JP2705694B2 - Projection optical device - Google Patents

Projection optical device

Info

Publication number
JP2705694B2
JP2705694B2 JP8205566A JP20556696A JP2705694B2 JP 2705694 B2 JP2705694 B2 JP 2705694B2 JP 8205566 A JP8205566 A JP 8205566A JP 20556696 A JP20556696 A JP 20556696A JP 2705694 B2 JP2705694 B2 JP 2705694B2
Authority
JP
Japan
Prior art keywords
projection optical
optical system
change
light
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8205566A
Other languages
Japanese (ja)
Other versions
JPH097943A (en
Inventor
哲夫 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP8205566A priority Critical patent/JP2705694B2/en
Publication of JPH097943A publication Critical patent/JPH097943A/en
Application granted granted Critical
Publication of JP2705694B2 publication Critical patent/JP2705694B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70883Environment aspects, e.g. pressure of beam-path gas, temperature of optical system
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70883Environment aspects, e.g. pressure of beam-path gas, temperature of optical system
    • G03F7/70891Temperature

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Lasers (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、集積回路製造に用
いられる露光装置で、特に露光用光源に狭帯化レーザを
用いた投影光学装置の結像特性の向上に関するものであ
る。 【0002】 【従来の技術】結像特性を変化させる要因(大気圧、温
度、露光光の照明等)を測定し、それに基いて結像特性
を補正する技術としては、例えば特開昭58−1862
号公報に開示されているように、投影レンズ内のー部の
レンズ間隔を密封し、その空気圧力を調整することによ
り、倍率、焦点位置等の結像特性を補正する方法が知ら
れている。 【0003】また、上記要因のうち大気圧の変化による
焦点変動を補正する方法としては、特開昭61−188
928号公報に示されているように斜入射光式焦点検出
系に大気圧変化に応じたオフセットを加えていく方式も
知られている。 【0004】 【発明が解決しようとする問題点】上記の従来の技術で
は、結像特性を変動させる要因としては、主に投影レン
ズに影響を及ぼすものとして大気圧、チャンバー内の温
度変化、投影レンズの露光光源の吸収等が考えられてい
た。一方、微細化するパターンに対応して、照明用光源
の短波長化が計られ、近年紫外域でパワーのあるエキシ
マレーザを光源とする投影光学装置が開発されている。
投影レンズがこのエキシマレーザ光の吸収により投影レ
ンズ自体の光学特性(具体的には、投影レンズ自体の倍
率、焦点位置等)に無視しえない変動を生ずるため、投
影レンズ自体の光学特性の変動分を補正する必要もあ
る。 【0005】上記の従来技術では、これらの点が考慮さ
れていないため、露光用のエキシマレーザ光の吸収によ
る投影光学系の光学特性の変動分を補正できないという
問題点があった。さらに、エキシマレーザ光のパルス光
毎に光量むら(±5%程度)があるため、エキシマレー
ザ光の吸収による投影レンズの光学特性変動を正確に測
定できなかった。 【0006】 【問題点を解決するための手段】上記問題点の解決の為
に本発明の投影光学装置は、パルスレーザ光を射出する
光源部と該パルスレーザ光の波長特性を調整してマスク
Rを照明するためのパルス照明光を生成する波長制御部
とを含むレーザ照明手段1; 投影光学系6通るパルス
照明光に応じた積算光量を所定のタイミング毎に検出す
るために、パルス照明光のー部を検出するフォトディテ
クタと; 該検出された積算光量に基づいて投影光学系
6の光学特性の変化を計算し、照明光吸収によって生じ
る投影光学系6の光学特性の変動分に対応した結像状態
の変化を補正する補正手段12とを備えている。 【0007】 【作用】本発明は、フォトディテクタが所定のタイミン
グ毎にパルスレーザ光の積算光量を測定するために、パ
ルスレーザ光の各パルス毎の光量むらの影響を受けず、
投影レンズの照明光吸収による光学特性変動を測定でき
る。そのため、光量むらの影響のない光学特性の変動分
に対応した結像状態の変化を、補正手段によって補正す
ることができる。光量むらの影響を受けた値から光学特
性変動分に対応した結像状態に基づき補正していたので
は投影レンズのピントずれ又は倍率変化を正確に補正で
きないが、本件発明は積算光量を測定することによって
この点を解消し、常に最良の状態で安定した投影露光が
できるようにしたものである。 【0008】 【発明の実施の形態】第1図は本発明の実施例によるレ
ーザ光を用いた投影露光装置の構成を示す図である。露
光用の光源として狭帯化されたレーザ光源1を用いる。
レーザ光源1の内部には波長狭帯化用の光学素子22が
含まれている。レーザ光源1から射出したレーザ光はシ
ャッター2を通過した後、光強度を一様化する照明光学
系3に入射する。照明光学系3を射出したー様強度のレ
ーザ光はミラー4で折り曲げられ、コンデンサーレンズ
5を通過後、石英等により作られたレチクルRを照射す
る。レチクルRの下面には回路パターンPTが形成さ
れ、このパターンPTを通過した照明光は石英等により
作られた投影レンズ6を通ってウェハWに達する。投影
レンズ6は所定の結像特性でパターンPTの像をウェハ
W上に結像する。このウェハWはウェハチャック7上に
真空吸着され、ウェハチャック7は水平方向(X、Y方
向)及び垂直方向(投影レンズ6の光軸AXに沿った方
向)へ移動可能なウェハステージ8上に設けられてい
る。ウェハWの垂直方向の移動はオートフォーカスのた
めに行なわれ、モータ15により駆動制御される。また
ウェハステージ8(ウェハW)の水平方向の座標位置は
レーザ光波干渉式側長器(以下干渉計とする)16によ
って検出される。 【0009】さて本実施例では結像特性として投影レン
ズ6の倍率と焦点位置とを考える。そして結像特性の変
動補正方法としては、先に掲げた特開昭58−1862
号公報、特開昭61−183928号公報に開示された
技術と同じ方法を探るものとする。従って本実施例で
は、倍率補正機構として投影レンズ6中の選択された空
気室12内の圧力を圧力調整器11により適宜調整する
構成を設ける。空気室12は倍率補正に通した2枚もし
くはそれ以上のレンズ素子の間隔を密封したもので、投
影レンズ6のレンズ構成、光学的なタイプによって、最
適な場所が選ばれる。空気室12の圧力を変えると、空
気間隔のインデックスが微小量変化するため、投影レン
ズ全体としての倍率が微小変化する。このような圧力制
御の場合、焦点位置(最良精援面〕の変化も起り得る
が、複数の空気室を選択的に組み合わせて1つの密封さ
れた制御空間を作ることによって、圧力制御時の焦点位
置の変化を小さく押え、適当な倍率変化量を得ることが
できる。 【0010】圧力調整器11は空気室12の圧力がコン
トローラ9から指示された圧力値を保つように制御する
ものであり、例えば特開昭60−239023号公報に
開示されているようなべローズポンプと電磁弁とを組み
合わせたもので構成される。一方、焦点位置の補正機構
としては、投影レンズ6とウェハWの距離をー定に保つ
機構にオフセットを持たせる構成を設ける。まず投影レ
ンズ6とウェハWの距離をー定に保つ機構を以下に説明
する。LBD、集光レンズ等からなる投光器13よりウ
ェハWに斜めに結像光線を入射し、SPD、集光レンズ
等からなる受光器14によりウェハWからの反射光を受
ける。ウェハWが光軸AX方向の所定位置からずれてい
る場合、反射光がシフトし、ずれ量を検出することがで
きる。ずれ量の信号はコントローラ9に送られ、コント
ローラ9はウェハWが所定位置に来るまで、ウェハステ
ージ8を光軸方向へ駆動するモーター15に信号を送
り、常に投影レンズ6とウェハWの間隔を一定に保つ。
このような構成においてオフセットを与えるには、反射
光の光路を光学素子(平行平板ガラス)によりシフトさ
せるか、ずれ量の信号に電気的にオフセットを加える等
の方法で実現できる。このように焦点位置の補正を空気
室の圧力調整によらず、焦点検出系の方に検出位置がオ
フセットするような補正を加えるようにしたのは、ウェ
ハステージ8の光軸AX方向のストロークが圧力制御に
より後面をシフトさせる場合にくらべて小さいこと、ウ
ェハの厚みむら、ウェハ内のそりやうねりによるフラッ
トネスの程度等を考慮したからである。 【0011】ところで第1図のレーザ光源1は、通常第
2図に示すように波長補正機格を有している。レーザチ
ューブ20の両端側には反射鏡21、23が配置され、
反射鏡23からレーザ光が射出される。レーザチューブ
20と反射鏡21との間には、狭帯化素子としてエタロ
ン(間隔可変の2枚の平行平板ガラス)22が設けられ
ている。そして反射鏡23から射出したレーザ光のー部
はビームスブリッター24で取り出され、波長測定用の
エタロン(間隔固定の2枚の平行平板ガラス)25に入
射し、フォトダイオードアレ一等のディテクター26で
受光される。ディテクター26の受光面にはエタロン2
5によって生じた干渉縞形成され、ディテクター26は
干渉縞が所定の状態からずれると、そのずれを波長の設
定値からの変化(シフト)として検出する。ディテクタ
ー26によって検出されたずれ量はコントローラ27に
出力され、コントローラ27は、そのすれ量がほぼ零に
補正されるようにエタロン22の間隔(もしくはレーザ
光束に対する傾き)を調整する。 【0012】これによって反射鏡23から取り出される
レーザ光の波長はー定値に制御される訳である。ところ
でエタロン25は通常大気中に置かれ、空気の屈折率が
変化(すなわち大気圧が変化)すると、エタロン内の空
気間隔の光路長が微小に変化し、測定波長が真の値(真
空中の絶対波長)から変化することになる。このためエ
タロン22もずれて制御され、エタロン25の大気圧変
化に応じた測定ずれ分だけ出力波長(真空中の絶対波
長〕がずれることになる。もちろん、狭帯化用のエタロ
ン22が大気中にある場合も空気の屈折率の影響を受け
るため、全く同様に波長ずれが生じる。このことは波長
補正機構の持たないレーザ光源では、大気圧変化による
波長シフトの主原因となる。 【0013】空気の屈折率は気圧と気温の関数で決ま
り、この種の装置が設置される大気圧範囲、チャンバー
温度範囲では、それぞれ比例関係にあると考えてよい。
そこで本実施例では第1図に示すようにエタロン22、
25付近の大気圧と気温を測定器10により測定し、そ
の結果をコントローラ9に送り、倍率補正機構、焦点位
置補正機構を補正するようにした。 【0014】次に本実施例の動作について説明する。コ
ントローラ9は、レーザ光の波長変化に対する倍率及び
焦点位置の変化率(変化特性)を、実験もしくはシミュ
レーソョン計算等で求め、内部のメモリに記憶させてい
る。従ってコントローラ9は測定器10からの測定信号
(環境情報)に基づいて投影レンズ6を通るレーザ光の
波長変動量を算出しメモリに記憶された変化率に基いて
倍率、焦点位置の補正量(変化量)を算出する。尚、波
長変化に対する倍率、焦点位置の変化が比例関係にある
と考えられる場合、メモリに記憶する変化特性は比例定
数のみとなり、比例関係にない場合は、変化特性のテー
ブル又は関数式等の形で記憶される。さて、倍率変化に
対する補正量が算出されると、コントローラ9は圧力調
整器11に補正値(目標圧力値)を出力する。倍率は空
気室12の内部圧力と外気の圧力との差圧に比例するこ
とから、圧力調整器11は倍率変化を打ち消すような差
圧が生じるように空気室12の圧力を制御する。 【0015】この内部圧力と外気圧との差圧に比例する
定数も、あらかじめ求められてコントローラ9の内部に
記憶されている。もちろん、この関係が比例しないもの
であれば、適当な関数による近似又はテーブルを用意し
ておけばよい。一方、焦点位置補正に関しては、同様に
コントローラ9によって焦点変動量が算出され、この焦
点変動にウェハWの表面が追従するようなオフセット信
号を受光器14に出力する。すなわち斜入射光式位置検
出系によって合焦点と検出される高さ位置を、測定器1
0からの測定信号に基いて順次オフセットさせてやる。
以上の方式により、波長変動に対する結像特性(倍率、
焦点位置)の変動を補正することができる。 【0016】以上の実施例では、結像特性を悪化させる
原因として波長変動のみを考えたが、本来、補正機構は
投影レンズ自体の光学特性の変動を補正するために考え
られたものであり、実際は、波長変動に対する補正と投
影レンズの光学特性に対する補正とは併用して行なわれ
る。投影レンズの光学特性の補正を簡単に以下に説明す
る。光学特性変動の要因としては、大気圧、気温、照明
光の吸収等が考えられる。大気圧、気温に関しては波長
変動の場合と同様に、変動と比例関係にあると考えて光
学特性の変動を算出する。照明光の吸収に関しては、例
えば特開昭60−78454号公報に開示されているよ
うに投影レンズの照明光吸収特性をあらかじめ求め、シ
ャッターの開閉情報等により吸収量を算出し変動量を求
める。以上により求めた変動量の代数和が総変動量であ
る。これに、前記の波長変動による変動量をさらに加
え、その量を前記の波長変動で述べたと同様に補正をし
てやれば波長変動補正と投影レンズの光学特性補正が行
なえる。大気圧、気温に関しては、比例定数を実験的に
求める場合、変動は波長変動によるものと、投影レンズ
の光学特性変動によるものの和があらわれるため、両者
合わせた比例定数がはじめから求まり、これを使えばよ
い。 【0017】本実施例では、狭帯化の光学素子としてエ
タロンを例に挙げたが、他にもグレーディング、プリズ
ム等が考えられる。これらについても本実施例と全く同
様に考えることができる。また、本実施例では、波長変
動の要因として気圧と気温を考えたが、他にも変動要因
として狭帯化用光学素子(又は波長測定素子)の温度、
空気の温度等が考えられる。素子温度についてはレーザ
点灯後安定すればほぼー定と考えてよく、湿度も屈折率
への影響が小さく無視できるが、本実施例と同様に補正
することも可能である。 【0018】補正機構として、本実施例では倍率につい
ては投影レンズ1内の空気室12の圧力調整により、焦
点位置については斜入射光によるウェハWの位置検出機
構にオフセットを持たせることによる方法を例として挙
げたが、他の方法も考えられる。例えば、投影レンズ中
のレンズ間隔を変える方法、レチクルと投影レンズの間
隔を変える方法、投影レンズの上方または下方に2枚の
平行平板ガラス置き内部の圧力を変える方法等が考えら
れる。 【0019】本実施例で、補正する結像特性として倍率
と焦点位置を考えたが、他にも像面湾曲、ディストーシ
ョン等を同時に補正することも考えられる。この場合、
補正項目ごとに独立して補正できる補正機構が必要であ
る。また、投影レンズの照明光吸収による光学特性の変
動分については、シャッター2の開閉情報に基いて補正
できるが、レーザ光源1がエキシマレーザのようにパル
ス化された光の場合、シャッター2がなくとも発振させ
るパルス数、各パルス毎の光量に基づいて露光制御が可
能である。この場合は、投影レンズ6を通るパルス化レ
ーザ光の一部を所定時間(例えば5秒)間隔で光量積分
し、その積分値に基いて所定時間間隔に光学特性の変動
履歴を算出していくようにする。この際、光量積分は所
定時間(5秒)毎にクリアされ、次の所定時間に関する
光量積分が開始される。このようにすれば、エキシマレ
ーザ光の各パルス毎の光量むら(±5%程度)の影響を
受けず、投影レンズの照明光吸収による光学特性変動を
測定できる。また所定時間(5秒)毎の光量積分値を求
めるためのフォトディテクタは、ウェハWに対して適正
露光量を与えるように働くインテグレータセンサーと兼
用して使うとよい。 【0020】以上本発明によれば、パルスレーザ光の各
パルス毎の光量むらの影響を受けない積算光量に基づい
て、結像特性の変動を計算し補正機構によりその変動分
を補正するため、投影光学系の照明光吸収による光学特
性変動が正確に補正される。さらに、もともと補正機構
を持った装置については、大きな改造をすることなく簡
単に実現できる利点もある。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exposure apparatus used for manufacturing an integrated circuit, and more particularly, to an image forming characteristic of a projection optical apparatus using a narrowing laser as an exposure light source. It relates to the improvement of. 2. Description of the Related Art As a technique for measuring the factors (atmospheric pressure, temperature, illumination of exposure light, etc.) which change the imaging characteristics, and correcting the imaging characteristics based on the measured factors, for example, Japanese Patent Application Laid-Open No. 1862
As disclosed in Japanese Patent Application Laid-Open Publication No. H10-260, there is known a method of correcting an imaging characteristic such as a magnification, a focal position, and the like by sealing a lens interval of a part in a projection lens and adjusting an air pressure thereof. . [0003] Among the above factors, a method of correcting a focus change due to a change in atmospheric pressure is disclosed in Japanese Patent Application Laid-Open No. 61-188.
As disclosed in Japanese Patent Application Laid-Open No. 928, there is also known a method of adding an offset according to a change in atmospheric pressure to an oblique incident light type focus detection system. [0004] In the above-mentioned prior art, the factors that change the imaging characteristics are mainly the atmospheric pressure, the temperature change in the chamber, the projection Absorption of the exposure light source of the lens and the like have been considered. On the other hand, the wavelength of an illumination light source has been shortened in response to a pattern to be miniaturized. In recent years, a projection optical device using an excimer laser having a power in an ultraviolet region as a light source has been developed.
The absorption of the excimer laser light causes the projection lens to have a non-negligible variation in the optical characteristics of the projection lens itself (specifically, the magnification, focal position, etc. of the projection lens itself). It is necessary to correct the minute. In the above-mentioned prior art, since these points are not taken into consideration, there is a problem that fluctuations in optical characteristics of the projection optical system due to absorption of excimer laser light for exposure cannot be corrected. Further, since there is uneven light amount (approximately ± 5%) for each pulse light of the excimer laser light, it is not possible to accurately measure a change in optical characteristics of the projection lens due to absorption of the excimer laser light. In order to solve the above problems, a projection optical apparatus according to the present invention comprises a light source unit for emitting a pulse laser beam and a mask which adjusts the wavelength characteristics of the pulse laser beam. A laser illuminating means 1 including a wavelength controller for generating pulsed illumination light for illuminating R; pulsed illumination light for detecting an integrated light amount corresponding to the pulsed illumination light passing through the projection optical system 6 at predetermined timings A photodetector for detecting a portion of the projection optical system; calculating a change in the optical characteristics of the projection optical system 6 based on the detected integrated light amount, and calculating a change corresponding to the variation in the optical characteristics of the projection optical system 6 caused by absorption of illumination light. Correction means 12 for correcting a change in the image state. According to the present invention, since the photodetector measures the integrated light quantity of the pulse laser light at each predetermined timing, it is not affected by the uneven light quantity of each pulse of the pulse laser light.
It is possible to measure a change in optical characteristics due to absorption of illumination light by the projection lens. Therefore, the change of the imaging state corresponding to the variation of the optical characteristic without the influence of the uneven light amount can be corrected by the correction unit. If the correction based on the image forming state corresponding to the optical characteristic variation from the value affected by the uneven light amount cannot correct the focus shift or the change in magnification of the projection lens accurately, the present invention measures the integrated light amount. Thus, this point is eliminated, and stable projection exposure can always be performed in the best condition. FIG. 1 is a view showing a configuration of a projection exposure apparatus using a laser beam according to an embodiment of the present invention. A narrow band laser light source 1 is used as a light source for exposure.
The laser light source 1 includes an optical element 22 for narrowing the wavelength band. The laser light emitted from the laser light source 1 passes through the shutter 2 and then enters the illumination optical system 3 for equalizing the light intensity. The laser light having a similar intensity emitted from the illumination optical system 3 is bent by a mirror 4 and passes through a condenser lens 5 to irradiate a reticle R made of quartz or the like. A circuit pattern PT is formed on the lower surface of the reticle R, and the illumination light passing through the pattern PT reaches the wafer W through a projection lens 6 made of quartz or the like. The projection lens 6 forms an image of the pattern PT on the wafer W with a predetermined image forming characteristic. The wafer W is vacuum-sucked on a wafer chuck 7, and the wafer chuck 7 is placed on a wafer stage 8 that can move in a horizontal direction (X, Y directions) and a vertical direction (along the optical axis AX of the projection lens 6). Is provided. The movement of the wafer W in the vertical direction is performed for auto focus, and is driven and controlled by the motor 15. The horizontal coordinate position of the wafer stage 8 (wafer W) is detected by a laser beam interference type side length detector (hereinafter referred to as an interferometer) 16. In this embodiment, the magnification and the focal position of the projection lens 6 are considered as image forming characteristics. As a method of correcting the fluctuation of the image forming characteristic, Japanese Patent Application Laid-Open No. 58-1862 mentioned above is used.
And the same method as the technique disclosed in Japanese Patent Application Laid-Open No. 61-183928. Therefore, in the present embodiment, a configuration is provided as a magnification correction mechanism in which the pressure in the selected air chamber 12 in the projection lens 6 is appropriately adjusted by the pressure adjuster 11. The air chamber 12 is one in which the space between two or more lens elements passed through the magnification correction is sealed, and an optimum location is selected according to the lens configuration and optical type of the projection lens 6. When the pressure of the air chamber 12 is changed, the index of the air gap changes by a very small amount, so that the magnification of the entire projection lens slightly changes. In the case of such pressure control, the focus position (the best support surface) may change. However, by selectively combining a plurality of air chambers to form one sealed control space, the focus at the time of pressure control is controlled. The pressure regulator 11 controls the pressure in the air chamber 12 so as to maintain the pressure value instructed by the controller 9. For example, it is composed of a combination of a bellows pump and an electromagnetic valve as disclosed in Japanese Patent Application Laid-Open No. 60-239023, while the mechanism for correcting the focal position is to adjust the distance between the projection lens 6 and the wafer W. A mechanism is provided for giving an offset to the mechanism for maintaining the constant.First, a mechanism for maintaining the distance between the projection lens 6 and the wafer W is described below: the projector 13 including an LBD, a condenser lens, and the like. An image-forming ray is more obliquely incident on the wafer W, and receives reflected light from the wafer W by a light receiver 14 including an SPD, a condenser lens, etc. When the wafer W is displaced from a predetermined position in the optical axis AX direction, The reflected light shifts and the shift amount can be detected, and the shift amount signal is sent to the controller 9, and the controller 9 drives the motor 15 that drives the wafer stage 8 in the optical axis direction until the wafer W reaches a predetermined position. To keep the distance between the projection lens 6 and the wafer W constant.
In such a configuration, an offset can be provided by shifting the optical path of the reflected light using an optical element (parallel plate glass), or by electrically adding an offset to a signal indicating the amount of deviation. The reason why the correction of the focal position is performed so as to offset the detection position toward the focus detection system without adjusting the pressure of the air chamber is that the stroke of the wafer stage 8 in the optical axis AX direction is increased. This is because the size is smaller than the case where the rear surface is shifted by pressure control, the thickness of the wafer is uneven, and the degree of flatness due to warpage or undulation in the wafer is taken into consideration. Incidentally, the laser light source 1 shown in FIG. 1 usually has a wavelength correcting function as shown in FIG. Reflecting mirrors 21 and 23 are arranged on both ends of the laser tube 20,
Laser light is emitted from the reflecting mirror 23. An etalon (two parallel plate glasses with variable intervals) 22 is provided between the laser tube 20 and the reflecting mirror 21 as a band narrowing element. The laser beam emitted from the reflecting mirror 23 is taken out by a beam splitter 24 and is incident on an etalon (two parallel flat glass plates with fixed intervals) 25 for wavelength measurement, and a detector 26 such as a photodiode array is used. Is received at. Etalon 2 on the light receiving surface of the detector 26
5, the interference fringes are formed, and when the interference fringes deviate from a predetermined state, the detector detects the deviation as a change (shift) from the set value of the wavelength. The shift amount detected by the detector 26 is output to the controller 27, and the controller 27 adjusts the interval (or the inclination with respect to the laser beam) of the etalon 22 so that the shift amount is corrected to almost zero. As a result, the wavelength of the laser beam extracted from the reflecting mirror 23 is controlled to a constant value. By the way, the etalon 25 is usually placed in the atmosphere, and when the refractive index of the air changes (that is, the atmospheric pressure changes), the optical path length of the air interval in the etalon changes minutely, and the measurement wavelength becomes a true value (in a vacuum). (Absolute wavelength). For this reason, the etalon 22 is also shifted and the output wavelength (absolute wavelength in vacuum) is shifted by the measurement shift corresponding to the change in the atmospheric pressure of the etalon 25. Of course, the etalon 22 for band narrowing is used in the atmosphere. In the case of the laser light source, the wavelength shift occurs in the same manner because of the influence of the refractive index of air, which is the main cause of a wavelength shift due to a change in atmospheric pressure in a laser light source without a wavelength correction mechanism. The refractive index of air is determined by a function of atmospheric pressure and air temperature, and it can be considered that there is a proportional relationship between the atmospheric pressure range and the chamber temperature range in which this type of device is installed.
Therefore, in this embodiment, as shown in FIG.
Atmospheric pressure and air temperature near 25 were measured by the measuring device 10 and the results were sent to the controller 9 to correct the magnification correcting mechanism and the focal position correcting mechanism. Next, the operation of this embodiment will be described. The controller 9 obtains the rate of change (change characteristic) of the magnification and the focal position with respect to the change in the wavelength of the laser beam by experiment or simulation calculation, and stores it in an internal memory. Accordingly, the controller 9 calculates the amount of wavelength variation of the laser beam passing through the projection lens 6 based on the measurement signal (environmental information) from the measuring device 10, and based on the change rate stored in the memory, corrects the magnification and the focal position ( Change amount). When it is considered that the change in the magnification and the focal position with respect to the wavelength change is in a proportional relationship, the change characteristic stored in the memory is only a proportional constant, and when the change is not in a proportional relationship, the change characteristic table or a function expression is used. Is stored. When the correction amount for the change in magnification is calculated, the controller 9 outputs a correction value (target pressure value) to the pressure regulator 11. Since the magnification is proportional to the pressure difference between the internal pressure of the air chamber 12 and the pressure of the outside air, the pressure regulator 11 controls the pressure in the air chamber 12 so as to generate a pressure difference that cancels the change in magnification. A constant proportional to the pressure difference between the internal pressure and the external pressure is also obtained in advance and stored in the controller 9. Of course, if this relationship is not proportional, approximation or a table using an appropriate function may be prepared. On the other hand, with respect to the focus position correction, the controller 9 similarly calculates a focus variation amount, and outputs an offset signal to the light receiver 14 such that the surface of the wafer W follows the focus variation. That is, the height position detected as the focal point by the oblique incident light type position detection system is measured by the measuring device 1.
The offset is performed sequentially based on the measurement signal from 0.
By the above method, the imaging characteristics (magnification,
(A focal position) can be corrected. In the above embodiment, only the wavelength fluctuation was considered as a cause of deteriorating the imaging characteristics. However, the correction mechanism was originally conceived to correct the fluctuation of the optical characteristics of the projection lens itself. Actually, the correction for the wavelength fluctuation and the correction for the optical characteristics of the projection lens are performed in combination. The correction of the optical characteristics of the projection lens will be briefly described below. Factors of the optical characteristic fluctuation include atmospheric pressure, air temperature, absorption of illumination light, and the like. As in the case of the wavelength fluctuation, the atmospheric pressure and the temperature are considered to be proportional to the fluctuation, and the fluctuation of the optical characteristic is calculated. Regarding the absorption of illumination light, for example, as disclosed in Japanese Patent Application Laid-Open No. 60-78454, the illumination light absorption characteristics of the projection lens are obtained in advance, and the amount of absorption is calculated based on shutter opening / closing information and the like to obtain the variation. The algebraic sum of the fluctuation amounts obtained as described above is the total fluctuation amount. If the amount of fluctuation due to the above-mentioned wavelength fluctuation is further added to this amount and the amount is corrected in the same manner as described in the above-mentioned wavelength fluctuation, correction of wavelength fluctuation and correction of optical characteristics of the projection lens can be performed. Regarding atmospheric pressure and temperature, when experimentally calculating the proportional constant, the fluctuations are caused by the sum of the wavelength fluctuations and the optical characteristic fluctuations of the projection lens. I just need. In this embodiment, an etalon is taken as an example of the optical element for narrowing the band, but grading, a prism, and the like may be used. These can be considered in the same manner as in the present embodiment. Further, in the present embodiment, the atmospheric pressure and the temperature are considered as factors of the wavelength fluctuation, but other factors such as the temperature of the band-narrowing optical element (or the wavelength measuring element),
The temperature of the air and the like can be considered. The element temperature can be considered to be almost constant if it becomes stable after the laser is turned on, and the influence of humidity on the refractive index is small and can be neglected, but correction can be made in the same manner as in the present embodiment. As a correction mechanism, in this embodiment, the magnification is adjusted by adjusting the pressure of the air chamber 12 in the projection lens 1, and the focus position is adjusted by giving an offset to the position detection mechanism of the wafer W by oblique incident light. Although given as an example, other methods are also conceivable. For example, a method of changing the distance between the lenses in the projection lens, a method of changing the distance between the reticle and the projection lens, a method of changing the pressure inside two parallel flat glass plates above or below the projection lens, and the like can be considered. In this embodiment, the magnification and the focal position are considered as the imaging characteristics to be corrected. However, it is also possible to simultaneously correct the field curvature, distortion, and the like. in this case,
A correction mechanism that can independently correct each correction item is required. Further, the variation of the optical characteristics due to the absorption of the illumination light of the projection lens can be corrected based on the opening / closing information of the shutter 2. However, when the laser light source 1 is a pulsed light such as an excimer laser, the shutter 2 is not provided. Exposure can be controlled based on the number of pulses to be oscillated and the light amount of each pulse. In this case, a part of the pulsed laser light passing through the projection lens 6 is integrated at predetermined time intervals (for example, 5 seconds), and the variation history of the optical characteristics is calculated at predetermined time intervals based on the integrated value. To do. At this time, the light quantity integration is cleared every predetermined time (5 seconds), and the light quantity integration for the next predetermined time is started. In this way, the fluctuation of the optical characteristics due to the absorption of the illumination light of the projection lens can be measured without being affected by the unevenness in the light amount of each pulse of the excimer laser light (about ± 5%). Further, the photodetector for calculating the light intensity integral value every predetermined time (5 seconds) may be used also as an integrator sensor that works to give an appropriate exposure amount to the wafer W. According to the present invention, a change in the imaging characteristic is calculated based on the integrated light amount which is not affected by the light amount unevenness of each pulse of the pulse laser light, and the change amount is corrected by the correction mechanism. Optical characteristic fluctuation due to absorption of illumination light by the projection optical system is accurately corrected. Further, there is an advantage that an apparatus having a correction mechanism can be easily realized without major modification.

【図面の簡単な説明】 【図1】本発明の実施例による縮小投影露光装置の構成
を示す概略図 【図2】波長補正機構を持つレーザ光源の構成を示す図
である。 【符号の説明】 R…レチクル、 W…ウェハ、1…レーザ光源、 6
…投影レンズ、9…コントローラ、10…測定器、11
…圧力調整器、14…受光器(ウェハ位置検出器)、2
0…レーザチューブ、22…挟帯化エタロン、25…波
長測定用エタロン
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram showing a configuration of a reduction projection exposure apparatus according to an embodiment of the present invention. FIG. 2 is a diagram showing a configuration of a laser light source having a wavelength correction mechanism. [Explanation of symbols] R: reticle, W: wafer, 1: laser light source, 6
... Projection lens, 9 ... Controller, 10 ... Measuring instrument, 11
... pressure regulator, 14 ... light receiver (wafer position detector), 2
0: laser tube, 22: banded etalon, 25: etalon for wavelength measurement

Claims (1)

(57)【特許請求の範囲】 1.所定のパターンが形成されたマスクを照明し、該パ
ターンを投影光学系を介して、感光基板上に所定の結像
状態で結像させる投影光学装置において、 パルスレーザ光を射出する光源部と該パルスレーザ光の
波長特性を調整して前記マスクを照明するためのパルス
照明光を生成する波長制御部とを含むレーザ照明手段
と; 前記投影光学系を通るパルス照明光に応じた積算光量を
所定のタイミング毎に検出するフォトディテクタと; 該検出された積算光量に基づいて前記投影光学系の光学
特性の変化を計算し、照明光吸収によって生じる前記投
影光学系の光学特性の変動分に対応した前記結像状態の
変化を補正する補正手段とを備えたことを特徴とする投
影光学装置。 2.前記フォトディテクタは前記感光基板に適正露光量
を与えるように働くインテグレータセンサを含むことを
特徴とする特許請求の範囲第1頃に記載の装置。 3.前記補正手段は、前記投影光学系内の空気室の圧力
を調整する方式、前記感光基板に対する焦点位置をオフ
セットさせる方式、前記投影光学系内のレンズ間隔を変
更する方式、或は前記マスクと前記投影光学系との間隔
を変更する方式の少なくとも1つの方式を含むことを特
徴とする特許請求の範囲第1頃に記載の装置。
(57) [Claims] A projection optical device that illuminates a mask on which a predetermined pattern is formed and forms an image of the pattern on a photosensitive substrate in a predetermined image-forming state via a projection optical system. A laser illuminating means including a wavelength controller for adjusting the wavelength characteristic of the pulsed laser light to generate pulsed illumination light for illuminating the mask; and determining a cumulative light amount according to the pulsed illumination light passing through the projection optical system. A photodetector that detects at each timing of: calculating a change in optical characteristics of the projection optical system based on the detected integrated light amount, and calculating a change in the optical characteristics of the projection optical system caused by absorption of illumination light. A projection optical apparatus, comprising: a correction unit configured to correct a change in an imaging state. 2. 2. The apparatus according to claim 1, wherein said photodetector includes an integrator sensor operative to provide a proper exposure amount to said photosensitive substrate. 3. The correcting means may be a method of adjusting a pressure of an air chamber in the projection optical system, a method of offsetting a focal position with respect to the photosensitive substrate, a method of changing a lens interval in the projection optical system, or a method of changing the mask and the mask. 2. The apparatus according to claim 1, wherein the apparatus includes at least one of a method of changing a distance from the projection optical system.
JP8205566A 1996-08-05 1996-08-05 Projection optical device Expired - Lifetime JP2705694B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8205566A JP2705694B2 (en) 1996-08-05 1996-08-05 Projection optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8205566A JP2705694B2 (en) 1996-08-05 1996-08-05 Projection optical device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP62166014A Division JP2590891B2 (en) 1987-07-02 1987-07-02 Projection optical device

Publications (2)

Publication Number Publication Date
JPH097943A JPH097943A (en) 1997-01-10
JP2705694B2 true JP2705694B2 (en) 1998-01-28

Family

ID=16509021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8205566A Expired - Lifetime JP2705694B2 (en) 1996-08-05 1996-08-05 Projection optical device

Country Status (1)

Country Link
JP (1) JP2705694B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7491478B2 (en) * 2004-07-23 2009-02-17 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
NL2009357A (en) * 2011-09-27 2013-03-28 Asml Netherlands Bv Lithographic apparatus and device manufacturing method.

Also Published As

Publication number Publication date
JPH097943A (en) 1997-01-10

Similar Documents

Publication Publication Date Title
KR100328005B1 (en) A scanning exposure method, a scanning type exposure apparatus, a laser apparatus, and a method of manufacturing a device
JP5104305B2 (en) Exposure apparatus, exposure method, and device manufacturing method
US6975387B2 (en) Wavefront aberration measuring instrument, wavefront aberration measuring method, exposure apparatus, and method for manufacturing micro device
US6124064A (en) Light exposure controlling method
US4952945A (en) Exposure apparatus using excimer laser source
JP3414476B2 (en) Projection exposure equipment
US7085302B2 (en) Laser apparatus, exposure apparatus and method
JP2705694B2 (en) Projection optical device
JPH06349703A (en) Projection exposure device
JP2590891B2 (en) Projection optical device
JPH0636987A (en) Projection aligner
JPH01309323A (en) Optical projecting apparatus
JP2661082B2 (en) Laser wavelength control apparatus and exposure apparatus using the same
JP2512872B2 (en) Laser generator
JPH10261577A (en) Method for controlling amount of exposure and scanning-type aligner using it
JPH08255741A (en) Aligner
JP4027205B2 (en) Exposure equipment
JPH10289864A (en) Projection exposing device
JP3360672B2 (en) Scanning exposure method, scanning exposure apparatus, laser device, and element manufacturing method
JP2001257406A (en) Absolute wavelength stabilizing method of excimer laser, stabilizer and aligner
KR100538685B1 (en) Projection exposure apparatus, exposure method, and device manufacturing method
JPH10294262A (en) Projection aligner
JPH08321459A (en) Projection aligner
JP2000021717A (en) Exposure control method and aligner
JPH10303091A (en) Imaging characteristics measurement method and projection aligner using the method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071009

Year of fee payment: 10