JP2700003B2 - Compact wide-angle lens - Google Patents

Compact wide-angle lens

Info

Publication number
JP2700003B2
JP2700003B2 JP62012292A JP1229287A JP2700003B2 JP 2700003 B2 JP2700003 B2 JP 2700003B2 JP 62012292 A JP62012292 A JP 62012292A JP 1229287 A JP1229287 A JP 1229287A JP 2700003 B2 JP2700003 B2 JP 2700003B2
Authority
JP
Japan
Prior art keywords
lens
refractive index
index distribution
rear group
refractive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62012292A
Other languages
Japanese (ja)
Other versions
JPS63180925A (en
Inventor
武 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optic Co Ltd filed Critical Olympus Optic Co Ltd
Priority to JP62012292A priority Critical patent/JP2700003B2/en
Publication of JPS63180925A publication Critical patent/JPS63180925A/en
Application granted granted Critical
Publication of JP2700003B2 publication Critical patent/JP2700003B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は全長の短いコンパクトな広角レンズに関する
ものである。 〔従来の技術〕 近年、各種レンズ系のコンパクト化に関する要請が高
まつており、広角レンズにおいても口径比が大であつて
コンパクトで収差が良好に補正されたレンズ系の出現が
期待されている。 レトロフオーカス型のバツクフオーカスの長い大口径
比広角レンズは、その屈折力配分の物体側から像側へ向
かつて前群が負で後群が正の前後非対称な構成であるた
めに、収差補正が困難であつて、一般に球面収差だけで
なく軸外の諸収差の補正が問題となつていた。その中で
も特にコマ収差の悪化はフレアーの多いコントラストの
悪い画像になる。この補正のために特開昭53−123922号
公報等数多くの提案がなされており、又近年においては
特開昭58−58514号などの非球面レンズを用いたものも
ある。 一方このレトロフオーカス型の大口径比広角レンズの
構成枚数を減少させ全長を短くコンパクトにするために
は各群の構成レンズの曲率を強め屈折力を増大させる必
要がある。その結果ペツツバール和が増大し、像面わん
曲が悪化するなど諸収差がバランスを崩す傾向があらわ
れる。しかし前記の方法は、いずれもこのペツツバール
和の低減効果が充分ではなく、大口径比広角レンズをコ
ンパクト化しさらに収差を良好に補正することは困難で
あつた。 〔発明が解決しようとする問題点〕 本発明は、以上のような従来の欠点を除去したもの
で、諸収差が良好に補正された全長の短いコンパクトな
広角レンズを提供するものである。 〔問題点を解決するための手段〕 本発明のレンズ系は、前記の問題点を解決するため
に、物体側から順に負の屈折力の前群と正の屈折力の後
群とよりなり、後群中に少なくとも1枚の屈折率分布型
レンズを設けたものである。 又本発明の目的を達成するために、前記屈折率分布型
レンズが光軸を中心として光軸からの距離hに応じてそ
の屈折率の変化するものであることが望ましい。つまり
その屈折率nm(h)が次の式で表わされる。 nm(h)=N0+N1h2+N2h4+・・・ ただしNm(m=0,1,2…)は定数であり、それぞれ屈
折率分布の2m次の係数である。 ここで光軸から離れるにしたがつて屈折率が減少する
分布を収束性の屈折率分布、逆に光軸から離れるにした
がつて屈折率が増加する分布を発散性の屈折率分布と呼
ぶ。 本発明のレンズ系において、上記のような屈折率分布
型レンズを配置する場合、後群中の正レンズもしくは後
群中の負レンズに配置することが考えられる。 まず上記の屈折率分布型レンズを後群中の正レンズに
配置する場合について述べる。 レンズ系をコンパクトにする場合、前群,後群ともに
その屈折力を強くする必要が生じ、全系のペツツバール
和の増大を招く。これは主に後群中の絞りの後方にある
正レンズの屈折力を増大させたことに起因する。又この
正レンズは、屈折力を確保するために像側の面を強くす
る必要があり、同時に球面収差が大になる。 本発明では、以上の問題点を除去するためにこの正レ
ンズを収束性の屈折率分布型レンズにした。 一般に屈折率分布型レンズで発生するペツツバール和
Pは、レンズ媒質での収束,発散効果により屈折力を
、レンズの中心屈折率をn0とする時、P=/n0 2にて
与えられ、▲n2 0▼に反比例する。一方面によるペツツ
バール和は、P=/n0に与えられ、n0に反比例する。
したがつて同じ屈折力であれば媒質によるペツツバール
和の方が、面によるペツツバール和の発生よりも小さ
い。したがつて全系のペツツバール和と同符号のペツツ
バール和を発生する正レンズの場合、収束性の屈折率分
布型レンズを用いて媒質に屈折力を分担させることによ
つて、レンズ系全体をコンパクトにするのに必要な屈折
力をもたせるように屈折力を強くしても全系のペツツバ
ール和を小さく抑えることが出来る。またこのように媒
質に屈折力を分担させることによつて面の屈折力負担分
が減少し曲率がゆるくなるために面で発生する球面収差
を小さく抑えることができる。更に屈折率の分布によつ
て光線高により屈折力を変化させ球面収差,コマ収差,
非点収差を補正することが出来る。 このように収差補正上の三つの効果によつて均質なレ
ンズ系では達成することが極めて困難な程度にまでコン
パクトにすることが出来る。 以上のようにすることによつて後群中の正レンズに屈
折率分布型レンズを用いることにより本発明の目的を達
成することが出来る。この場合上記の屈折率分布型レン
ズにおける係数N1とNm(m=2,3,4…)が次の条件を満
足することが望ましい。 ただしfは全系の焦点距離である。 この条件(1)を越えると光軸から離れた点での屈折
率変化が大になり特に球面収差,コマ収差,非点収差を
良好に補正することが困難となる。 一方、媒質と屈折面に分担させる屈折力も適度にバラ
ンス良くとることが望ましい。つまり媒質に分担させる
屈折力を大きくとる方が、ペツツバール和の発生を抑え
る上では有利である。しかし屈折力を大きくとるために
は、前記の屈折率分布の式で係数N1を大きくしなければ
ならず、屈折率変化量が大きくなりすぎて製造上の困難
をもたらす。また媒質に分担される屈折力を小さくとる
と前記屈折率分布の式で係数N1を小さくしなければなら
ず、その場合前記の条件(1)を満足するためには屈折
率の変化量が小さくなりすぎて屈折率分布型レンズを用
いる優位性が低下し、諸収差特に球面収差の補正が困難
になる。 以上のことからペツツバール和、球面収差等の諸収差
をバランス良く補正するためには下記の条件(2)を満
足するようにすることが望ましい。 ただしRpは屈折率分布型レンズの像側の屈折面の曲率
は系である。尚N1(p)は屈折率分布型レンズの2次の
係数で(p)は正レンズに用いたものであることを示
す。 上記条件(2)において、上限を越えてN1が大になる
と前述のように屈折率の変化量が大きくなりすぎて製造
上の困難をきたすことになる。また下限を越えてN1が小
になると屈折率分布型レンズの優位性が低下し、球面収
差等の諸収差の補正が困難になる。 次に前記の後群中に負レンズを配置する場合について
説明する。 前述のようにレンズ系をコンパクトにするにともな
い、後群中の正レンズは、特に屈折力の増大に伴ないペ
ツツバール和の増加と球面収差の悪化が問題になる。 このペツツバール和を減少させるためと球面収差を減
少させる目的で後群に負レンズを配置することが考えら
れる。つまり負レンズでは全系のペツツバール和とは逆
符号のペツツバール和が発生するのでこの負レンズのペ
ツツバール和を増大させるとそれだけ全系のペツツバー
ル和は改善される。その意味で後群中に用いる負レンズ
は前述の後群中の正レンズとは逆に屈折率分布型レンズ
を用いて媒質にペツツバール和の発生を分担させるの
は、面の曲率にのみペツツバール和の発生を負担させる
場合に比べて不利である。しかしこの負レンズを均質レ
ンズにした場合は、面での屈折の効果による球面収差の
補正量は、コンパクト化に伴なう前述の正レンズの屈折
力増大により大きく発生する球面収差を充分に補正する
までには至らず、屈折率分布型レンズを用いることによ
つて補正が可能になる。つまりこの負レンズを発散性の
屈折率分布型レンズにすることにより可能になる。更に
条件(1)を満足するような屈折率を持つ発散性の屈折
率分布型レンズにすることが望ましくこれによつて球面
収差などの諸収差を非常に良好に補正することができ
る。この場合前述の屈折率分布の式におけるN1を大にし
て屈折率の変化を大きくすればそれだけ球面収差の補正
には有利になる。 以上のことを考慮すると後群の負レンズ特に絞りの後
の負レンズに屈折率分布型レンズを用いる場合には、球
面収差等の諸収差とペツツバール和の補正とをバランス
良く行なうために以下の条件(3)を満足することが望
ましい。 ただしRnは上記の屈折率分布型レンズの物体側の面の
曲率半径である。尚N1(n)は屈折率分布型レンズの2
次の係数で(n)は負レンズに用いたものであることを
示し、条件(1)のN1は正レンズ,負レンズいずれも満
足する。 この条件(3)において下限を越えてN1が大になると
球面収差など諸収差の補正の点では有利だがペツツバー
ル和を抑えきれなくなり像面わん曲が悪化する。また屈
折率の変化量が大きくなりすぎて製造上の困難をきたす
ことになる。また条件(3)の上限を越えるとN1が小さ
くなりペツツバール和の補正の点では有利であるが球面
収差などの諸収差が補正不足になる。 本発明のレンズ系において、一層コンパクトにするた
めには、以下の条件(4),(5)を付加することによ
つてレンズ系全体の屈折力のバランスを取ることが望ま
しい。 (4) 0.75<|fF/fR|<1.75 (5) 0.5 <|fF/f |<1.5 ただしfF,fRは夫々前群および後群の焦点距離であ
る。 条件(4)は前群と後群の屈折力のバランスを定めた
ものである。この条件の上限を越えると後群の屈折力が
前群と比較して強くなりすぎてバツクフオーカスが充分
に確保できない上に球面収差などが増大し補正が困難に
なる。またこの条件の下限を越えると前群の屈折力が後
群に比べて強くなりすぎるので、バツクフオーカスを確
保する上では有利であるが歪曲収差やコマ収差などが大
きく発生し補正が困難になる。 このように前群と後群の屈折力のバランスを取つた上
で、各種の屈折力をある程度限定するために設けたのが
条件(5)である。この条件(5)の上限を越えて前群
の焦点距離が長くなるとそれに伴つて後群の焦点距離も
長くなるためにレンズ系の全長が長くなりコンパクト化
が困難になる。また下限を越えて前群焦点距離が短くな
るとそれに伴い後群の焦点距離も短くなるためにレンズ
系の全長が短くなりコンパクト化にとつては有利である
が諸収差が増大し補正が困難になる。 〔実施例〕 本発明の広角レンズの各実施例を示す。 実施例1 f=24mm,F/2.0 r1=48.305 d1=4.35 n1=1.74400 ν=44.73 r2=124.610 d2=0.18 r3=20.341 d3=13.9 n2=1.60311 ν=60.70 r4=10.606 d4=6.89 r5=24.627 d5=17.4 n3=1.60311 ν=60.70 r6=11.384 d6=2.94 r7=21.331 d7=3.48 n4=1.60342 ν=38.01 r8=35.330 d8=2.31 r9=∞(絞り) d9=4.72 r10=180.428 d10=1.49 n5=1.77250 ν=49.66 r11=−49957.800 d11=4.17 r12=−105.112 d12=4.62 n6屈折率分布型レンズ r13=−16.355 実施例2 f=28mm、F/2.0 r1=34.890 d1=4.35 n1=1.64000 ν=60.09 r2=117.272 d2=0.18 r3=29.089 d3=1.98 n2=1.50378 ν=66.81 r4=9.705 d4=6.50 r5=152.602 d5=1.89 n3=1.50378 ν=66.81 r6=36.230 d6=3.25 r7=25.608 d7=3.75 n4=1.72000 ν=46.03 r8=70.899 d8=1.84 r9=∞(絞り) d9=2.74 r10=−23.577 d10=2.06 n5=1.76182 ν=26.55 r11=−64.211 d11=2.35 r12=289.966 d12=4.83 n6屈折率分布型レンズ r13=−17.175 実施例3 f=24mm、F/2.0 r1=53.353 d1=3.95 n1=1.74400 ν=44.73 r2=136.374 d2=0.50 r3=22.403 d3=1.34 n2=1.60311 ν=60.70 r4=10.149 d4=7.56 r5=21.058 d5=1.41 n3=1.60311 ν=60.70 r6=14.072 d6=4.11 r7=50.023 d7=5.61 n4=1.60342 ν=38.01 r8=184.067 d8=2.20 r9=∞(絞り) d9=4.36 r10=−35.781 d10=3.20 n5屈折率分布型レンズ r11=−19.577 d11=1.26 r12=−32.843 d12=4.09 n6=1.67000 ν=57.33 r13=−18.222 実施例4 f=28mm、F/2.0 r1=38.155 d1=4.67 n1=1.64000 ν=60.09 r2=121.052 d2=0.51 r3=15.821 d3=1.62 n2=1.50378 ν=66.81 r4=9.497 d4=7.50 r5=251.208 d5=1.52 n3=1.50378 ν=66.81 r6=12.586 d6=2.51 r7=20.510 d7=5.00 n4=1.60342 ν=38.01 r8=−78.777 d8=1.85 r9=∞(絞り) d9=−1.80 r10=−50.507 d10=1.18 n5屈折率分布型レンズ r11=62.126 d11=2.50 r12=−43.021 d12=3.00 n6=1.69680 ν=55.52 r13=−20.636 d13=0.58 r14=−127.044 d14=4.20 n7=1.67000 ν=57.33 r15=−16.522 実施例5 f=24mm、F/2.0 r1=40.671 d1=4.00 n1=1.74400 ν=44.73 r2=98.692 d2=0.44 r3=16.012 d3=1.39 n2=1.60311 ν=60.70 r4=8.859 d4=6.19 r5=62.563 d5=1.33 n3=1.60311 ν=60.70 r6=14.932 d6=2.90 r7=23.724 d7=6.17 n4=1.60342 ν=38.01 r8=−116.131 d8=1.50 r9=∞(絞り) d9=2.20 r10=−26.003 d10=3.41 n5屈折率分布型レンズ r11=257.075 d11=0.64 r12=−134.329 d12=3.52 n6=1.69680 ν=55.52 r13=−17.514 d13=0.50 r14=−271.782 d14=3.50 n7=1.67000 ν=57.33 r15=−18.626 ただしr1,r2,…はレンズ各面の曲率半径、d1,d2,…は
各レンズの肉厚およびレンズ間隔、n1,n2,…は各レンズ
の屈折率、ν12,…は各レンズのアツベ数、FBはバツ
クフオーカスである。 上記の実施例1乃至実施例5は、夫々第1図乃至第5
図に示すレンズ構成である。これらは図面に示すように
いずれも前群Iが物体側から像側に向かつて順に凸面を
物体側に向けた正のメニスカスレンズと凹面を像側に向
けた負のメニスカスレンズ2枚からなる3枚のレンズに
て構成されている。 これら実施例のうち実施例1乃至実施例3は後群中の
正レンズの一つを収束性の屈折率分布型レンズにしたも
ので、いずれも均質系のみで構成した場合に比べて屈折
率分布型レンズの媒質に屈折力を分担させた分だけ特に
曲率が強くなりがちな後群の正レンズの像側の面をゆる
くしてペツツバール和を改善し像面わん曲を良好に補正
したものである。 実施例1は、第1図に示すように後群IIを物体側より
順に凸面を物体側に向けた正のメニスカスレンズと、両
凸レンズと、凸面を像面に向けた正のメニスカスレンズ
とにて構成し、そのうちの正のメニスカスレンズを収束
性の屈折率分布型レンズにしてある。この収束性の屈折
率分布型レンズでは、屈折率の分布により各光線高によ
り屈折力を変化させて、レンズの像面側の面での屈折に
より球面収差,コマ収差,非点収差を良好に補正し、全
長の短い大口径比広角レンズを実現したものである。こ
の実施例1の収差状況は第6図に示す通りである。 実施例2は、第2図に示すように後群IIを物体側より
順に凸面を物体側に向けた正のメニスカスレンズと、凹
面を物体側に向けた負のメニスカスレンズと、両凸レン
ズとにて構成した。そのうち両凸レンズを収束性の屈折
率分布を有するレンズにしたものである。収束性の屈折
率分布型レンズを両凸形状としたことによつて像側の面
だけでなく、物体側の面においても屈折率の分布によ
り、各光線高によって屈折力を変化させ、像面側に比べ
れば多少小さいものの、球面収差,コマ収差,非点収差
を補正するようにしている。また後群IIに設けた負のメ
ニスカスレンズによりペツツバール和および球面収差を
補正している。これらによつて実施例1のレンズ系より
も一層全長の短い大口径比広角レンズを実現した。この
実施例の収差状況は第7図に示す通りである。 実施例3は、第3図のように後群IIを物体側より順に
凸面を物体側に向けた正のメニスカスレンズと、凸面を
像側に向けた正のメニスカスレンズと、凸面を像側に向
けた正のメニスカスレンズとにて構成し、そのうちの物
体側に位置している(絞りの直後の)凸面を像側に向け
たメニスカスレンズを収束性の屈折率分布型レンズにし
た。収束性の屈折率分布型レンズを上記の位置に配置し
たことによつて、各光線高により屈折力を変化させ、そ
の効果により像側の面にて球面収差,コマ収差,非点収
差を良好に補正するのに加えて、屈折率分布型レンズの
媒質での効果によつて球面収差を補正して全長の短い大
口径比広角レンズを実現した。この実施例の収差状況
は、第8図に示す通りである。 実施例4,実施例5は、後群の負レンズを発散性の屈折
率分布型レンズにしたものである。これら実施例は夫々
第4図,第5図に示すレンズ構成で、いずれも後群IIは
物体側から順に両凸レンズと、両凹レンズと、凸面を像
側に向けた正のメニスカスレンズ2枚との4枚の構成で
ある。そのうちの両凹レンズが発散性の屈折率分布を有
するレンズである。この両凹の屈折率分布型レンズは、
屈折率分布を適当な発散性にすることによつて、既に述
べたように相反する二つの補正即ち屈折率の分布により
各光線高で屈折力が変化する効果による球面収差などの
諸収差の補正と、全系のペツツバール和の補正とをバラ
ンス良く行ない全長の短い大口径比広角レンズを実現し
た。これら実施例4,5の収差状況は夫々第9図,第10図
に示す通りである。 屈折率分布型レンズは、製造コスト並びにアライメン
トの難しさを考慮した場合、なるべく少ない枚数で効果
を上げるようにすることが望ましい。上記の実施例でも
後群を構成する正レンズあるいは負レンズの一枚を屈折
率分布型レンズとすることで充分にその効果を奏するよ
うにしてある。しかし複数枚の正レンズ又は負レンズ
を、あるいは正レンズと負レンズの両方を屈折率分布型
レンズにし、その相乗効果によりより大きな効果を生ず
るようにすることができる。 〔発明の効果〕 以上詳細に説明したようにまた実施例から明らかなよ
うに、本発明の広角レンズは、後群に光軸を中心として
光軸からの距離に応じてその屈折率が変化する1枚の屈
折率分布型レンズを配置し、さらに条件(1)乃至条件
(5)を満足することによって諸収差が良好に補正され
た全長の短いコンパクトなレンズ系になし得たものであ
る。
The present invention relates to a compact wide-angle lens having a short overall length. [Related Art] In recent years, there has been an increasing demand for compactness of various lens systems, and the emergence of a lens system having a large aperture ratio and a compact and well-corrected aberration has been expected even in a wide-angle lens. . The long-aperture ratio wide-angle lens with a long back focus of the retrofocus type has a configuration in which the front unit is negative and the rear unit is positively asymmetric in the front-rear direction from the object side to the image side in the refractive power distribution. It has been difficult to correct not only spherical aberration but also various off-axis aberrations in general. Above all, deterioration of coma aberration results in an image with much flare and poor contrast. Numerous proposals have been made for this correction, such as Japanese Patent Application Laid-Open No. Sho 53-123922, and in recent years, there has been proposed a device using an aspherical lens, such as Japanese Patent Application Laid-Open No. 58-58514. On the other hand, in order to reduce the number of components of the retrofocus-type large-aperture ratio wide-angle lens and to shorten the overall length and make the lens compact, it is necessary to increase the curvature of the component lenses of each group and increase the refractive power. As a result, the Petzval sum increases, and various aberrations tend to lose their balance, for example, the curvature of the image surface deteriorates. However, none of the above methods has a sufficient effect of reducing the Petzval sum, and it has been difficult to make a large-aperture-ratio wide-angle lens compact and satisfactorily correct aberrations. [Problems to be Solved by the Invention] The present invention eliminates the above-mentioned conventional drawbacks and provides a compact wide-angle lens with a short overall length, in which various aberrations are satisfactorily corrected. (Means for Solving the Problems) The lens system of the present invention comprises, in order from the object side, a front group of negative refractive power and a rear group of positive refractive power in order to solve the above problems, At least one gradient index lens is provided in the rear group. In order to achieve the object of the present invention, it is preferable that the refractive index distribution type lens has a refractive index that changes according to a distance h from the optical axis with the optical axis as a center. That is, the refractive index nm (h) is represented by the following equation. n m (h) = N 0 + N 1 h 2 + N 2 h 4 +... where Nm (m = 0, 1, 2,...) is a constant, and is a 2m-order coefficient of the refractive index distribution. Here, the distribution in which the refractive index decreases as the distance from the optical axis decreases is referred to as a convergent refractive index distribution, and the distribution in which the refractive index increases as the distance from the optical axis increases decreases is referred to as a divergent refractive index distribution. In the lens system of the present invention, when disposing the above-described gradient index lens, it is conceivable to dispose it on the positive lens in the rear group or the negative lens in the rear group. First, the case where the above-described gradient index lens is disposed on the positive lens in the rear group will be described. To make the lens system compact, it is necessary to increase the refractive power of both the front group and the rear group, which causes an increase in Petzval sum of the whole system. This is mainly due to an increase in the refractive power of the positive lens behind the stop in the rear group. In addition, in this positive lens, it is necessary to strengthen the surface on the image side in order to secure the refracting power, and at the same time, the spherical aberration becomes large. In the present invention, in order to eliminate the above problems, this positive lens is a convergent refractive index distribution type lens. In general, Petzval sum P generated by a gradient index lens is given by the refractive power by the convergence and divergence effects in the lens medium, and P = / n 0 2 when the central refractive index of the lens is n 0 , ▲ n 2 0 is inversely proportional to the ▼. The Petzval sum on one side is given by P = / n 0 and is inversely proportional to n 0 .
Therefore, for the same refractive power, the Petzval sum due to the medium is smaller than the Petzval sum due to the surface. Therefore, in the case of a positive lens that generates a Petzval sum with the same sign as the Petzval sum of the entire system, the entire lens system is made compact by using a convergent refractive index distribution lens to share the refractive power in the medium. The Petzval sum of the entire system can be kept small even if the refractive power is increased so as to have the necessary refractive power to achieve the above. In addition, since the refractive power is shared by the medium in this manner, the refractive power burden on the surface is reduced and the curvature is reduced, so that spherical aberration generated on the surface can be suppressed to a small value. Further, the refractive power is changed by the ray height according to the distribution of the refractive index, and spherical aberration, coma aberration,
Astigmatism can be corrected. As described above, by the three effects on the aberration correction, it is possible to reduce the size to a level extremely difficult to achieve with a homogeneous lens system. As described above, the object of the present invention can be achieved by using a gradient index lens as the positive lens in the rear group. It is desirable in this case that the coefficient N 1 in the refractive index distribution type lens Nm (m = 2,3,4 ...) satisfies the following condition. Here, f is the focal length of the entire system. If the condition (1) is exceeded, the change in the refractive index at a point distant from the optical axis becomes large, and it becomes difficult to satisfactorily correct particularly spherical aberration, coma, and astigmatism. On the other hand, it is desirable that the refracting power shared between the medium and the refracting surface be appropriately balanced. That is, it is advantageous to increase the refractive power shared by the medium in order to suppress the Petzval sum. But in order to take the power greatly, it is necessary to increase the coefficient N 1 in the formula of the refractive index distribution of the results in manufacturing difficulties too large refractive index change. Also it is necessary to reduce the coefficient N 1 in the formula and the refractive index distribution taking small refractive power is shared in the medium, the amount of change in the case where the refractive index in order to satisfy the condition (1) of It becomes too small, and the superiority of using the gradient index lens is reduced, and it becomes difficult to correct various aberrations, particularly spherical aberration. From the above, it is desirable to satisfy the following condition (2) in order to correct various aberrations such as Petzval sum and spherical aberration in a well-balanced manner. However R p is the radius of curvature of the refractive surface on the image side of the gradient index lens is a system. N 1 (p) is a quadratic coefficient of the gradient index lens, and (p) indicates that it is used for the positive lens. In the condition (2), so that N 1 exceeds the upper limit becomes too large amount of change in refractive index as described above and becomes large causing difficulty in manufacturing. The N 1 is lowered superiority of refractive index distribution type lens becomes small beyond the lower limit, it becomes difficult to aberrations of the correction, such as spherical aberration. Next, a case where a negative lens is arranged in the rear group will be described. As described above, as the lens system is made more compact, the positive lens in the rear group has a problem that the Petzval sum increases and the spherical aberration deteriorates, particularly as the refractive power increases. It is conceivable to arrange a negative lens in the rear group for the purpose of reducing the Petzval sum and reducing spherical aberration. That is, since the Petzval sum of the opposite sign to the Petzval sum of the entire system occurs in the negative lens, the Petzval sum of the entire system is improved by increasing the Petzval sum of the negative lens. In that sense, the negative lens used in the rear group, in contrast to the positive lens in the aforementioned rear group, uses a gradient index lens to share the Petzval's sum in the medium because the Petzval's sum only applies to the curvature of the surface. This is disadvantageous as compared with the case where the occurrence of the problem is burdened. However, when this negative lens is made a homogeneous lens, the amount of correction of spherical aberration due to the effect of refraction on the surface is sufficient to compensate for the spherical aberration that occurs greatly due to the increase in the refractive power of the positive lens described above due to compactness. However, the correction can be made by using the gradient index lens. That is, it becomes possible by making this negative lens a divergent refractive index distribution type lens. Further, it is desirable to use a divergent refractive index distribution type lens having a refractive index that satisfies the condition (1), whereby various aberrations such as spherical aberration can be corrected very well. In this case it is advantageous in the N 1 in the formula of the refractive index distribution of the aforementioned correction of the more spherical aberration by increasing the change of the refractive index in the large. In consideration of the above, in the case of using a gradient index lens as the negative lens in the rear group, particularly the negative lens after the stop, in order to balance various aberrations such as spherical aberration and Petzval's sum with a good balance, It is desirable to satisfy the condition (3). However R n is the radius of curvature of the object-side surface of said gradient index lens. N 1 (n) is 2 of the gradient index lens.
Following by a factor (n) indicates that those used in the negative lens, the N 1 conditions (1) Both positive lens, a negative lens satisfies. N 1 exceeds the lower limit in the condition (3) is in terms of correcting various aberrations such as spherical aberration becomes a large it is advantageous but image plane Curved longer completely suppressed Petsutsubaru sum is deteriorated. In addition, the amount of change in the refractive index becomes too large, which causes difficulty in manufacturing. The conditions but in terms of the upper limit a exceeded when N 1 is small becomes a Petsutsubaru sum correction (3) is advantageous becomes various aberrations sufficiently corrected such as spherical aberration. In order to make the lens system of the present invention more compact, it is desirable to balance the refractive power of the entire lens system by adding the following conditions (4) and (5). A <1.5, however f F, the focal length of f R are each front group and the rear group | (4) 0.75 <| f F / f R | <1.75 (5) 0.5 <| f F / f. Condition (4) defines the balance between the refractive powers of the front group and the rear group. If the upper limit of this condition is exceeded, the refracting power of the rear group becomes too strong as compared with the front group, so that a sufficient back focus cannot be secured, and spherical aberration and the like increase, making correction difficult. If the lower limit of this condition is exceeded, the refracting power of the front group becomes too strong as compared with the rear group, which is advantageous for securing a back focus, but large distortion and coma are generated, making correction difficult. After balancing the refractive powers of the front group and the rear group in this way, the condition (5) is provided to limit various refractive powers to some extent. If the focal length of the front lens group becomes longer than the upper limit of the condition (5), the focal length of the rear lens group becomes longer accordingly, so that the total length of the lens system becomes longer and it becomes difficult to make the lens system more compact. Also, if the focal length of the front group becomes shorter than the lower limit, the focal length of the rear group becomes shorter, which shortens the overall length of the lens system, which is advantageous for compactness, but increases aberrations and makes it difficult to correct. Become. EXAMPLES Examples of the wide-angle lens of the present invention will be described. Example 1 f = 24 mm, F / 2.0 r 1 = 48.305 d 1 = 4.35 n 1 = 1.74400 ν 1 = 44.73 r 2 = 124.610 d 2 = 0.18 r 3 = 20.341 d 3 = 13.9 n 2 = 1.60311 ν 2 = 60.70 r 4 = 10.606 d 4 = 6.89 r 5 = 24.627 d 5 = 17.4 n 3 = 1.60311 ν 3 = 60.70 r 6 = 11.384 d 6 = 2.94 r 7 = 21.331 d 7 = 3.48 n 4 = 1.60342 ν 4 = 38.01 r 8 = 35.330 d 8 = 2.31 r 9 = ∞ ( stop) d 9 = 4.72 r 10 = 180.428 d 10 = 1.49 n 5 = 1.77250 ν 5 = 49.66 r 11 = -49957.800 d 11 = 4.17 r 12 = -105.112 d 12 = 4.62 n 6 gradient index lens r 13 = -16.355 Example 2 f = 28 mm, F / 2.0 r 1 = 34.890 d 1 = 4.35 n 1 = 1.64000 v 1 = 60.09 r 2 = 117.272 d 2 = 0.18 r 3 = 29.089 d 3 = 1.98 n 2 = 1.50378 v 2 = 66.81 r 4 = 9.705 d 4 = 6.50 r 5 = 152.602 d 5 = 1.89 n 3 = 1.50378 ν 3 = 66.81 r 6 = 36.230 d 6 = 3.25 r 7 = 25.608 d 7 = 3.75 n 4 = 1.72000 ν 4 = 46.03 r 8 = 70.899 d 8 = 1.84 r 9 = ∞ (aperture) d 9 = 2.74 r 10 = −23.577 d 10 = 2.06 n 5 = 1.76182 ν 5 = 26.55 r 11 = −64.211 d 11 = 2.35 r 12 = 289.966 d 12 = 4.83 n 6 gradient index lens r 13 = −17.175 Example 3 f = 24 mm, F / 2.0 r 1 = 53.353 d 1 = 3.95 n 1 = 1.74400 ν 1 = 44.73 r 2 = 136.374 d 2 = 0.50 r 3 = 22.403 d 3 = 1.34 n 2 = 1.60311 ν 2 = 60.70 r 4 = 10.149 d 4 = 7.56 r 5 = 21.058 d 5 = 1.41 n 3 = 1.60311 ν 3 = 60.70 r 6 = 14.072 d 6 = 4.11 r 7 = 50.023 d 7 = 5.61 n 4 = 1.60342 ν 4 = 38.01 r 8 = 184.067 d 8 = 2.20 r 9 = ∞ ( stop) d 9 = 4.36 r 10 = -35.781 d 10 = 3.20 n 5 the refractive index distribution type lens r 11 = -19.577 d 11 = 1.26 r 12 = -32.843 d 12 = 4.09 n 6 = 1.67000 ν 6 = 57.33 r 13 = −18.222 Example 4 f = 28 mm, F / 2.0 r 1 = 38.155 d 1 = 4.67 n 1 = 1.64000 v 1 = 60.09 r 2 = 121.052 d 2 = 0.51 r 3 = 15.821 d 3 = 1.62 n 2 = 1.50378 v 2 = 66.81 r 4 = 9.497 d 4 = 7.50 r 5 = 251.208 d 5 = 1.52 n 3 = 1.50378 ν 3 = 66.81 r 6 = 12.586 d 6 = 2.51 r 7 = 20.510 d 7 = 5.00 n 4 = 1.60342 ν 4 = 38.01 r 8 = -78.777 d 8 = 1.85 r 9 = ∞ ( stop) d 9 = -1.80 r 10 = -50.507 d 10 = 1.18 n 5 the refractive index distribution type lens r 11 = 62.126 d 11 = 2.50 r 12 = -43.021 d 12 = 3.00 n 6 = 1.69680 v 6 = 55.52 r 13 = −20.636 d 13 = 0.58 r 14 = −127.044 d 14 = 4.20 n 7 = 1.67000 v 7 = 57.33 r 15 = −16.522 Example 5 f = 24 mm, F / 2.0 r 1 = 40.671 d 1 = 4.00 n 1 = 1.74400 ν 1 = 44.73 r 2 = 98.692 d 2 = 0.44 r 3 = 16.012 d 3 = 1.39 n 2 = 1.60311 ν 2 = 60.70 r 4 = 8.859 d 4 = 6.19 r 5 = 62.563 d 5 = 1.33 n 3 = 1.60311 ν 3 = 60.70 r 6 = 14.932 d 6 = 2.90 r 7 = 23.724 d 7 = 6.17 n 4 = 1.60342 ν 4 = 38.01 r 8 = -116.131 d 8 = 1.50 r 9 = ∞ ( stop) d 9 = 2.20 r 10 = -26.003 d 10 = 3.41 n 5 the refractive index distribution type lens r 11 = 257.075 d 11 = 0.64 r 12 = -134.329 d 12 = 3.52 n 6 = 1.69680 v 6 = 55.52 r 13 = -17.514 d 13 = 0.50 r 14 = -271.782 d 14 = 3.50 n 7 = 1.67000 v 7 = 57.33 r 15 = -18.626 However r 1, r 2, ... are radii of curvature of each lens surface, d 1, d 2, ... is the thickness and lens distance of each lens, n 1, n 2, ... is the refractive index of each lens, [nu 1, [nu 2, ... are Abbe's number of each lens, F B is Batsukufuokasu. Embodiments 1 to 5 described above correspond to FIGS. 1 to 5, respectively.
It is a lens configuration shown in the figure. As shown in the drawing, each of the front units I includes a positive meniscus lens whose convex surface faces the object side and two negative meniscus lenses whose concave surface faces the image side in order from the object side to the image side. It is composed of two lenses. In these embodiments, the first to third embodiments are each configured such that one of the positive lenses in the rear group is a convergent refractive index distribution type lens. The image side surface of the positive lens in the rear group, which tends to have a particularly high curvature due to the distribution of the refractive power in the medium of the distributed lens, is loosened to improve the Petzval sum and satisfactorily correct the field curvature. It is. In the first embodiment, as shown in FIG. 1, the rear group II includes a positive meniscus lens having a convex surface facing the object side in order from the object side, a biconvex lens, and a positive meniscus lens having the convex surface facing the image surface. The positive meniscus lens is a convergent refractive index distribution type lens. In this convergent refractive index distribution type lens, the refractive power is changed according to the height of each light ray according to the distribution of the refractive index, and the spherical aberration, coma aberration and astigmatism are favorably reduced by refraction on the image-side surface of the lens. This is a large-diameter ratio wide-angle lens with a short overall length. The aberration situation of the first embodiment is as shown in FIG. In the second embodiment, as shown in FIG. 2, the rear group II includes a positive meniscus lens having a convex surface facing the object side in order from the object side, a negative meniscus lens having a concave surface facing the object side, and a biconvex lens. Was configured. Among them, the biconvex lens is a lens having a convergent refractive index distribution. By making the convergent refractive index distribution type lens a biconvex shape, not only the image side surface, but also the object side surface, the refractive power is changed according to the height of each ray by the refractive index distribution, and the image surface is changed. Although slightly smaller than the side, spherical aberration, coma, and astigmatism are corrected. The Petzval sum and spherical aberration are corrected by a negative meniscus lens provided in the rear group II. As a result, a large aperture ratio wide angle lens having a shorter overall length than the lens system of the first embodiment is realized. The aberration situation in this embodiment is as shown in FIG. In the third embodiment, as shown in FIG. 3, the rear group II has a positive meniscus lens having a convex surface facing the object side, a positive meniscus lens having a convex surface facing the image side, and a convex surface having the convex surface facing the image side. And a positive meniscus lens having a convex surface facing the image side (immediately after the stop), which is located on the object side, was formed as a convergent refractive index distribution type lens. By disposing the convergent refractive index distribution type lens at the above position, the refractive power is changed according to the height of each light ray, and the spherical aberration, coma, and astigmatism are improved on the image side by the effect. In addition to the correction, the spherical aberration is corrected by the effect of the gradient index lens in the medium, thereby realizing a large-aperture-ratio wide-angle lens having a short overall length. The aberration situation in this embodiment is as shown in FIG. In the fourth and fifth embodiments, the negative lens in the rear group is a divergent refractive index distribution type lens. In each of these embodiments, the rear lens group II has, in order from the object side, a biconvex lens, a biconcave lens, and two positive meniscus lenses each having a convex surface facing the image side. This is a four-sheet configuration. Among them, the biconcave lens is a lens having a divergent refractive index distribution. This biconcave gradient index lens is
By making the refractive index distribution appropriate divergence, as described above, two contradictory corrections, that is, correction of various aberrations such as spherical aberration due to the effect that the refractive power changes at each ray height due to the refractive index distribution. And the Petzval sum of the entire system was corrected in a well-balanced manner, realizing a large-diameter ratio wide-angle lens with a short overall length. The aberration states of the fourth and fifth embodiments are as shown in FIGS. 9 and 10, respectively. In consideration of the manufacturing cost and the difficulty of alignment, it is desirable that the refractive index distribution type lens be effective with as few as possible. Also in the above-described embodiment, the effect is sufficiently exhibited by using one of the positive lens and the negative lens constituting the rear group as a gradient index lens. However, a plurality of positive lenses or negative lenses, or both the positive lens and the negative lens may be formed as gradient index lenses, and a greater effect may be produced by the synergistic effect. [Effects of the Invention] As described in detail above and as is clear from the examples, the wide-angle lens of the present invention changes its refractive index in the rear group according to the distance from the optical axis around the optical axis. By arranging one refractive index distribution type lens and further satisfying the conditions (1) to (5), it is possible to obtain a compact lens system with a short overall length in which various aberrations are favorably corrected.

【図面の簡単な説明】 第1図乃至第5図は夫々本発明の実施例1乃至実施例5
の断面図、第6図乃至第10図は夫々実施例1乃至実施例
5の収差曲線図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 to 5 show Embodiments 1 to 5 of the present invention, respectively.
6 to 10 are aberration curve diagrams of the first to fifth embodiments, respectively.

Claims (1)

(57)【特許請求の範囲】 1.負の屈折力を有する前群と、正の屈折力を有する後
群とよりなり、前記後群に光軸を中心として光軸からの
距離に応じて屈折率が変化する1枚の屈折率分布型レン
ズを有し、以下の条件(1)を満足することを特徴とす
るコンパクトな広角レンズ。 |(Nm/N1)f2(m-1)|<5 ・・・(1) ただし、fは全系の焦点距離、Nmは屈折率分布の2m次の
係数であり、前記屈折率分布型レンズの屈折率nm(h)
は、光軸からの距離をhとすると以下の式で表される。 nm(h)=N0+N1h2+N2h4+・・・ 2.前記屈折率分布型レンズを正レンズに用い、以下の
条件(2)を満足することを特徴とする特許請求の範囲
(1)のコンパクトな広角レンズ。 0.25<(N1(p)/Rp)f3<1.5 ・・・(2) ただし、N1(p)は屈折率分布型レンズの2次の係数、
Rpは屈折率分布型レンズの像側の面の曲率半径である。 3.前記屈折率分布型レンズを負レンズに用い、以下の
条件(3)を満足することを特徴とする特許請求の範囲
(2)のコンパクトな広角レンズ。 −1.45<(N1(n)/Rn)f3<−0.35 ・・・(3) ただし、N1(n)は屈折率分布型レンズの2次の係数、
Rnは屈折率分布型レンズの物体側の面の曲率半径であ
る。
(57) [Claims] One refractive index distribution comprising a front group having a negative refractive power and a rear group having a positive refractive power, wherein the refractive index of the rear group changes with the distance from the optical axis around the optical axis. A compact wide-angle lens having a shape lens and satisfying the following condition (1). | (N m / N 1 ) f 2 (m-1) | <5 (1) where f is the focal length of the entire system, and N m is a 2m-order coefficient of the refractive index distribution. Refractive index n m (h) of a gradient index lens
Is given by the following equation, where h is the distance from the optical axis. n m (h) = N 0 + N 1 h 2 + N 2 h 4 +. The compact wide-angle lens according to claim 1, wherein the refractive index distribution type lens is used as a positive lens and the following condition (2) is satisfied. 0.25 <(N 1 (p) / R p ) f 3 <1.5 (2) where N 1 (p) is a quadratic coefficient of the gradient index lens,
R p is the radius of curvature of the image-side surface of the gradient index lens. 3. The compact wide-angle lens according to claim 2, wherein the refractive index distribution type lens is used as a negative lens and the following condition (3) is satisfied. −1.45 <(N 1 (n) / R n ) f 3 <−0.35 (3) where N 1 (n) is a second-order coefficient of the gradient index lens,
R n is the radius of curvature of the object-side surface of the gradient index lens.
JP62012292A 1987-01-23 1987-01-23 Compact wide-angle lens Expired - Fee Related JP2700003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62012292A JP2700003B2 (en) 1987-01-23 1987-01-23 Compact wide-angle lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62012292A JP2700003B2 (en) 1987-01-23 1987-01-23 Compact wide-angle lens

Publications (2)

Publication Number Publication Date
JPS63180925A JPS63180925A (en) 1988-07-26
JP2700003B2 true JP2700003B2 (en) 1998-01-19

Family

ID=11801262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62012292A Expired - Fee Related JP2700003B2 (en) 1987-01-23 1987-01-23 Compact wide-angle lens

Country Status (1)

Country Link
JP (1) JP2700003B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5873177A (en) * 1996-05-20 1999-02-23 Tokyo Electron Limited Spin dryer and substrate drying method
CN110346922B (en) * 2019-06-29 2021-09-21 瑞声光学解决方案私人有限公司 Image pickup optical lens

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61231517A (en) * 1985-04-05 1986-10-15 Canon Inc Variable focal length lens
JPS61275809A (en) * 1985-05-31 1986-12-05 Asahi Optical Co Ltd Bright wide-angle zoom lens

Also Published As

Publication number Publication date
JPS63180925A (en) 1988-07-26

Similar Documents

Publication Publication Date Title
US6844991B2 (en) Fisheye lens
US7411745B2 (en) Large-aperture-ratio internal focusing telephoto lens
JP2699977B2 (en) Compact zoom lens
JP2526979B2 (en) Rear conversion lens
JPH05157965A (en) Wide-angle lens
JPH1020193A (en) Zoom lens
JPH06300965A (en) Wide-angle lens
JP3607958B2 (en) Retro focus lens
JP3735909B2 (en) Retro focus lens
JP3394624B2 (en) Zoom lens
JP2000028919A (en) Middle telephotographic lens
JPH06308384A (en) Large-diameter wide-angle photographic lens
JP3268824B2 (en) Small two-group zoom lens
JPH0420161B2 (en)
JP2701344B2 (en) Retro-focus wide-angle lens
JPS6128972B2 (en)
JP2828315B2 (en) Large aperture wide-angle lens with long back focus
JP2576607B2 (en) Small zoom lens
JP2700003B2 (en) Compact wide-angle lens
JP3683995B2 (en) Endoscope objective lens
JP3038974B2 (en) Small wide-angle lens
US20030090811A1 (en) Camera-attachment lens system
JP3500473B2 (en) Wide-angle lens
JPH05210047A (en) Wide angle lens
JPH0574806B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees