid-liquid interface is 12 ° C / cm, the crystal rotation is 5 rpm, the crucible rotation is 5 rpm, and the pulling speed is 5 mm / h. The crystal growth by LEC method was performed 10 times with the target crystal diameter of 85 mm. 600 g of B 2 O 3 as liquid sealing material
It was used.

その結果、平均結晶径86.5mm、径変動7.1mmとなり、
収率が悪かった。また転位密度は3×104cm-2であっ
た。
As a result, the average crystal diameter was 86.5 mm, the diameter variation was 7.1 mm,
The yield was poor. The dislocation density was 3 × 10 4 cm −2 .

(比較例3) 内径122.4mmのpBN製ルツボを使用し、アルゴン圧5atm
の雰囲気下で3000gのGaAs融液をルツボ内に生成し、固
液界面での鉛直方向の温度勾配を15℃/cm、結晶回転5rp
m、ルツボ回転5rpm、引き上げ速度5mm/hの条件で自動制
御により目標結晶径85mmとして7回のLEC法による結晶
成長を行なった。液体封止材としてはB2O3を600gを使用
した。
(Comparative Example 3) Using a pBN crucible having an inner diameter of 122.4 mm, an argon pressure of 5 atm
In a crucible, 3000 g of GaAs melt is generated in a crucible under an atmosphere of 15 ° C / cm in the vertical temperature gradient at the solid-liquid interface, and a crystal rotation of 5 rp.
Under the conditions of m, crucible rotation of 5 rpm, and pulling speed of 5 mm / h, crystal growth was performed seven times by the LEC method with a target crystal diameter of 85 mm by automatic control. As a liquid sealing material, 600 g of B 2 O 3 was used.

その結果、平均結晶径83.2mm、径変動3.9mmとなり、
収率が悪かった。また転位密度は5×104cm-2だった。
As a result, the average crystal diameter was 83.2 mm, the diameter variation was 3.9 mm,
The yield was poor. The dislocation density was 5 × 10 4 cm −2 .

(比較例4) 内径155.0mmのpBN製ルツボを使用し、アルゴン圧5atm
の雰囲気下で5000gのGaAs融液をルツボ内に生成し、固
液界面での鉛直方向の温度勾配を15℃/cm、結晶回転5rp
m、ルツボ回転5rpm、引き上げ速度5mm/hの条件で自動制
御により目標結晶径105mmとして2回のLEC法による結晶
成長を行なった。液体封止材としてはB2O3を600gを使用
した。
(Comparative Example 4) Using a pBN crucible having an inner diameter of 155.0 mm, using an argon pressure of 5 atm
5,000 g of GaAs melt is generated in a crucible under the above atmosphere, the vertical temperature gradient at the solid-liquid interface is 15 ° C / cm, and the crystal rotation is 5 rp.
Under the conditions of m, crucible rotation of 5 rpm, and pulling speed of 5 mm / h, crystal growth was performed twice by the LEC method with a target crystal diameter of 105 mm by automatic control. As a liquid sealing material, 600 g of B 2 O 3 was used.

その結果、平均結晶径105.1mm、径変動5.6mmとなり、
収率が悪かった。また転位密度は5×104cm-2であっ
た。
As a result, the average crystal diameter was 105.1 mm, the diameter variation was 5.6 mm,
The yield was poor. The dislocation density was 5 × 10 4 cm −2 .

なお、上記実施例では各比較例に比して、得られた単
結晶の転位密度が低下しているが、これは比較例に比べ
て固液界面における温度勾配が低下できたためであると
考えられる。
In the above example, the dislocation density of the obtained single crystal was lower than that of each comparative example, which is considered to be because the temperature gradient at the solid-liquid interface could be reduced as compared with the comparative example. Can be

上記実験の結果をまとめて第1表に示す。なお、表中
「実1〜5」は実施例、「比1〜4」は比較例を示す。
また「内径」はルツボ内径(実施例5では仕切りの内
径)、「結晶径」は結晶の平均直径をそれぞれ示してい
る。
Table 1 summarizes the results of the above experiments. In the table, “Examples 1 to 5” indicate Examples and “Ratios 1 to 4” indicate Comparative Examples.
The “inner diameter” indicates the inner diameter of the crucible (inner diameter of the partition in Example 5), and the “crystal diameter” indicates the average diameter of the crystal.

「発明の効果」 以上説明したように、本発明に係わる単結晶育成方法
によれば、育成につれて単結晶が拡径しようとする力
と、メニスカスのルツボに接する部分に働く表面張力に
よる反発力とを平衡させることにより、メニスカス形状
を安定化させ、単結晶の直胴部の外径の変動を防いで、
くびれが少なく円筒度の高い単結晶を育成することが可
能である。また、コラクルの遊動による双晶発生のおそ
れもない。さらに、単結晶のくびれ発生や円筒度低下を
防ぐことができる分、固液界面にける温度勾配を低下
し、転位密度を低下して単結晶の品質向上が図れる。
[Effects of the Invention] As described above, according to the method for growing a single crystal according to the present invention, the force of expanding the single crystal as it grows, and the repulsive force due to surface tension acting on the portion of the meniscus in contact with the crucible, By stabilizing the meniscus shape by preventing the fluctuation of the outer diameter of the straight body of the single crystal,
It is possible to grow a single crystal with little constriction and high cylindricity. In addition, there is no possibility of twin formation due to floating of the collages. Furthermore, since the occurrence of necking and lowering of cylindricity of the single crystal can be prevented, the temperature gradient at the solid-liquid interface is reduced, the dislocation density is reduced, and the quality of the single crystal can be improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図および第2図は本発明に係わる単結晶育成方法の
一例を説明するための縦断面図、第3図はこの方法の効
果を示すグラフ、第4図は本発明の他の例を説明するた
めの縦断面図である。また、第5図は従来の単結晶育成
方法の問題点を示す縦断面図である。 1……ルツボ、2……サセプタ、5……種結晶、6……
引き上げ機構、T……単結晶、Y……原料融液、M……
メニスカス、R……単結晶の半径、G……単結晶とルツ
ボとの距離、H……仮想水平面からの固液界面の高さ、
α……固液界面において単結晶外周面と水平面とがなす
角度、10……仕切り、11……連通孔。
1 and 2 are longitudinal sectional views for explaining one example of a method for growing a single crystal according to the present invention, FIG. 3 is a graph showing the effect of this method, and FIG. 4 is another example of the present invention. It is a longitudinal cross-sectional view for explaining. FIG. 5 is a longitudinal sectional view showing a problem of the conventional single crystal growing method. 1 ... crucible, 2 ... susceptor, 5 ... seed crystal, 6 ...
Pulling mechanism, T: Single crystal, Y: Raw material melt, M:
Meniscus, R: radius of single crystal, G: distance between single crystal and crucible, H: height of solid-liquid interface from virtual horizontal plane,
α: angle between the outer peripheral surface of the single crystal and the horizontal plane at the solid-liquid interface, 10: partition, 11: communication hole.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内田 信之 埼玉県大宮市北袋町1丁目297番地 三 菱金属株式会社化合物半導体センター内 (72)発明者 大村 泰三 埼玉県大宮市北袋町1丁目297番地 三 菱金属株式会社化合物半導体センター内 (56)参考文献 特開 昭61−122187(JP,A) J.Appl.Phys.,25 (1954),p.668 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Nobuyuki Uchida 1-297 Kitabukurocho, Omiya City, Saitama Prefecture Inside Compound Semiconductor Center, Mitsui Kinzoku Co., Ltd. (72) Taizo Omura 1-297 Kitabukurocho, Omiya City, Saitama Prefecture (56) References JP-A-61-122187 (JP, A) Appl. Phys. , 25 (1954), p. 668

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】円筒状の周壁部を有する原料融液容器内に
保持した原料融液に種結晶を浸漬し、前記周壁部と同軸
に種結晶を引き上げる単結晶育成方法において、 前記原料融液容器の少なくとも周壁部の内壁面を前記原
料融液で濡れない材料により構成し、 この内壁面と単結晶の外周面との距離をG(cm)、単結
晶の半径をR(cm)、原料融液の表面張力をσ(dyn/c
m)、原料融液の密度をρm(g/cm3)、雰囲気ガスの密
度をρf(g/cm3)、重力加速度をg(cm/s2)とした場
合に、 A={2σ/(ρm−ρf)g}0.5 H=A{1+(A/4R)20.5−A2/4R で表されるHおよび前記Gが 0.75≦G/H≦2 の条件を満たすようにするとともに、 原料融液表面の温度分布を制御することにより、前記内
壁面と単結晶との間のメニスカス形状を平衡に保ち、単
結晶の外径制御を行なうことを特徴とする単結晶育成方
法。
1. A method for growing a single crystal, wherein a seed crystal is immersed in a raw material melt held in a raw material melt container having a cylindrical peripheral wall portion and the seed crystal is pulled up coaxially with the peripheral wall portion. At least the inner wall surface of the peripheral wall of the container is made of a material that is not wet with the raw material melt, the distance between the inner wall surface and the outer peripheral surface of the single crystal is G (cm), the radius of the single crystal is R (cm), Let the surface tension of the melt be σ (dyn / c
m), the density of the raw material melt is ρm (g / cm 3 ), the density of the atmosphere gas is ρf (g / cm 3 ), and the gravitational acceleration is g (cm / s 2 ). (Ρm−ρf) g} 0.5 H = A {1+ (A / 4R) 20.5− A 2 / 4R H and G are set to satisfy the condition of 0.75 ≦ G / H ≦ 2. A method for growing a single crystal, comprising controlling the temperature distribution on the surface of a raw material melt to maintain the meniscus shape between the inner wall surface and the single crystal in equilibrium, and controlling the outer diameter of the single crystal.
【請求項2】原料融液容器内に融液連通部を有する円筒
状の仕切りを設け、この仕切りの内側で原料融液に種結
晶を浸漬し、仕切りと同軸に単結晶を引き上げる単結晶
育成方法において、 前記仕切りの少なくとも内壁面を前記原料融液で濡れな
い材料により構成し、 この内壁面と単結晶の外周面との距離をG(cm)、単結
晶の半径をR(cm)、原料融液の表面張力をσ(dyn/c
m)、原料融液の密度をρm(g/cm3)、雰囲気ガスの密
度をρf(g/cm3)、重力加速度をg(cm/s2)とした場
合に、 A={2σ/(ρm−ρf)g}0.5 H=A{1+(A/4R)20.5−A2/4R で表されるHおよび前記Gが 0.75≦G/H≦2 の条件を満たすようにするとともに、 原料融液表面の温度分布を制御することにより、前記内
壁面と単結晶との間のメニスカス形状を平衡に保ち、単
結晶の外径制御を行なうことを特徴とする単結晶育成方
法。
2. A single crystal growing method comprising the steps of: providing a cylindrical partition having a melt communication portion in a raw material melt container; immersing a seed crystal in the raw material melt inside the partition; and pulling a single crystal coaxially with the partition. In the method, at least the inner wall surface of the partition is made of a material that is not wet with the raw material melt, the distance between the inner wall surface and the outer peripheral surface of the single crystal is G (cm), the radius of the single crystal is R (cm), Let the surface tension of the raw material melt be σ (dyn / c
m), the density of the raw material melt is ρm (g / cm 3 ), the density of the atmosphere gas is ρf (g / cm 3 ), and the gravitational acceleration is g (cm / s 2 ). (Ρm−ρf) g} 0.5 H = A {1+ (A / 4R) 20.5− A 2 / 4R H and the above G should satisfy the condition of 0.75 ≦ G / H ≦ 2. A method for growing a single crystal, comprising controlling the temperature distribution on the surface of a raw material melt to maintain the meniscus shape between the inner wall surface and the single crystal in equilibrium and controlling the outer diameter of the single crystal.
【請求項3】前記原料融液容器内の原料融液の表面に液
体封止材を浮かべ、前記ρf(g/cm3)として、雰囲気
ガスの密度の代わりに前記液体封止材の密度を用いる請
求項1または請求項2に記載の単結晶育成方法。
3. A liquid sealing material is floated on the surface of the raw material melt in the raw material melt container, and the density of the liquid sealing material is set as ρf (g / cm 3 ) instead of the density of the atmosphere gas. The method for growing a single crystal according to claim 1 or 2, which is used.
【請求項4】前記原料としてGaAsを使用し、前記Gを3.
5〜10mmとすることを特徴とする請求項1乃至請求項3
のいずれか1項に記載の単結晶育成方法。
4. The method according to claim 1, wherein GaAs is used as said raw material and said G is 3.
4. The method according to claim 1, wherein the distance is 5 to 10 mm.
The method for growing a single crystal according to any one of the above.
JP1171438A 1989-04-10 1989-07-03 Single crystal growth method Expired - Lifetime JP2707736B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US07/490,931 US5078830A (en) 1989-04-10 1990-03-09 Method for growing single crystal
CA002012323A CA2012323A1 (en) 1989-04-10 1990-03-15 Method for growing single crystal
EP90104923A EP0392210B1 (en) 1989-04-10 1990-03-15 Method for growing single crystal
DE69009831T DE69009831T2 (en) 1989-04-10 1990-03-15 Method of growing a single crystal.
KR1019900004827A KR960009701B1 (en) 1989-04-10 1990-04-09 Method for growing single crystal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1-90427 1989-04-10
JP9042789 1989-04-10

Publications (2)

Publication Number Publication Date
JPH0350180A JPH0350180A (en) 1991-03-04
JP2707736B2 true JP2707736B2 (en) 1998-02-04

Family

ID=13998306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1171438A Expired - Lifetime JP2707736B2 (en) 1989-04-10 1989-07-03 Single crystal growth method

Country Status (2)

Country Link
JP (1) JP2707736B2 (en)
KR (1) KR960009701B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100381662B1 (en) * 2000-07-05 2003-04-23 윤남중 Door check
US7147894B2 (en) * 2002-03-25 2006-12-12 The University Of North Carolina At Chapel Hill Method for assembling nano objects
CN102007346B (en) 2008-04-16 2014-02-26 三菱电机株式会社 Heat exchanging ventilating apparatus
CN103562443B (en) 2011-03-23 2016-05-18 丰田自动车株式会社 The manufacture method of SiC monocrystalline and manufacturing installation

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61122187A (en) * 1984-11-20 1986-06-10 Toshiba Mach Co Ltd Apparatus for pulling up single crystal

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J.Appl.Phys.,25(1954),p.668

Also Published As

Publication number Publication date
KR900016509A (en) 1990-11-13
JPH0350180A (en) 1991-03-04
KR960009701B1 (en) 1996-07-23

Similar Documents

Publication Publication Date Title
EP0219966B1 (en) Process for pulling a crystal
JP2707736B2 (en) Single crystal growth method
JP2937115B2 (en) Single crystal pulling method
JP3533416B2 (en) Single crystal pulling device
US5078830A (en) Method for growing single crystal
JP4013324B2 (en) Single crystal growth method
JPH0543379A (en) Production of silicon single crystal
JP2800713B2 (en) Method for manufacturing compound semiconductor single crystal
US5873938A (en) Single crystal pulling apparatus
JP3885245B2 (en) Single crystal pulling method
JPH07277875A (en) Method for growing crystal
JP3521862B2 (en) Single crystal growth method
JP2940461B2 (en) Single crystal growth method
JP2990661B2 (en) Single crystal growth method
JPH07330482A (en) Method and apparatus for growing single crystal
JP3473477B2 (en) Method for producing silicon single crystal
JPH0543381A (en) Apparatus for growing single crystal by molten layer process and method for controlling oxygen concentration in single crystal using the apparatus
JP2531875B2 (en) Method for producing compound semiconductor single crystal
US6171392B1 (en) Method for producing silicon single crystal
JPS61266389A (en) Double crucible for making impurity in crystal uniform
JPH03261694A (en) Pull method for single crystal and system therefor
JPH09278582A (en) Production of single crystal and apparatus therefor
JPS60122791A (en) Pulling up method of crystal under liquid sealing
JP3938674B2 (en) Method for producing compound semiconductor single crystal
JPH05105585A (en) Method for growing compound semiconductor single crystal and device therefor