JP2705036B2 - Thermal storage air conditioning system - Google Patents

Thermal storage air conditioning system

Info

Publication number
JP2705036B2
JP2705036B2 JP22633889A JP22633889A JP2705036B2 JP 2705036 B2 JP2705036 B2 JP 2705036B2 JP 22633889 A JP22633889 A JP 22633889A JP 22633889 A JP22633889 A JP 22633889A JP 2705036 B2 JP2705036 B2 JP 2705036B2
Authority
JP
Japan
Prior art keywords
heat
heat exchanger
refrigerant
refrigeration cycle
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22633889A
Other languages
Japanese (ja)
Other versions
JPH0391658A (en
Inventor
繁男 青山
浩 米田
充 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP22633889A priority Critical patent/JP2705036B2/en
Publication of JPH0391658A publication Critical patent/JPH0391658A/en
Application granted granted Critical
Publication of JP2705036B2 publication Critical patent/JP2705036B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、空気を熱源とする多室式空気調和機におい
て、各室ごとに冷房運転,暖房運転を行うための冷凍サ
イクル制御、及び、蓄熱利用のための制御を備えたヒー
トポンプ式空気調和機に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration cycle control for performing a cooling operation and a heating operation for each room in a multi-room air conditioner using air as a heat source, and heat storage utilization. The present invention relates to a heat pump type air conditioner provided with control for the air conditioner.

従来の技術 従来の複数の室内機を有する多室式空気調和機につい
ては、既に、さまざまな開発がなされており、例えば、
冷凍・第61巻第708号(昭和61年10月号)P1038〜1045に
示されているような多室式空気調和機があり、その基本
的な技術は、第3図に示すように、室外機1内に設置さ
れた、圧縮機2,四方弁3,室外側熱交換器4、及び、室外
側膨張弁5と、室外機1に対して並列に設置された室内
機6内の室内側膨張弁7、及び、室内側熱交換器8を環
状に順次接続し、ヒートポンプ式冷凍サイクルが構成さ
れているというものである。圧縮機2は容量可変で、供
給電力の周波数を変えることにより冷凍サイクル内の冷
媒循環量を変えることができる。また、四方弁3によっ
て冷房運転,暖房運転が切り替えられ、冷房運転時は図
中の実線矢印の方向に冷媒が流れて冷房サイクルが形成
され、暖房運転時には図中の破線方向に冷媒が流れて暖
房サイクルが形成される。また、室外側熱交換器4,及
び、室内側熱交換器8には、近接してそれぞれ、室外側
送風機9,及び、室内側送風機10が設置されている。
Conventional technology Conventional multi-room air conditioners having a plurality of indoor units, various developments have already been made, for example,
There is a multi-chamber air conditioner as shown in Refrigeration, Vol. 61, No. 708 (October, 1986), pp. 1038-1045, and its basic technology is as shown in FIG. The compressor 2, the four-way valve 3, the outdoor heat exchanger 4, and the outdoor expansion valve 5 installed in the outdoor unit 1 and the indoor unit 6 installed in parallel with the outdoor unit 1. The inner expansion valve 7 and the indoor heat exchanger 8 are sequentially connected in a ring shape to form a heat pump refrigeration cycle. The capacity of the compressor 2 is variable, and the amount of circulating refrigerant in the refrigeration cycle can be changed by changing the frequency of the supplied power. The four-way valve 3 switches between the cooling operation and the heating operation. During the cooling operation, the refrigerant flows in the direction of the solid line arrow in the figure to form a cooling cycle. During the heating operation, the refrigerant flows in the direction of the broken line in the figure. A heating cycle is formed. Further, an outdoor blower 9 and an indoor blower 10 are installed close to the outdoor heat exchanger 4 and the indoor heat exchanger 8, respectively.

このような多室式空気調和機において、複数の、例え
ば、3台の室内機6a,6b,6cはそれぞれ個別に運転が可能
であり、室内機6aのみ運転の場合は、他の室内機6b,6c
は室内側膨張弁7b,7cを全閉にすると共に、室内側送風
機10b,10cも停止している。この時、圧縮機2はインバ
ータ等で能力制御を行い、室内機の運転台数に応じた能
力で個別運転することが可能である。更に、大型ビルな
どで室内機を6台、9台あるいは、それ以上設置する必
要のある場合は、例えば、6台の場合は、第4図に示す
ように、2セットの多室式空気調和機A,Bを設置した空
調システムにおいて、各多室式空気調和機それぞれで個
別運転することで対応できる。
In such a multi-room air conditioner, a plurality of, for example, three indoor units 6a, 6b, 6c can be individually operated, and when only the indoor unit 6a is operated, the other indoor units 6b , 6c
, The indoor expansion valves 7b and 7c are fully closed, and the indoor blowers 10b and 10c are also stopped. At this time, the compressor 2 performs capacity control using an inverter or the like, and can be individually operated with a capacity corresponding to the number of operating indoor units. Further, when it is necessary to install 6, 9 or more indoor units in a large building or the like, for example, in the case of 6 indoor units, as shown in FIG. In the air conditioning system in which the air conditioners A and B are installed, it is possible to cope by operating each multi-room air conditioner individually.

発明が解決しようとする課題 しかしながら、前述の従来例では、使用する電力とし
ては、空調機が主として使用される昼間電力であるた
め、年々電子機器の使用が増加しているという社会的見
地から見ても、高負荷時刻に消費電力のピークが極限状
態になる可能性があるだけでなく、夜間電力に比して割
高であることより消費電力料金が高いという欠点を有し
ていた。また、多室式空気調和機AとBをそれぞれで単
独で個別運転するため、即ち、多室式空気調和機AとB
間で熱の授受ができないために、多室式空気調和機Aと
Bにおいて熱負荷が異なる場合、例えば、多室式空気調
和機Aで空調能力が不足していて、多室式空気調和機B
で空調能力が余っていても対応が不可能であるため多室
式空気調和機Bにおける各室の快適性が損なわれるとい
う欠点を有していた。
Problems to be Solved by the Invention However, in the above-mentioned conventional example, since the electric power used is daytime electric power mainly used by the air conditioner, the use of electronic devices is increasing year by year from a social point of view. However, there is a disadvantage that not only may the peak of the power consumption reach an extreme state at the time of high load, but also that the power consumption fee is high due to being relatively expensive compared to nighttime power. Further, in order to operate the multi-room air conditioners A and B individually and independently, that is, the multi-room air conditioners A and B
When the heat load is different between the multi-room air conditioners A and B because heat cannot be transferred between the air conditioners, for example, the air conditioning capacity of the multi-room air conditioner A is insufficient and the multi-room air conditioner is insufficient. B
However, since it is impossible to cope with the problem even if the air conditioning capacity is excessive, the comfort of each room in the multi-room air conditioner B is impaired.

逆に、このビルでの空調機の設計を行なう場合、一般
に、多室式空気調和機Aの空調能力はA側のピーク時の
熱負荷に、多室式空気調和機Bの空調能力はB側のピー
ク時の熱負荷に対応するように設計する。従って、A側
とB側の熱負荷のピークが発生する時刻が異なる場合、
ピーク時以外では過剰設備ということになり、設備費用
が高価になり、かつ、電力会社との契約電力費用も高価
になるという欠点を有していた。
Conversely, when designing an air conditioner in this building, generally, the air conditioning capacity of the multi-room air conditioner A is set to the heat load at the peak time on the A side, and the air conditioning capacity of the multi-room air conditioner B is set to B It is designed to correspond to the heat load at the peak of the side. Therefore, when the time at which the peak of the heat load occurs on the A side and the B side is different,
At times other than the peak time, there is a drawback that excess equipment is required, equipment costs are high, and contract power costs with a power company are also high.

そこで、本発明は、夜間電力を利用して各多室式空気
調和機の蓄熱槽に備えた蓄冷熱量を蓄熱槽相互間におい
て熱搬送できる蓄熱空調システムを提供することを目的
とするものである。
Therefore, an object of the present invention is to provide a thermal storage air conditioning system that can transfer heat stored in a thermal storage tank of each multi-room air conditioner between the thermal storage tanks using nighttime electric power. .

課題を解決するための手段 上記課題を解決する本発明の技術的手段は、第1熱交
換部と第2熱交換部と切替弁を備えた冷媒熱交換器、第
1熱交換器と第2熱交換器を備えた蓄熱槽、圧縮機、四
方弁、室外側熱交換器、膨張弁、前記冷媒熱交換器の第
1熱交換部、及び、前記蓄熱槽の第1熱交換器を連通し
てなる1次側冷凍サイクルと、前記蓄熱槽内の第2熱交
換器、前記冷媒熱交換器の第2熱交換部、冷媒搬送ポン
プ、及び、室内側熱交換器と流量調節弁とからなる複数
の室内機を連通してなる2次側冷凍サイクルとからなる
多室式空気調和機を複数台設置し、前記多室式空気調和
機おのおのの2次側冷凍サイクルにおける室内機の出入
口集合配管相互を連通してなる熱搬送サイクルを備えた
るものである。
Means for Solving the Problems Technical solutions of the present invention for solving the above problems include a refrigerant heat exchanger including a first heat exchange unit, a second heat exchange unit, and a switching valve, a first heat exchanger and a second heat exchanger. A heat storage tank provided with a heat exchanger, a compressor, a four-way valve, an outdoor heat exchanger, an expansion valve, a first heat exchanger of the refrigerant heat exchanger, and a first heat exchanger of the heat storage tank are communicated. A primary refrigeration cycle, a second heat exchanger in the heat storage tank, a second heat exchange section of the refrigerant heat exchanger, a refrigerant transport pump, and an indoor heat exchanger and a flow control valve. A plurality of multi-room air conditioners each including a secondary refrigeration cycle communicating with a plurality of indoor units are installed, and an inlet / outlet collective pipe of an indoor unit in the secondary refrigeration cycle of each of the multi-room air conditioners is provided. It is provided with a heat transfer cycle communicating with each other.

作用 この技術的手段による作用は次のようになる。Operation The operation of this technical means is as follows.

複数の多室式空気調和機における、圧縮機、四方弁、
室外側熱交換器、膨張弁、冷媒熱交換器の第1熱交換
部、及び、蓄熱槽の第1熱交換器を連通した1次側冷凍
サイクルによる夜間運転について説明する。
Compressor, four-way valve, in multiple multi-chamber air conditioners
The night operation by the primary refrigeration cycle in which the outdoor heat exchanger, the expansion valve, the first heat exchanger of the refrigerant heat exchanger, and the first heat exchanger of the heat storage tank are communicated will be described.

夜間では、冷媒熱交換器の切替弁の切り替えにより蓄
熱槽内の第1熱交換器を1次側冷凍サイクルに連通さ
せ、安価な夜間電力を利用して、蓄熱槽内の蓄熱材に蓄
冷(蓄熱)しておく。
At night, the first heat exchanger in the heat storage tank is connected to the primary refrigeration cycle by switching the switching valve of the refrigerant heat exchanger, and cold storage is performed on the heat storage material in the heat storage tank using inexpensive nighttime power ( Heat storage).

次に、昼間運転について説明する。この時、冷媒熱交
換器の切替弁の切り替えにより冷媒熱交換器の第1熱交
換器を1次側冷凍サイクルに連通させておく。この場
合、1次側冷凍サイクルと2次側冷凍サイクルが分離さ
れていて、両サイクル内の冷媒が混合することがないた
め、適正冷媒封入量を維持でき、かつ、1次側冷凍サイ
クルの配管長が短くて済むため、圧縮機内の冷凍機油が
流出しても戻り易く、圧縮機の信頼性を高めることがで
きる。
Next, daytime driving will be described. At this time, the first heat exchanger of the refrigerant heat exchanger is connected to the primary refrigeration cycle by switching the switching valve of the refrigerant heat exchanger. In this case, the primary refrigeration cycle and the secondary refrigeration cycle are separated, and the refrigerants in both cycles are not mixed, so that an appropriate amount of refrigerant can be maintained and the piping of the primary refrigeration cycle Since the length is short, even if the refrigerating machine oil in the compressor flows out, it is easy to return, and the reliability of the compressor can be improved.

(1)複数の多室式空気調和機のそれぞれにおいて (各室の熱負荷の合計値)≦(蓄熱槽の出力容量) である場合 この場合、冷媒熱交換器を連通した1次側冷凍サイク
ル、及び、熱搬送サイクルは運転せずに、冷媒搬送ポン
プ、室内側熱交換器、流量調節弁からなる2次側冷凍サ
イクルの運転を行う。即ち、夜間に蓄熱槽内の蓄熱材に
蓄えた冷熱、あるいは、温熱を蓄熱槽内の第2熱交換器
を介して、2次側冷凍サイクル内の冷媒と熱交換し、そ
の冷媒を冷媒搬送ポンプにて各室内機の室内側熱交換器
へ搬送して室内空気と熱交換することにより、各室内の
冷房、あるいは、暖房を行なう。従って、昼間電力を使
用せずに、夜間電力を利用して空調が行なえる。
(1) In each of the plurality of multi-chamber air conditioners, (the total value of the heat load of each chamber) ≦ (output capacity of the heat storage tank) In this case, the primary refrigeration cycle communicating with the refrigerant heat exchanger And, the secondary refrigeration cycle including the refrigerant transport pump, the indoor heat exchanger, and the flow control valve is operated without operating the heat transport cycle. That is, cold or hot heat stored in the heat storage material in the heat storage tank at night is exchanged with the refrigerant in the secondary refrigeration cycle via the second heat exchanger in the heat storage tank, and the refrigerant is transferred to the refrigerant. Each indoor unit is cooled or heated by being transported to the indoor heat exchanger of each indoor unit by a pump and exchanging heat with indoor air. Therefore, air conditioning can be performed using nighttime power without using daytime power.

(2)複数の多室式空気調和機のそれぞれにおいて (各室の熱負荷の合計値)>(蓄熱槽の出力容量)、か
つ、 (各室の熱負荷の合計値)≦(最大空調能力Qmax)であ
る場合 (但し、(最大空調能力Qmax)=(蓄熱槽の出力容量)
+(1次側冷凍サイクルの出力容量)とする。) この場合も熱搬送サイクルは運転しないが、蓄熱槽の
みの出力では負荷に対応できないため、冷媒熱交換器の
第1熱交換部を連通させた1次側冷凍サイクル、及び、
冷媒熱交換器の第2熱交換部、蓄熱槽内の第2熱交換
器、冷媒搬送ポンプ、室内側熱交換器、流量調節弁から
なる2次側冷凍サイクルの運転を行う。即ち、夜間に蓄
熱槽内の蓄熱材に蓄えた冷熱(温熱)を蓄熱槽内の第2
熱交換器を介して、2次側冷凍サイクル内の冷媒と熱交
換し、加えて、冷媒熱交換器の第2熱交換部内で1次側
冷凍サイクルの冷媒と熱交換して冷熱(温熱)量を高
め、その冷媒を冷媒搬送ポンプにて各室内機の室内熱交
換器へ搬送して室内空気と熱交換することにより、各室
内の冷房、あるいは、暖房を行なう。従って、夜間電力
を利用して昼間電力の使用量を低減できるとともに、1
次側冷凍サイクルの運転により2次側冷凍サイクルにお
ける能力不足を補うことができ、各室内での快適性が損
なわれることを防止できる。
(2) In each of the plurality of multi-room air conditioners, (total value of heat load of each room)> (output capacity of heat storage tank) and (total value of heat load of each room) ≦ (maximum air conditioning capacity) Qmax) (However, (maximum air conditioning capacity Qmax) = (output capacity of heat storage tank)
+ (Output capacity of primary refrigeration cycle). Also in this case, the heat transfer cycle is not operated, but the output of only the heat storage tank cannot cope with the load, so the primary refrigeration cycle in which the first heat exchange section of the refrigerant heat exchanger is connected, and
The operation of the secondary refrigeration cycle including the second heat exchange part of the refrigerant heat exchanger, the second heat exchanger in the heat storage tank, the refrigerant transport pump, the indoor heat exchanger, and the flow control valve is performed. That is, the cold heat (hot heat) stored in the heat storage material in the heat storage tank at night is stored in the second heat storage tank.
Heat exchange with the refrigerant in the secondary refrigeration cycle via the heat exchanger, and in addition, heat exchange with the refrigerant in the primary refrigeration cycle in the second heat exchange section of the refrigerant heat exchanger to produce cold heat (heat). The amount of the refrigerant is increased, and the refrigerant is conveyed to the indoor heat exchanger of each indoor unit by a refrigerant conveyance pump to exchange heat with indoor air, thereby cooling or heating each room. Therefore, nighttime power can be used to reduce the amount of daytime power used, and
The operation of the secondary refrigeration cycle can compensate for the lack of capacity in the secondary refrigeration cycle, and can prevent the comfort in each room from being impaired.

(3)複数の多室式空気調和機のうち、ある多室式空気
調和機において (各室の熱負荷の合計値)>(最大空調能力Qmax)であ
る場合 この場合、この多室式空気調和機において能力不足で
あり、(2)の昼間運転と同様の1次側、及び、2次側
冷凍サイクル運転を行なうと同時に、加えて、熱搬送サ
イクルを使用して、能力余剰の多室式空気調和機の蓄熱
槽内の冷(温)熱を、冷媒を媒体として、能力不足であ
る多室式空気調和機の室内機へ搬送する。その際、多室
式空気調和機への冷媒分配量の調整は、各室内機内の流
量調節弁にて行なう。
(3) In a multi-room air conditioner among a plurality of multi-room air conditioners, when (total value of heat load of each room)> (maximum air conditioning capacity Qmax) In this case, the multi-room air conditioner The capacity of the harmony machine is insufficient, and the primary and secondary refrigeration cycle operations similar to the daytime operation of (2) are performed, and at the same time, a multi-chamber with excess capacity is used by using a heat transfer cycle. Cold (warm) heat in the heat storage tank of the air conditioner is conveyed to the indoor unit of the multi-room air conditioner, which has insufficient capacity, using a refrigerant as a medium. At this time, adjustment of the amount of refrigerant distribution to the multi-room air conditioner is performed by a flow control valve in each indoor unit.

従って、能力不足である多室式空気調和機の蓄熱槽の
蓄冷(熱)量を増加させることができ、従って、その多
室式空気調和機の2次側冷凍サイクルにおける能力不足
を補うことができ、各室内での快適性が損なわれること
を防止できる。
Therefore, it is possible to increase the amount of cold storage (heat) in the heat storage tank of the multi-room air conditioner, whose capacity is insufficient, and to compensate for the insufficient capacity of the multi-room air conditioner in the secondary refrigeration cycle. It is possible to prevent the comfort in each room from being impaired.

また、空調設備の設計面においても、複数の多室式空
気調和機のそれぞれに接続されている室内の同時に発生
する熱負荷の和を設計負荷値とすればよく、即ち、熱負
荷のピーク値発生時刻が異なる場合、各多室式空気調和
機単独での設計負荷値(熱負荷のピーク値)の和より小
さくて済み、機器小型化が図れ、電力会社との契約電力
費用も低減でき、より経済的な設備設計が可能となる。
更に、室内機を増設する場合も、蓄熱槽に蓄える蓄冷熱
量を増加させることによって対応ができるため、拡張性
や設計自由度が高くなる。
Also, in the design of air conditioning equipment, the design load value may be the sum of simultaneously occurring heat loads in the rooms connected to each of the plurality of multi-room air conditioners, that is, the peak value of the heat load. If the time of occurrence is different, it can be smaller than the sum of the design load value (peak value of heat load) of each multi-room air conditioner alone, it is possible to reduce the size of the equipment and reduce the contracted power cost with the power company, More economical equipment design becomes possible.
Further, even when an additional indoor unit is installed, it can be dealt with by increasing the amount of cold storage heat stored in the heat storage tank, so that expandability and design flexibility are increased.

実 施 例 以下、本発明の一実施例を添付図面に基づいて説明を
行うが、従来と同一構成については同一符号を付し、そ
の詳細な説明を省略する。
Embodiment Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings. The same reference numerals are given to the same components as those in the related art, and detailed description thereof will be omitted.

第1図は本発明の一実施例の蓄熱空調システムの冷凍
サイクル図である。
FIG. 1 is a refrigeration cycle diagram of a heat storage air conditioning system according to one embodiment of the present invention.

この実施例の蓄熱空調システムは、2台の多室式空気
調和機AとBからなり、多室式空気調和機A、及び、B
は設置場所以外は同一機器で構成されているものとす
る。多室式空気調和機A,Bは、概ね室外機1,冷媒熱交換
器HE,蓄熱槽STR,冷媒搬送ポンプPM,3台の室内機6a,6b,6
cとからなり、室外機1は、圧縮機2、四方弁3、室外
側熱交換器4、室外側送風機9、膨張弁5よりなり、冷
媒熱交換器HEは第1熱交換部14,第2熱交換部15と三方
弁Vからなり、蓄熱槽STRは第1熱交換器12と第2熱交
換器16とからなり、その中には蓄熱材11が充填されてい
る。3台の室内機6a,6b,6cは、室内側熱交換器8a,8b,8
c、流量調節弁7a,7b,7c、及び、室内側送風機10a,10b,1
0cとから構成されている。
The thermal storage air-conditioning system of this embodiment includes two multi-room air conditioners A and B, and the multi-room air conditioners A and B
Shall consist of the same equipment except for the installation location. The multi-room air conditioners A and B are generally comprised of an outdoor unit 1, a refrigerant heat exchanger HE, a heat storage tank STR, a refrigerant transfer pump PM, and three indoor units 6a, 6b, 6
c, the outdoor unit 1 includes a compressor 2, a four-way valve 3, an outdoor heat exchanger 4, an outdoor blower 9, and an expansion valve 5, and the refrigerant heat exchanger HE includes a first heat exchange unit 14, The heat storage tank STR is composed of a first heat exchanger 12 and a second heat exchanger 16, and the heat storage material 11 is filled therein. The three indoor units 6a, 6b, 6c are indoor heat exchangers 8a, 8b, 8
c, flow control valves 7a, 7b, 7c, and indoor blowers 10a, 10b, 1
0c.

上記機器構成において、圧縮機2、四方弁3、室外側
熱交換器4、膨張弁5、冷媒熱交換器の第1熱交換部1
4、及び、蓄熱槽内の第1熱交換器12を連通して1次側
冷凍サイクルが形成され、三方弁Vを介して冷媒熱交換
器の第1熱交換部14と蓄熱槽内の第1熱交換器12が1次
側冷凍サイクルに並列に接続されている。また、冷媒熱
交換器の第2熱交換部15、蓄熱槽内の第2熱交換器16、
冷媒搬送ポンプPM、室内側熱交換器8a,8b,8c、及び、流
量調節弁7a,7b,7cを連通して2次側冷凍サイクルが形成
されている。
In the above device configuration, the compressor 2, the four-way valve 3, the outdoor heat exchanger 4, the expansion valve 5, and the first heat exchange unit 1 of the refrigerant heat exchanger
4. A primary refrigeration cycle is formed by communicating the first heat exchanger 12 in the heat storage tank, and the first heat exchange section 14 of the refrigerant heat exchanger and the One heat exchanger 12 is connected in parallel to the primary refrigeration cycle. In addition, the second heat exchanger 15 of the refrigerant heat exchanger, the second heat exchanger 16 in the heat storage tank,
A secondary refrigeration cycle is formed by connecting the refrigerant transport pump PM, the indoor heat exchangers 8a, 8b, 8c, and the flow control valves 7a, 7b, 7c.

更に、多室式空気調和機A,Bおのおのの2次側冷凍サ
イクルにおける室内機6a,6b,6cの出入口集合配管相互を
ヘッダー17を介して連通して熱搬送サイクルが形成され
ている。このヘッダー17として室内機出入口集合配管よ
り管径の大きい管を使用する。
Further, the heat transfer cycle is formed by connecting the inlet / outlet collective pipes of the indoor units 6a, 6b, 6c in the secondary refrigeration cycle of each of the multi-room air conditioners A, B with each other via the header 17. As the header 17, a pipe having a pipe diameter larger than the indoor unit entrance / exit collective pipe is used.

次に、この一実施例の構成における作用を説明する。 Next, the operation of the configuration of the embodiment will be described.

まず、夜間の蓄冷・蓄熱運転(1次側冷凍サイクル)
について説明する。
First, cold storage / heat storage operation at night (primary refrigeration cycle)
Will be described.

予め、多室式空気調和機A,Bの各室の熱負荷の和に関
する、翌日の冷房、または暖房負荷曲線を推定し、蓄
冷、または蓄熱運転モードを決定する。例えば、1日の
時刻に対する負荷の推移(負荷曲線)が第2図のように
予測されたとする。第2図中、Lmaxは各室の熱負荷の和
の最大値,Qmaxは多室式空気調和機の最大能力を示す。
いづれの運転モード場合についても、三方弁Vは1次側
冷凍サイクルと冷媒熱交換器の第1熱交換部14が連通し
ないように切り替えられ、2次側冷凍サイクル内の冷媒
搬送ポンプPMは停止している。
A cooling or heating load curve for the next day relating to the sum of the heat loads of the respective rooms of the multi-room air conditioners A and B is estimated in advance, and the cool storage or heat storage operation mode is determined. For example, it is assumed that the transition of the load (load curve) with respect to the time of the day is predicted as shown in FIG. In FIG. 2, Lmax indicates the maximum value of the sum of the heat loads of the respective rooms, and Qmax indicates the maximum capacity of the multi-room air conditioner.
In any of the operation modes, the three-way valve V is switched so that the primary refrigeration cycle and the first heat exchange unit 14 of the refrigerant heat exchanger do not communicate with each other, and the refrigerant transfer pump PM in the secondary refrigeration cycle is stopped. doing.

上記運転モード(蓄冷・蓄熱)それぞれについて1次
側冷凍サイクルの作用を以下説明していく。尚、四方弁
3のモードについては、圧縮機2吐出側と室外側熱交換
器4とを、かつ、圧縮機2吸入側と蓄熱槽STRとを連通
する場合を冷房モード、圧縮機2吐出側と蓄熱槽STRと
を、かつ、圧縮機2吸入側と室外側熱交換器4とを連通
する場合を暖房モードと定義する。
The operation of the primary refrigeration cycle for each of the above operation modes (cool storage / heat storage) will be described below. The mode of the four-way valve 3 is a cooling mode, and a case where the discharge side of the compressor 2 is connected to the outdoor heat exchanger 4 and the suction side of the compressor 2 is connected to the heat storage tank STR. A case in which the compressor and the heat storage tank STR are communicated with each other and the compressor 2 suction side is communicated with the outdoor heat exchanger 4 is defined as a heating mode.

(1)蓄冷モード 四方弁3:冷房モード,膨張弁5:所定の開度とする。こ
の時、圧縮機2から送られる高温高圧の冷媒は、室外側
熱交換器4にて凝縮し、膨張弁5で減圧されて液あるい
は二相状態となり、蓄熱槽STR内の第1熱交換器12の管
内にて蒸発して蓄熱材11から吸熱した後(蓄冷運転)、
圧縮機2へ戻る。
(1) Cold storage mode Four-way valve 3: cooling mode, expansion valve 5: predetermined opening. At this time, the high-temperature and high-pressure refrigerant sent from the compressor 2 is condensed in the outdoor heat exchanger 4 and decompressed by the expansion valve 5 to be in a liquid or two-phase state, and the first heat exchanger in the heat storage tank STR After evaporating in the pipe 12 and absorbing heat from the heat storage material 11 (cool storage operation),
Return to the compressor 2.

(2)蓄熱モード 四方弁3:暖房モード,膨張弁5:全開とする。この時、
圧縮機2から送られる高温高圧の冷媒は、蓄熱槽STR内
の熱交換器12の管内にて凝縮して蓄熱材11へ放熱した後
(蓄熱運転)、膨張弁5で減圧されて液あるいは二相状
態となり、室外側熱交換器4の管内にて蒸発して圧縮機
2へ戻る。
(2) Heat storage mode Four-way valve 3: heating mode, expansion valve 5: fully open. At this time,
The high-temperature and high-pressure refrigerant sent from the compressor 2 is condensed in the pipe of the heat exchanger 12 in the heat storage tank STR and radiates heat to the heat storage material 11 (heat storage operation). It becomes a phase state and evaporates in the pipe of the outdoor heat exchanger 4 and returns to the compressor 2.

次に、昼間運転について説明する。この時、冷媒熱交
換器の切替弁Vの切り替えにより冷媒熱交換器の第1熱
交換部14を1次側冷凍サイクルに連通させておく。この
場合、1次側冷凍サイクルと2次側冷凍サイクルが分離
されていて、両サイクル内の冷媒が混合することがない
ため、適正冷媒封入量を維持でき、かつ、1次側冷凍サ
イクルの配管長が短くて済むため、圧縮機内の冷凍機油
が流出しても戻り易く、圧縮機の信頼性を高めることが
できる。
Next, daytime driving will be described. At this time, the first heat exchange section 14 of the refrigerant heat exchanger is connected to the primary refrigeration cycle by switching the switching valve V of the refrigerant heat exchanger. In this case, the primary refrigeration cycle and the secondary refrigeration cycle are separated, and the refrigerants in both cycles are not mixed, so that an appropriate amount of refrigerant can be maintained and the piping of the primary refrigeration cycle Since the length is short, even if the refrigerating machine oil in the compressor flows out, it is easy to return, and the reliability of the compressor can be improved.

(1)A,Bの多室式空気調和機のそれぞれにおいて (各室の熱負荷の合計値)≦(蓄熱槽の出力容量)であ
る場合 この場合は例えば、第2図中で言えば、Aの時刻τ0
〜τ1、Bの時刻τ0〜τ2の場合について説明する。
冷媒熱交換器HEを連通した1次側冷凍サイクル、及び、
熱搬送サイクルは運転せずに、2次側冷凍サイクルのみ
運転する。即ち、夜間に蓄熱槽STR内の蓄熱材11に蓄え
た冷熱、あるいは、温熱を蓄熱槽内の第2熱交換器16を
介して、2次側冷凍サイクル内の冷媒と熱交換し、その
冷媒を冷媒搬送ポンプPMにて各室内機の室内側熱交換器
8a,8b,8cへ搬送して室内空気と熱交換することにより、
各室内の冷房、あるいは、暖房を行なう。従って、昼間
電力を使用せずに、夜間電力を利用して空調が行なえ
る。
(1) In each of the multi-chamber air conditioners A and B, (the total value of the heat load of each room) ≦ (the output capacity of the heat storage tank) In this case, for example, in FIG. A time τ0
Τ1 and B at times τ0 to τ2 will be described.
A primary refrigeration cycle communicating with a refrigerant heat exchanger HE, and
Only the secondary refrigeration cycle is operated without operating the heat transfer cycle. That is, cold or hot heat stored in the heat storage material 11 in the heat storage tank STR at night is exchanged with the refrigerant in the secondary refrigeration cycle via the second heat exchanger 16 in the heat storage tank, and the refrigerant is The refrigerant transfer pump PM uses the indoor heat exchanger of each indoor unit.
By transferring to 8a, 8b, 8c and exchanging heat with indoor air,
Cool or heat each room. Therefore, air conditioning can be performed using nighttime power without using daytime power.

(2)A,Bの多室式空気調和機のそれぞれにおいて (各室の熱負荷の合計値)>(蓄熱槽の出力容量)、か
つ、 (各室の熱負荷の合計値)≦(最大空調能力Qmax) である場合 (但し、(最大空調能力Qmax)=(蓄熱槽の出力容量)
+(1次側冷凍サイクルの出力容量)とする。) この場合は例えば、第2図中のAにおける時刻τ1〜
τ3,τ4〜τ7,Bにおける時刻τ2〜τ5,τ6〜τ7の
場合に相当し、この場合も熱搬送サイクルは運転しない
が、蓄熱槽STRのみの出力では負荷に対応できないた
め、冷媒熱交換器HEの三方弁Vにて冷媒熱交換器の第1
熱交換部14を連通させた1次側冷凍サイクル、及び、冷
媒熱交換器の第2熱交換器15、蓄熱槽内の第2熱交換器
16、冷媒搬送ポンプPM、室内側熱交換器8a,8b,8c、流量
調節弁7a,7b,7cからなる2次側冷凍サイクルの運転を行
う。即ち、夜間に蓄熱槽内の蓄熱材11に蓄えた冷熱(温
熱)を蓄熱槽内の第2熱交換器16を介して、2次側冷凍
サイクル内の冷媒と熱交換し、加えて、冷媒熱交換器の
第2熱交換部15内で1次側冷凍サイクルの冷媒と熱交換
し、その冷媒を冷媒搬送ポンプPMにて各室内機の室内側
熱交換器8a,8b,8cへ搬送して室内空気と熱交換すること
により、各室内の冷房、あるいは、暖房を行なう。従っ
て、夜間電力を利用して昼間電力の使用量を低減できる
とともに、2次側冷凍サイクルにおける能力不足を補う
ことができ、各室内での快適性が損なわれることを防止
できる。
(2) In each of the multi-room air conditioners A and B, (total value of heat load in each room)> (output capacity of heat storage tank) and (total value of heat load in each room) ≦ (maximum) (Air conditioning capacity Qmax) (However, (maximum air conditioning capacity Qmax) = (output capacity of heat storage tank))
+ (Output capacity of primary refrigeration cycle). In this case, for example, at times τ1 to τ1 at A in FIG.
This corresponds to the case of time τ2 to τ5, τ6 to τ7 at τ3, τ4 to τ7, B, and also in this case, the heat transfer cycle is not operated, but the output of only the heat storage tank STR cannot cope with the load, so the refrigerant heat exchanger The first of the refrigerant heat exchanger at the three-way valve V of HE
A primary-side refrigeration cycle communicating with a heat exchange unit 14, a second heat exchanger 15 of a refrigerant heat exchanger, and a second heat exchanger in a heat storage tank
16. Operate the secondary refrigeration cycle including the refrigerant transfer pump PM, the indoor heat exchangers 8a, 8b, 8c, and the flow control valves 7a, 7b, 7c. That is, at night, the cold heat (heat) stored in the heat storage material 11 in the heat storage tank exchanges heat with the refrigerant in the secondary refrigeration cycle via the second heat exchanger 16 in the heat storage tank. In the second heat exchange section 15 of the heat exchanger, heat exchange is performed with the refrigerant of the primary refrigeration cycle, and the refrigerant is transferred to the indoor heat exchangers 8a, 8b, 8c of the respective indoor units by the refrigerant transfer pump PM. By exchanging heat with room air, each room is cooled or heated. Therefore, the nighttime electric power can be used to reduce the amount of the daytime electric power used, and the shortage of the capacity in the secondary refrigeration cycle can be compensated, so that the comfort in each room can be prevented from being impaired.

(3)A,Bの多室式空気調和機のうち、多室式空気調和
機Aが能力不足で、即ち、 (各室の熱負荷の合計値)>(最大空調能力Qmax)であ
る場合 例えば、第2図中のAにおける時刻τ3〜τ4の場合
について述べると、A,Bの多室式空気調和機において、
(2)の昼間運転と同様の1次側、及び、2次側冷凍サ
イクル運転を行なうと同時に、多室式空気調和機A,Bお
のおのの2次側冷凍サイクルにおける室内機6a,6b,6cの
出入口集合配管相互をヘッダー17を介して連通して熱搬
送サイクルを使用して、能力余剰の多室式空気調和機B
の蓄熱槽STR内の冷(温)熱を、冷媒を媒体としてヘッ
ダー17を介して、能力不足である多室式空気調和機Aの
室内機6a,6b,6cへ搬送する。その際、ヘッダー17から多
室式空気調和機A,Bへの冷媒分配量の調整は、各室内機
内の流量調節弁7a,7b,7cにて行なう。
(3) Among the multi-room air conditioners A and B, when the multi-room air conditioner A has insufficient capacity, that is, when (total value of heat load of each room)> (maximum air conditioning capacity Qmax) For example, in the case of time τ3 to τ4 at A in FIG. 2, in the multi-room air conditioner of A and B,
At the same time as performing the primary and secondary refrigeration cycle operations similar to the daytime operation of (2), the indoor units 6a, 6b, and 6c in the secondary refrigeration cycle of each of the multi-room air conditioners A and B are also provided. The inlet / outlet collective pipes are communicated with each other via a header 17, and a heat transfer cycle is used to provide a multi-room air conditioner B with excess capacity.
The cold (warm) heat in the heat storage tank STR is transferred to the indoor units 6a, 6b, 6c of the multi-room air conditioner A, which has insufficient capacity, through the header 17 using the refrigerant as a medium. At that time, the adjustment of the refrigerant distribution amount from the header 17 to the multi-room air conditioners A and B is performed by the flow control valves 7a, 7b and 7c in each indoor unit.

従って、能力不足である多室式空気調和機Aの蓄熱槽
STRの蓄冷(熱)量を増加させることができ、従って、
その多室式空気調和機Aの2次側冷凍サイクルにおける
能力不足を補うことができ(能力補完量は第2図中斜線
部面積に相当)、快適性が損なわれることを防止でき
る。このことは多室式空気調和機Bにおける時刻τ5〜
τ6の場合についても言える同様作用である。
Therefore, the heat storage tank of the multi-room air conditioner A, whose capacity is insufficient.
The amount of cold storage (heat) in the STR can be increased,
The capacity shortage of the multi-room air conditioner A in the secondary side refrigeration cycle can be compensated (the capacity complement amount corresponds to the shaded area in FIG. 2), and the comfort can be prevented from being impaired. This means that at time τ5 in the multi-room air conditioner B
The same operation can be applied to the case of τ6.

また、空調設備の設計面においても、多室式空気調和
機AとBのそれぞれに接続されている室内の同時に発生
する熱負荷の和を設計負荷値とすればよく、即ち、熱負
荷のピーク値発生時刻が異なる場合、多室式空気調和機
A,B単独での設計負荷値(熱負荷のピーク値)の和より
小さくて済み、機器小型化が図れ、電力会社の契約電力
費用も低減でき、より経済的な設備設計が可能となる。
更に、室内機を増設する場合も、蓄熱槽に蓄える蓄冷熱
量を増加させることによって対応ができるため、拡張性
が設計自由度が高くなる。
In the design of the air conditioning equipment, the sum of the heat loads generated simultaneously in the rooms connected to the multi-room air conditioners A and B may be set as the design load value, that is, the peak heat load. If the value generation time is different, multi-room air conditioner
It can be smaller than the sum of the design load values (peak value of heat load) of A and B alone, the equipment can be downsized, the contract power cost of the power company can be reduced, and more economical equipment design can be achieved.
Further, even when an additional indoor unit is installed, it can be dealt with by increasing the amount of cold storage heat stored in the heat storage tank, so that expandability and design flexibility are increased.

発明の効果 以上のように本発明は、第1熱交換部と第2熱交換部
と切替弁を備えた冷媒熱交換器、第1熱交換器と第2熱
交換器を備えた蓄熱槽、圧縮機、四方弁、室外側熱交換
器、膨張弁、前記冷媒熱交換器の第1熱交換部、及び、
前記蓄熱槽の第1熱交換器を連通してなる1次側冷凍サ
イクルと、前記蓄熱槽内の第2熱交換器、前記冷媒熱交
換器の第2熱交換部、冷媒搬送ポンプ、及び、室内側熱
交換器と流量調節弁とからなる複数の室内機を連通して
なる2次側冷凍サイクルとからなる多室式空気調和機を
複数台設置し、前記多室式空気調和機おのおのの2次側
冷凍サイクルにおける室内機の出入口集合配管相互を連
通してなる熱搬送サイクルを備えることにより、以下の
効果が挙げられる。
Effect of the Invention As described above, the present invention provides a refrigerant heat exchanger including a first heat exchange unit, a second heat exchange unit, and a switching valve, a heat storage tank including a first heat exchanger and a second heat exchanger, A compressor, a four-way valve, an outdoor heat exchanger, an expansion valve, a first heat exchange section of the refrigerant heat exchanger, and
A primary-side refrigeration cycle communicating with a first heat exchanger of the heat storage tank, a second heat exchanger in the heat storage tank, a second heat exchange unit of the refrigerant heat exchanger, a refrigerant transport pump, and A plurality of multi-room air conditioners each including a secondary refrigeration cycle that connects a plurality of indoor units each including an indoor heat exchanger and a flow control valve are installed, and each of the multi-room air conditioners is installed. The provision of the heat transfer cycle in which the inlet / outlet collective pipes of the indoor unit communicate with each other in the secondary refrigeration cycle provides the following effects.

1)夜間電力を利用した蓄冷熱により昼間に暖房、また
は、冷房運転が行え、運転費が大幅に低減できる 2)能力不足である多室式空気調和機の蓄熱槽の蓄冷熱
量を増加させることができ、従って、その多室式空気調
和機の2次側冷凍サイクルにおける能力不足を補うこと
ができ、快適性が損なわれることを防止できる。
1) Heating or cooling operation can be performed in the daytime by cold storage heat using nighttime electric power, and the operating cost can be greatly reduced. 2) Increasing the cold storage heat capacity of the heat storage tank of the multi-room air conditioner with insufficient capacity. Therefore, it is possible to compensate for the lack of capacity in the secondary refrigeration cycle of the multi-room air conditioner, and to prevent the comfort from being impaired.

3)空調設備の設計面においても、複数の多室式空気調
和機のそれぞれに接続されている室内の同時に発生する
熱負荷の和を設計負荷値とすればよく、即ち、各多室式
空気調和機単独での設計負荷値(熱負荷のピーク値)の
和より小さくて済み、機器小型化が図れ、電力会社との
契約電力費用も低減でき、より経済的な設備設計が可能
となる。
3) In the design of the air conditioning equipment, the design load value may be the sum of the heat loads generated simultaneously in the rooms connected to each of the plurality of multi-room air conditioners. It can be smaller than the sum of the design load values (peak value of heat load) of the harmony device alone, the equipment can be downsized, the cost of contracted power with a power company can be reduced, and more economical equipment design is possible.

4)室内機を増設する場合も、蓄熱槽に蓄える蓄冷熱量
を増加させることによって対応ができるため、拡張性や
設計自由度が高くなる。
4) When an additional indoor unit is installed, it can be dealt with by increasing the amount of cold storage heat stored in the heat storage tank, so that expandability and design flexibility are increased.

5)1次側冷凍サイクルと2次側冷凍サイクルが分離さ
れていて、両サイクル内の冷媒が混合することがないた
め、適正冷媒封入量を維持でき、かつ、1次側冷凍サイ
クルの配管長が短くて済むため、圧縮機内の冷凍機油が
流出しても戻り易く、圧縮機の信頼性を高めることがで
きる。
5) Since the primary refrigeration cycle and the secondary refrigeration cycle are separated and the refrigerants in both cycles are not mixed, an appropriate amount of refrigerant can be maintained, and the pipe length of the primary refrigeration cycle Therefore, even if the refrigerating machine oil in the compressor flows out, it is easy to return, and the reliability of the compressor can be improved.

以上の効果により、夜間電力を利用して各多室式空気
調和機の蓄熱槽に蓄えた蓄冷熱量を蓄熱槽相互間におい
て熱搬送できる蓄熱空調システムを提供することが可能
になる。
According to the above effects, it is possible to provide a thermal storage air conditioning system that can transfer the amount of cold storage heat stored in the thermal storage tank of each multi-room air conditioner using the nighttime electric power between the thermal storage tanks.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例による蓄熱空調システムの冷
凍システム図、第2図は1日の時刻に対する負荷の推移
を示す特性図、第3図は従来例を示す多室式空気調和機
の冷凍システム図、第4図は従来例を示す空調システム
の冷凍システム図である。 2……圧縮機、3……四方弁、4……室外側熱交換器、
5……膨張弁、6a,6b,6c……室内機、7a,7b,7c……流量
調節弁、8a,8b,8c……室内側熱交換器、12……蓄熱槽の
第1熱交換器、14……冷媒熱交換器の第1熱交換部、15
……冷媒熱交換器の第2熱交換部、16……蓄熱槽の第2
熱交換器、HE……冷媒熱交換器、STR……蓄熱槽、PM…
…冷媒搬送ポンプ、V……三方弁。
FIG. 1 is a refrigeration system diagram of a heat storage air conditioning system according to one embodiment of the present invention, FIG. 2 is a characteristic diagram showing a change in load with respect to time of day, and FIG. 3 is a multi-room air conditioner showing a conventional example. FIG. 4 is a refrigeration system diagram of an air conditioning system showing a conventional example. 2 ... Compressor, 3 ... Four-way valve, 4 ... Outdoor heat exchanger,
5 Expansion valve, 6a, 6b, 6c Indoor unit, 7a, 7b, 7c Flow control valve, 8a, 8b, 8c Indoor heat exchanger 12, 12 First heat exchange of heat storage tank , 14... First heat exchange part of refrigerant heat exchanger, 15
... The second heat exchange part of the refrigerant heat exchanger, 16... The second part of the heat storage tank
Heat exchanger, HE …… Refrigerant heat exchanger, STR …… Heat storage tank, PM…
... refrigerant transfer pump, V ... three-way valve.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】第1熱交換部と第2熱交換部と切替弁を備
えた冷媒熱交換器、第1熱交換器と第2熱交換器を備え
た蓄熱槽、圧縮機、四方弁、室外側熱交換器、膨張弁、
前記冷媒熱交換器の第1熱交換部、及び、前記蓄熱槽の
第1熱交換器を連通してなる1次側冷凍サイクルと、前
記蓄熱槽内の第2熱交換器、前記冷媒熱交換器の第2熱
交換部、冷媒搬送ポンプ、及び、室内側熱交換器と流量
調節弁とからなる複数の室内機を連通してなる2次側冷
凍サイクルとからなる多室式空気調和機を複数台設置
し、前記多室式空気調和機おのおのの2次側冷凍サイク
ルにおける室内機の出入口集合配管相互を連通してなる
熱搬送サイクルを備えた蓄熱空調システム。
1. A refrigerant heat exchanger including a first heat exchange section, a second heat exchange section, and a switching valve, a heat storage tank including a first heat exchanger and a second heat exchanger, a compressor, a four-way valve, Outdoor heat exchanger, expansion valve,
A first heat exchange section of the refrigerant heat exchanger, a primary refrigeration cycle communicating with the first heat exchanger of the heat storage tank, a second heat exchanger in the heat storage tank, the refrigerant heat exchange A multi-chamber air conditioner comprising a second heat exchange section of the heat exchanger, a refrigerant transport pump, and a secondary refrigeration cycle communicating with a plurality of indoor units comprising an indoor heat exchanger and a flow control valve. A thermal storage air-conditioning system comprising a plurality of units, and a heat transfer cycle including a heat transfer cycle in which the inlet / outlet collective pipes of the indoor units in the secondary refrigeration cycle of each of the multi-room air conditioners are communicated with each other.
JP22633889A 1989-08-31 1989-08-31 Thermal storage air conditioning system Expired - Fee Related JP2705036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22633889A JP2705036B2 (en) 1989-08-31 1989-08-31 Thermal storage air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22633889A JP2705036B2 (en) 1989-08-31 1989-08-31 Thermal storage air conditioning system

Publications (2)

Publication Number Publication Date
JPH0391658A JPH0391658A (en) 1991-04-17
JP2705036B2 true JP2705036B2 (en) 1998-01-26

Family

ID=16843604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22633889A Expired - Fee Related JP2705036B2 (en) 1989-08-31 1989-08-31 Thermal storage air conditioning system

Country Status (1)

Country Link
JP (1) JP2705036B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014231922A (en) * 2013-05-28 2014-12-11 東京瓦斯株式会社 Floor panel heat removal system
WO2020261360A1 (en) * 2019-06-25 2020-12-30 日立ジョンソンコントロールズ空調株式会社 Air conditioning device, operation control method, and program

Also Published As

Publication number Publication date
JPH0391658A (en) 1991-04-17

Similar Documents

Publication Publication Date Title
JP2705031B2 (en) Multi-room air conditioner
JP2006292313A (en) Geothermal unit
JP4203758B2 (en) Water-cooled heat pump type ground-heated air conditioning system
WO1997015789A1 (en) Air conditioner
JPH03236570A (en) Air-conditioner
JP2705036B2 (en) Thermal storage air conditioning system
JP2748960B2 (en) Thermal storage air conditioning system
JP2705035B2 (en) Thermal storage air conditioning system
JP2705034B2 (en) Thermal storage air conditioning system
JP2725709B2 (en) Multi-room air conditioner
JP2771952B2 (en) Individually distributed air conditioner
JP2705033B2 (en) Multi-room air conditioner
JP2000111105A (en) Air-conditioning system for office building
JP2705044B2 (en) Air conditioner
JPH05620B2 (en)
JP2705032B2 (en) Multi-room air conditioner
JP2851696B2 (en) Thermal storage type air conditioner
JPH0849939A (en) Regeneration air-conditioning system
JP3297467B2 (en) Thermal storage type air conditioner
JP3614626B2 (en) Air conditioner and method of operating air conditioner
JPH04103931A (en) Air-handling unit and its operation
JPH07133946A (en) Air-conditioning system
JP2000234771A (en) Secondary refrigerant heat-storing air-conditioning system
JP2531967B2 (en) Cooling system with secondary heat storage tank
JP3569546B2 (en) Air conditioner

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees