JP2694851B2 - PLZT ceramic raw material powder manufacturing method - Google Patents

PLZT ceramic raw material powder manufacturing method

Info

Publication number
JP2694851B2
JP2694851B2 JP1103443A JP10344389A JP2694851B2 JP 2694851 B2 JP2694851 B2 JP 2694851B2 JP 1103443 A JP1103443 A JP 1103443A JP 10344389 A JP10344389 A JP 10344389A JP 2694851 B2 JP2694851 B2 JP 2694851B2
Authority
JP
Japan
Prior art keywords
raw material
powder
plzt
lead oxide
material powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1103443A
Other languages
Japanese (ja)
Other versions
JPH02258628A (en
Inventor
高行 塚田
章 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Publication of JPH02258628A publication Critical patent/JPH02258628A/en
Application granted granted Critical
Publication of JP2694851B2 publication Critical patent/JP2694851B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は光シャッタ、光スイッチ等のオプトエレクト
ロニクス材料として利用されているPLZTセラミックスの
原料粉末の製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing a raw material powder of PLZT ceramics used as an optoelectronic material for optical shutters, optical switches and the like.

[従来の技術] PLZTを利用した光シャッタ、光スイッチ等ではPLZTセ
ラミックスの透過率が十分に高いことと、PLZTセラミッ
クスの組成が均一であること、なおかつ安価であること
が要求される。
[Prior Art] In optical shutters, optical switches, and the like using PLZT, it is required that the transmittance of PLZT ceramics be sufficiently high, that the composition of PLZT ceramics be uniform, and that it be inexpensive.

従来のPLZTセラミックス原料粉末の合成法としてはア
ルコキシド法や酸化物混合法、多段湿式法などが知られ
ている。
Known methods for synthesizing PLZT ceramic raw material powders include an alkoxide method, an oxide mixing method, and a multistage wet method.

多段湿式法はLa,Zr混合水溶液をPbもしくはTiの何れ
か一方の水溶液を混合し、これに沈殿形成液を混合した
後、PbもしくはTiの残った一方の水溶液を沈殿分散液に
混合する方法である。
The multi-stage wet method is a method in which a La, Zr mixed aqueous solution is mixed with either an aqueous solution of Pb or Ti, and then a precipitation forming liquid is mixed with this, and then the remaining aqueous solution of Pb or Ti is mixed with a precipitation dispersion liquid. Is.

PLZTに関する最近の公開特許には特開昭63−30365号
および特開昭63−55118号がある。
Recent published patents relating to PLZT include JP-A-63-30365 and JP-A-63-55118.

(発明が解決しようとする課題) アルコキシド法では易焼結性を有し、かつ組成の均一
な原料粉末が得られるが、原料のアルコキシドの価格が
高価であるため合成したPLZT原料粉末も高価となり、ま
たアルコキシドは空気中の水分と加水分解するため取扱
いが困難であるといった欠点があった。酸化物混合法で
は、安価に素原料粉末を合成することはできるが、PLZT
原料粉末の粒径は素原料の各酸化物の粒径に依存するた
め粒径が粗大化し、易焼結性となり難たく、また組成の
均一性が悪いといったような欠点があった。多段湿式法
では比較的安価に焼結性の良い原料粉末を得ることが可
能であるが、沈殿形成を2回以上に分けるため操作が煩
雑であり、比較的大きな沈殿槽、酸溶液槽を必要とする
といった欠点があった。
(Problems to be Solved by the Invention) Although the alkoxide method provides a raw material powder having a sinterability and a uniform composition, the PLZT raw material powder synthesized is also expensive because the price of the raw material alkoxide is high. Further, alkoxide has a drawback that it is difficult to handle because it hydrolyzes with moisture in the air. With the oxide mixing method, it is possible to synthesize raw material powders at low cost, but PLZT
Since the particle size of the raw material powder depends on the particle size of each oxide of the raw material, the particle size becomes coarse, and it is difficult to easily sinter, and the composition has poor uniformity. With the multi-stage wet method, it is possible to obtain a raw material powder with good sinterability at a relatively low cost, but the operation is complicated because the precipitation formation is divided into two or more times, and a relatively large precipitation tank and acid solution tank are required. There was a drawback such as.

本発明は上記の欠点を解決し、易焼結性を有しかつ組
成均一性が良好でありかつ安価なPLZTセラミックの原料
粉末を工業的な規模で効率良く製造することができる方
法を提供することを目的とする。
The present invention solves the above-mentioned drawbacks and provides a method capable of efficiently producing an inexpensive raw material powder of PLZT ceramic having an easily sinterable property, good composition uniformity, and industrial scale. The purpose is to

[課題を解決するための手段] 本発明は、焼結後の組成が一般式; (Pb1-xLax)(ZryTi1-y1−x/4O3、 (Pb1−(3/2)xLax)(ZryTi1-y)O3または両者の中
間体で示される組成のPLZTセラミック原料粉末の合成法
において、La,Zr,Tiの混合水溶液と酸化鉛系粉末を分散
させたアンモニア水と反応させ、La,Zr,Tiを共沈し、ま
たは、La,Zr,Tiの混合水溶液をアンモニア水と反応さ
せ、La,Zr,Tiを共沈した後に又は共沈と同時に酸化鉛系
粉末を添加し、ついで脱水処理を行なう前にそのままの
状態で熟成し、酸化鉛系粉末を結晶質状態から非晶質状
態に変化させることを特徴とする易焼結性PLZT原料粉末
の製造方法である。
[Means for Solving the Problems] In the present invention, the composition after sintering is represented by the general formula; (Pb 1-x La x ) (Zr y Ti 1-y ) 1-x / 4 O 3 , (Pb 1- (3/2) x La x ) (Zr y Ti 1-y ) O 3 or a method for synthesizing a PLZT ceramic raw material powder having a composition represented by an intermediate of both, in a mixed aqueous solution of La, Zr, and Ti oxide After reacting the powder with dispersed ammonia water to coprecipitate La, Zr, Ti, or after reacting a mixed aqueous solution of La, Zr, Ti with ammonia water to coprecipitate La, Zr, Ti, or after coprecipitation. Easy to sinter, characterized by adding lead oxide powder at the same time as precipitation and then aging it as it is before dehydration treatment, changing lead oxide powder from crystalline state to amorphous state This is a method for producing PLZT raw material powder.

従来のPLZTセラミック原料粉末の合成法では酸化鉛は
硝酸鉛水溶液などの水溶液の状態で使用されていたが、
本発明においては、酸化鉛を硝酸鉛水溶液などの溶液で
はなく、酸化鉛系粉末の状態で使用することを一つの特
徴とする。
In the conventional PLZT ceramic raw material powder synthesis method, lead oxide was used in the state of an aqueous solution such as an aqueous solution of lead nitrate.
One feature of the present invention is that lead oxide is used in the form of lead oxide-based powder, not as a solution such as an aqueous solution of lead nitrate.

上記二つの一般式において、Aサイト(PbとLa)中の
Laモル量)は0<x<1である。Aサイト(PbとLa)は
酸素3モルに対して1モルから1−(x/2)モルの範囲
で変化する。Aサイト中の2成分の関係は、Pbの当モル
量をLaが置換する場合(Pb1-xLax)と,LaがPbを置換す
る量xの0.5倍Pbが少なくある場合(すなわち、(Pb
1−(3/2)x)がある。前者の場合はAB1−0.25xO3
後者の場合はA1−0.5xBO3の非化学量論組成物が生成
する。すなわち、最終PLZTはAB1−0.25xO3の組成から
1−0.5xBO3の組成までの範囲がある。
In the above two general formulas, in the A site (Pb and La)
La molar amount) is 0 <x <1. The A sites (Pb and La) change in the range of 1 mol to 1- (x / 2) mol with respect to 3 mol of oxygen. The relationship between the two components in the A site is as follows: when La substitutes the equimolar amount of Pb (Pb 1-x La x ), and when the amount x of La that replaces Pb is 0.5 times Pb (ie, (Pb
1- (3/2) x ). In the former case, AB 1-0.25x O 3 ,
In the latter case a non-stoichiometric composition A 1-0.5x BO 3 is generated. That is, the final PLZT is a range of the composition of AB 1-0.25x O 3 to the composition of A 1-0.5x BO 3.

従来の合成法に対する本発明合成法の一つの特徴は、
La,Zr,Tiはこれら三成分を含有する混合水溶液の状態で
使用するところにある。
One feature of the synthetic method of the present invention with respect to the conventional synthetic method is
La, Zr, and Ti are used in the state of a mixed aqueous solution containing these three components.

酸化鉛、La,Zr,Ti混合水溶液およびアンモニア水の接
触方法としては、酸化鉛系粉末をアンモニア水中に予め
分散させておきその後La,Zr,Ti混合水溶液を添加する方
法、及びLa,Zr,Tiの混合水溶液をアンモニア水中へ添加
した後又は添加と同時に酸化鉛系粉末を添加する方法が
可能である。このようにして反応をおこなうと、アンモ
ニアとLa,Zr,Tiの反応により形成された反応生成物が共
沈する。ここでLaの原料としては、硝酸ランタン、酢酸
ランタンの水溶液が、Zrの原料としては、オキシ硝酸ジ
ルコニウム、オキシ塩化ジルコニウムの水溶液が、Tiの
原料としては四塩化チタンの水溶液があげられる。Tiの
原料としては価格が安価であることと、水溶液の安定性
などから四塩化チタン水溶液を使用することが有利であ
る。酸化鉛系粉末の原料としては、PbO,Pb3O4,Pb2O3,Pb
O2などがあるが、PbOが最も一般的であり、安価であ
る。
As a contact method for lead oxide, La, Zr, Ti mixed aqueous solution and ammonia water, a method of preliminarily dispersing lead oxide powder in ammonia water and then adding La, Zr, Ti mixed aqueous solution, and La, Zr, A method of adding the lead oxide powder after or at the same time as adding the mixed aqueous solution of Ti to the ammonia water is possible. When the reaction is carried out in this way, the reaction product formed by the reaction of ammonia with La, Zr, and Ti coprecipitates. Here, as a raw material of La, an aqueous solution of lanthanum nitrate or lanthanum acetate is used, as a raw material of Zr, an aqueous solution of zirconium oxynitrate or zirconium oxychloride is used, and as a raw material of Ti, an aqueous solution of titanium tetrachloride is used. As a raw material of Ti, it is advantageous to use an aqueous solution of titanium tetrachloride because of its low price and stability of the aqueous solution. As the raw material for the lead oxide powder, PbO, Pb 3 O 4 , Pb 2 O 3 , Pb
There are O 2 etc., but PbO is the most common and cheap.

La,Zr,Tiの混合水溶液中のLa,Zr,Ti化合物の濃度が低
すぎると、相対的液量と液槽容積が多くなり、一方、こ
れらの濃度が高すぎると、共沈物生成のために必要なア
ンモニア量や酸化鉛粉末の添加量が多くなり、沈殿槽の
容積の増大を招き、また不純物である塩素の洗浄が容易
でなくなる。
If the concentration of La, Zr, or Ti compound in the mixed aqueous solution of La, Zr, and Ti is too low, the relative liquid volume and liquid tank volume increase, while if these concentrations are too high, coprecipitate formation Therefore, the amount of ammonia and the amount of lead oxide powder added are increased, which leads to an increase in the volume of the precipitation tank, and it becomes difficult to clean chlorine as an impurity.

したがって、これらの不都合を生じないようにLa,Zr,
Ti化合物の濃度を定める。経験的に、La,Zr,Tiの混合溶
液1当り100〜600gの共沈物が得られるように上記濃
度を定めるのが好ましいことが分かった。
Therefore, to avoid these inconveniences, La, Zr,
Determine the concentration of Ti compound. Empirically, it has been found that it is preferable to set the above concentration so as to obtain 100 to 600 g of coprecipitate per mixed solution of La, Zr and Ti.

酸化鉛系粉末は粒径ができるだけ小さい微粒粉末を使
用することが好ましい。粗粒の酸化鉛を使用すると、微
細なLa,Zr,Tiの共沈物と酸化鉛粉末が均一分散せず、ま
たPLZT粉末の仮焼後PLZT単一相が得られ難い。好ましい
酸化鉛粉末の粒径は平均粒径で3μm以下、特に1μm
以下である。このような微粒酸化鉛粉末は湿式による炭
酸鉛の熱分解法により製造されている。
As the lead oxide powder, it is preferable to use a fine powder having a particle diameter as small as possible. When coarse-grained lead oxide is used, fine co-precipitates of La, Zr and Ti and lead oxide powder are not uniformly dispersed, and it is difficult to obtain a PLZT single phase after calcination of PLZT powder. The average particle size of the lead oxide powder is preferably 3 μm or less, especially 1 μm.
It is as follows. Such fine lead oxide powder is manufactured by a wet method of thermally decomposing lead carbonate.

反応は通常室温で行なわれる。反応温度を室温より高
くしてもよいが、極端に高くなると共沈物の粒径が大き
くなるため好ましくない。
The reaction is usually performed at room temperature. The reaction temperature may be higher than room temperature, but if the temperature is extremely high, the particle size of the coprecipitate becomes large, which is not preferable.

上記のごとく反応させて得た共沈物と酸化鉛系粉末
は、過、沈降分離等の脱水処理を行なう前にそのまま
の状態で熟成する。液から分離された共沈物を液と
同一組成の液に添加して戻し熟成を施すと、過の段階
で酸化鉛粒子とLa,Zr,Ti化合物粒子の共沈時の分散状態
が乱され、そしてこのまま熟成を行なうと、詳しくは後
述する経時変化が不充分になり、組成が均一なPLZT原料
粉末が得がたい。熟成とは、共沈物と酸化鉛系粉末を含
んだ液中にこれらを保持して、酸化鉛を結晶状態から非
晶質状態まで経時的変化させることである。塾成の方法
としては、反応に供した液中でそのまま共沈物と酸化鉛
系粉末を、室温で撹拌しつつ放置することが好ましい。
The coprecipitate obtained by the reaction as described above and the lead oxide-based powder are aged as they are before being subjected to dehydration treatment such as filtration, sedimentation and separation. When the coprecipitate separated from the liquid is added to a liquid of the same composition as the liquid and then back-ripened, the dispersion state of the lead oxide particles and La, Zr, and Ti compound particles at the time of coprecipitation is disturbed. If the aging is carried out as it is, the change with time which will be described in detail later becomes insufficient, and it is difficult to obtain a PLZT raw material powder having a uniform composition. The aging is to hold the coprecipitate and the lead oxide powder in a liquid containing them and change the lead oxide from a crystalline state to an amorphous state with time. As a method for the formation, it is preferable to leave the coprecipitate and the lead oxide-based powder as they are in the liquid used for the reaction while stirring at room temperature.

熟成時間は通常6〜18時間程度である。これにより反
応が充分なされる。外観上では、たとえばPbOを用いれ
ば黄色から白色に変色した時点まで熟成することが好ま
しい。熟成過程における共沈物の変化を観察したとこ
ろ、その初期に共沈物のX線回折図形を測定すると酸化
鉛結晶のピークが認められ、熟成が充分に進行すると酸
化鉛の結晶ピークが消失し、非晶質の回折図形となり、
PLZT原料全体が非晶質に変わっていくことが明らかにな
った。
The aging time is usually about 6 to 18 hours. This allows the reaction to be complete. In terms of appearance, if PbO is used, for example, it is preferable to age until the time when the color changes from yellow to white. When the change of the coprecipitate during the aging process was observed, the X-ray diffraction pattern of the coprecipitate was measured at the early stage, and the peak of the lead oxide crystal was observed, and when the aging proceeded sufficiently, the lead oxide crystal peak disappeared. , An amorphous diffraction pattern,
It became clear that the whole PLZT raw material changed to amorphous.

熟成が完了した後不純物として好ましくない塩素など
を除去すべく過等を行ない水分を除き、洗浄すること
が好ましい。その後、乾燥を80〜100℃で6〜24時間位
行なう。さらに500〜900℃で2〜20時間仮焼を行なった
後、湿式粉砕を行なうことにより粒径0.1μm以下の粉
が得られる。この粉を使用して、透光性磁器を製造する
と透過率の極めて高いものを得ることができる。
After the aging is completed, it is preferable to carry out an excess process to remove undesired chlorine and the like as impurities to remove water, and then wash. Then, drying is performed at 80 to 100 ° C. for about 6 to 24 hours. Further, calcination is performed at 500 to 900 ° C. for 2 to 20 hours, and then wet pulverization is performed to obtain a powder having a particle size of 0.1 μm or less. If a transparent porcelain is manufactured by using this powder, it is possible to obtain an extremely high transmittance.

(作用) 本発明においては、La,Zr,Tiの混合水溶液、酸化鉛粉
末およびアンモニア水を接触させることにより、多段湿
式処理プロセスに依らないで一段で所望PLZT成分を含有
する素原料を得る。
(Operation) In the present invention, by bringing the mixed aqueous solution of La, Zr, and Ti, the lead oxide powder, and the ammonia water into contact with each other, a raw material containing the desired PLZT component can be obtained in one step without relying on the multi-step wet treatment process.

また、過を行なう前に熟成を非晶質状態が検知され
るまで行なうことにより、多段湿式法により達成される
と同等の仮焼品組成の均一性を達成することができる。
Further, by performing the aging until the amorphous state is detected before performing the excess, it is possible to achieve the uniformity of the composition of the calcined product equivalent to that achieved by the multi-stage wet method.

本法で得られた熟成後の共沈物は組成が均質であり、
また湿式法で合成するため微細なPLZT原料が得られる。
The coprecipitate obtained by this method after aging has a uniform composition,
In addition, since it is synthesized by the wet method, a fine PLZT raw material can be obtained.

また、酸化鉛粉末を使用することにより、酸化鉛溶液
を使用する従来例に比較して、沈殿槽および酸溶液槽の
容量を小さくすることができる。
Further, by using the lead oxide powder, the capacities of the precipitation tank and the acid solution tank can be reduced as compared with the conventional example using the lead oxide solution.

以下、実施例によりさらに詳しく本発明を説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.

(実施例) 実施例1 0.2mol/濃度のZrO(NO3水溶液98.24と2.5mol
/濃度のTiCl4水溶液4.227とLa2O3粉末453.4gを溶解
した硝酸溶液を混合し、これをPbO粉末(黄色)6281gを
分散させた4mol/濃度のアンモニア水中へ添加したと
ころ、La,Zr,Tiの共沈物が生成され、次にこの共沈物と
PbO粉末が混合された。この状態から約12時間の熟成を
行なうことによりPbO粉末と共沈物とを反応させた。そ
の後、洗浄水により6回洗浄し、80℃で24時間乾燥し12
000gの乾燥物を得た。乾燥物のCuKα線によるX線回折
図形を第1図に示す。
Example 1 Example 1 98.24 and 2.5 mol of 0.2 mol / concentration ZrO (NO 3 ) 2 aqueous solution
/ 27 concentration of TiCl 4 aqueous solution 4.227 and La 2 O 3 powder 453.4g were dissolved in nitric acid solution, and this was added to 4mol / concentration ammonia water in which 6281g of PbO powder (yellow) was dispersed. , Ti, a coprecipitate is formed, and then this coprecipitate
PbO powder was mixed. From this state, the PbO powder and the coprecipitate were reacted by aging for about 12 hours. Then, wash with washing water 6 times and dry at 80 ° C for 24 hours.
000 g of dried product was obtained. The X-ray diffraction pattern of the dried product by CuKα ray is shown in FIG.

第1図の縦軸はcps(count per second)であり、横
軸は回折角度(2θ゜)である。
The vertical axis of FIG. 1 is cps (count per second), and the horizontal axis is the diffraction angle (2θ °).

第1図にはX線回折ピークがなく、このことよりこの
乾燥物は非晶質物質となっていることがわかる。この乾
燥物を700℃で2時間仮焼後、エタノール中で16時間ボ
ールミル粉砕後乾燥しPLZT原料粉末とした。この原料粉
末の組成は、前記一般式 (Pb1-xLax)(ZryTi1-y1−x/4O3で x=0.09,y=0.65 であった。この原料粉末のX線回折図形を第2図に示
す。同粉はPLZT単相であることを示す。また走査型電子
顕微鏡による観察の結果平均粒径が0.1μmであった。B
ET法による比表面積は、24m2/gであり、非常に微細で易
焼結性であることを示した。この原料粉末を1500kg/cm2
でCIP成形後、酸素雰囲気中で1200℃50時間の条件で焼
結したところ表1に示す様に、焼結体密度は7.70g/cm3
であり、鏡面研摩後の633nmにおける直線透過率は64.8
%であった。
There is no X-ray diffraction peak in FIG. 1, which indicates that this dried product is an amorphous substance. The dried material was calcined at 700 ° C. for 2 hours, pulverized in ethanol for 16 hours in a ball mill and dried to obtain a PLZT raw material powder. The composition of the raw material powder was the above general formula (Pb 1-x La x ) (Zr y Ti 1-y ) 1-x / 4 O 3 and x = 0.09, y = 0.65. The X-ray diffraction pattern of this raw material powder is shown in FIG. The powder shows PLZT single phase. As a result of observation with a scanning electron microscope, the average particle size was 0.1 μm. B
The specific surface area measured by the ET method was 24 m 2 / g, which was very fine and easy to sinter. 1500 kg / cm 2 of this raw material powder
After CIP molding and sintering in an oxygen atmosphere at 1200 ° C for 50 hours, as shown in Table 1, the density of the sintered body is 7.70 g / cm 3
And the linear transmittance at 633 nm after mirror polishing is 64.8.
%Met.

第3図はこの焼結体の透過率曲線を示した。 FIG. 3 shows the transmittance curve of this sintered body.

比較例1 PbO粉末67.70g,La2O3粉末4.887g,ZrO3粉末26.09g,TiO
2粉末9.112gをエタノール中で4時間湿式混合後40℃で2
4時間乾燥し、900℃にて2時間仮焼後エタノール中でボ
ールミル粉砕後乾燥することによりPLZT原料粉末を得
た。この原料粉末の組成はx=0.09,y=0.65であった。
この原料粉末のX線回折図形を第4図に示す。この例で
は実施例1より高温で仮焼したにもかかわらずPbTiO3
が混在し、PLZT単相とはならなかった。走査型電子顕微
鏡による観察の結果、平均粒径は0.3μmであり、BET法
による比表面積は3m2/gであった。この原料粉末を1500k
g/cm2でCIP成形後、実施例1と同条件で焼結したところ
表1に示す様に焼結体密度は7.70g/cm3であり、鏡面研
摩後の633nmにおける直線透過率は36.4%であった。
Comparative Example 1 PbO powder 67.70 g, La 2 O 3 powder 4.887 g, ZrO 3 powder 26.09 g, TiO
2. Wet mix 12.912g of powder in ethanol for 4 hours and then mix at 40 ℃ for 2 hours.
PLZT raw material powder was obtained by drying for 4 hours, calcination at 900 ° C. for 2 hours, ball milling in ethanol and drying. The composition of this raw material powder was x = 0.09 and y = 0.65.
The X-ray diffraction pattern of this raw material powder is shown in FIG. In this example, the PbTiO 3 phase was mixed even though it was calcined at a higher temperature than in Example 1, and the PLZT single phase was not obtained. As a result of observation with a scanning electron microscope, the average particle diameter was 0.3 μm, and the specific surface area by the BET method was 3 m 2 / g. 1500k of this raw material powder
After CIP molding at g / cm 2 and sintering under the same conditions as in Example 1, the sintered body density was 7.70 g / cm 3 as shown in Table 1, and the linear transmittance at 633 nm after mirror polishing was 36.4. %Met.

第5図に透過率曲線を示した。 The transmittance curve is shown in FIG.

比較例2 PbO粉末3769gとLa2O3粉末272.0gを溶解した硝酸溶液2
9.07と0.5mol/濃度のZrO(NO3溶液5.902の混
合溶液を4mol/濃度のアンモニア水87.7へ添加する
ことにより一段目の共沈体を作成し、次いで0.2mol/
のZrO(NO3溶液44.28と2.50mol/のTiCl4水溶液
2.536の混合溶液を添加し二段目の共沈体を作成し
た。これを洗浄水により6回洗浄し、80℃24時間乾燥
後、700℃で2時間仮焼後エタノール中で16時間ボール
ミル粉砕し、乾燥することにより約6000gのPLZT原料粉
末を得た。この原料粉末の組成はx=0.09、y=0.65で
あった。この原料粉末は第6図に示すX線回折図形から
分かるようにPLZT単相であった。走査型電子顕微鏡によ
る観察の結果平均粒径は0.2μmであり、BET法による比
表面積は10m2/gであった。
Comparative Example 2 Nitric acid solution 2 in which 3769 g of PbO powder and 272.0 g of La 2 O 3 powder were dissolved
A first-stage coprecipitate was prepared by adding a mixed solution of 9.07 and 0.5 mol / concentration ZrO (NO 3 ) 2 solution 5.902 to 4 mol / concentration ammonia water 87.7, and then 0.2 mol / concentration.
ZrO (NO 3 ) 2 solution 44.28 and 2.50mol / TiCl 4 aqueous solution
A mixed solution of 2.536 was added to prepare a second-stage coprecipitate. This was washed 6 times with washing water, dried at 80 ° C. for 24 hours, calcined at 700 ° C. for 2 hours, ball-milled in ethanol for 16 hours, and dried to obtain about 6000 g of PLZT raw material powder. The composition of this raw material powder was x = 0.09 and y = 0.65. This raw material powder was a PLZT single phase, as can be seen from the X-ray diffraction pattern shown in FIG. As a result of observation with a scanning electron microscope, the average particle size was 0.2 μm, and the specific surface area by the BET method was 10 m 2 / g.

この原料粉末を1500kg/cm2でCIP成形後実施例と同条
件で焼結したところ表1に示す様に焼結密度は7.70g/cm
3であり、鏡面研摩後の633nmにおける直線透過率は62.1
%であった。
When this raw material powder was CIP molded at 1500 kg / cm 2 and sintered under the same conditions as in the example, the sintered density was 7.70 g / cm as shown in Table 1.
3 and the linear transmittance at 633 nm after mirror polishing is 62.1.
%Met.

第7図に透過率曲線を示した。 The transmittance curve is shown in FIG.

表1から本発明実施例の原料粉末は比表面積が大きく
かつ粒径が小さいため易焼結性を有することが分かる。
また、本発明実施例の原料粉末はPLZT単相である組成の
均一性も良好である。
It can be seen from Table 1 that the raw material powders of the examples of the present invention have a large specific surface area and a small particle size, and thus have easy sinterability.
In addition, the raw material powders of the examples of the present invention are PLZT single phase and have good compositional uniformity.

実施例2 実施例1と同様に、La,Zr,Tiの濃度を作成し、これを
4mol/濃度のアンモニア水へ添加し、共沈後に酸化鉛
を添加したところ、La,Zr,Tiの共沈物が生成され、次に
この共沈物とPbOの粉末が混合された。その後、実施例
1と同様に熟成、洗浄、乾燥、仮焼、粉砕し、PLZT原料
粉末として、実施例1と同条件で焼結したところ、表1
に示す様に焼結体密度は、7.70g/m3であり、鏡面研摩後
の633nmにおける直線透過率は65.7%であった。
Example 2 As in Example 1, the concentrations of La, Zr, and Ti were created and
When 4 mol / concentration of ammonia water was added and lead oxide was added after coprecipitation, La, Zr, and Ti coprecipitates were formed, and then the coprecipitates and PbO powder were mixed. After that, aging, washing, drying, calcination, and pulverization were performed in the same manner as in Example 1, and the PLZT raw material powder was sintered under the same conditions as in Example 1. Table 1
As shown in, the sintered body density was 7.70 g / m 3 , and the linear transmittance at 633 nm after mirror polishing was 65.7%.

実施例3 実施例1において0.2mol/濃度のZrO(NO3水溶
液3.25と2.5mol/濃度のTiCl4水溶液0.140とLa2O3
粉末15.0gを溶解した硝酸溶液を混合し、これをPbO粉末
(黄色)192gを分散させた4mol/濃度のアンモニア水
中へ添加し、La,Zr,Tiの共沈物を生成し、その後実施例
1と同じ処理をしたところ、 一般式: (Pb1−(3/2)xLax)(ZryTi1-y)O3でx=0.092, y=0.65のPLZT単相組成物が得られた。
Example 3 In Example 1, a ZrO (NO 3 ) 2 aqueous solution 3.25 having a concentration of 0.2 mol / concentration and a TiCl 4 aqueous solution 0.140 and La 2 O 3 having a concentration of 2.5 mol / concentration were prepared.
A nitric acid solution in which 15.0 g of the powder was dissolved was mixed, and this was added to 4 mol / concentration aqueous ammonia in which 192 g of PbO powder (yellow) was dispersed to form a coprecipitate of La, Zr, and Ti. The same treatment as in Example 1 yielded a PLZT single-phase composition of the general formula: (Pb 1- (3/2) x La x ) (Zr y Ti 1-y ) O 3 where x = 0.092, y = 0.65. Was given.

[発明の効果] 以上説明した本発明法による効果は次のとおりであ
る。
[Effects of the Invention] The effects of the method of the present invention described above are as follows.

(1)本発明法により得られたPLZT原料粉末は、易焼結
性と良好な組成均一性を有する。この原料粉末を焼結す
ると高い直線透過率を得ることができる。
(1) The PLZT raw material powder obtained by the method of the present invention has easy sinterability and good composition uniformity. A high linear transmittance can be obtained by sintering this raw material powder.

(2)安価な酸化鉛系粉末をそのまま用いることができ
るために、PLZT原料粉末のコストダウンを計ることがで
き、またPLZT原料粉末を量産できる。
(2) Since the inexpensive lead oxide-based powder can be used as it is, the cost of the PLZT raw material powder can be reduced, and the PLZT raw material powder can be mass-produced.

(3)Pbの塩類溶液を使用せず、原料重量の60%を占め
るPbを粉末状態のままアンモニア水中または共沈物分散
液中へ添加できるため、溶液状態の原料より容積が圧倒
的に少なくてすみ、同じ容積の共沈槽でPLZT粉を合成す
る場合、多段湿式法の倍量合成することが可能となり、
設備を著しく削減できる。
(3) Since Pb, which accounts for 60% of the raw material weight, can be added to the ammonia water or the coprecipitate dispersion as a powder without using a salt solution of Pb, the volume is much smaller than the raw material in solution. Tesumi, when synthesizing PLZT powder in a coprecipitation tank of the same volume, it is possible to synthesize double the amount of multi-stage wet method,
The equipment can be significantly reduced.

(4)pbを酸溶液に溶解する必要がないこと、共沈が一
回で済むことにより、製造に要する時間を短縮すること
ができる。
(4) Since it is not necessary to dissolve pb in an acid solution and coprecipitation is required only once, the time required for production can be shortened.

【図面の簡単な説明】[Brief description of the drawings]

第1図は実施例の乾燥物のX線回折図形を示す図面、 第2図は実施例の焼結体のX線回折図形を示す図面、 第3図は実施例の透過曲線を示すグラフ、 第4図は比較例1についての第1図と同様の図面、 第5図は比較例1についての第2図と同様の図面、 第6図は比較例2についての第3図と同様のグラフ、 第7図は比較例2についての第1図と同様の図面であ
る。 第8図は実施例2についての第3図と同様の図面であ
る。
1 is a drawing showing an X-ray diffraction pattern of a dried product of an example, FIG. 2 is a drawing showing an X-ray diffraction pattern of a sintered body of an example, FIG. 3 is a graph showing a transmission curve of the example, 4 is a drawing similar to FIG. 1 for Comparative Example 1, FIG. 5 is a drawing similar to FIG. 2 for Comparative Example 1, and FIG. 6 is a graph similar to FIG. 3 for Comparative Example 2. FIG. 7 is a drawing similar to FIG. 1 for Comparative Example 2. FIG. 8 is a drawing similar to FIG. 3 for the second embodiment.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】焼結後の組成が一般式: (Pb1-xLax)(ZryTi1-y1−x/4O3または (Pb1−(3/2)xLax)(ZryTi1-y)O3 または両者の中間体で示されるPLZTセラミック原料粉末
の合成法において、La,Zr,Tiの混合水溶液と酸化鉛系粉
末を分散させたアンモニア水と反応させ、La,Zr,Tiを共
沈し、または、La,Zr,Tiの混合水溶液をアンモニア水と
反応させ、La,Zr,Tiを共沈した後または共沈と同時に酸
化鉛系粉末を添加し、ついで脱水処理を行なう前にその
ままの状態で熟成し、酸化鉛系粉末を結晶質状態から非
晶質状態に変化させることを特徴とする易焼結性PLZT原
料粉末の製造方法。
1. The composition after sintering has the general formula: (Pb 1-x La x ) (Zr y Ti 1-y ) 1-x / 4 O 3 or (Pb 1- (3/2) x La x ) (Zr y Ti 1-y ) O 3 or an intermediate of both, in the method of synthesizing the PLZT ceramic raw material powder, the mixed aqueous solution of La, Zr, and Ti is reacted with aqueous ammonia in which the lead oxide powder is dispersed. , La, Zr, Ti, or a mixed aqueous solution of La, Zr, Ti is reacted with aqueous ammonia to add lead oxide powder after or after co-precipitation of La, Zr, Ti. Then, a method for producing a readily sinterable PLZT raw material powder, characterized by aging the lead oxide-based powder from a crystalline state to an amorphous state by aging it as it is before the dehydration treatment.
JP1103443A 1988-12-26 1989-04-25 PLZT ceramic raw material powder manufacturing method Expired - Lifetime JP2694851B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP32622488 1988-12-26
JP63-326224 1988-12-26

Publications (2)

Publication Number Publication Date
JPH02258628A JPH02258628A (en) 1990-10-19
JP2694851B2 true JP2694851B2 (en) 1997-12-24

Family

ID=18185376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1103443A Expired - Lifetime JP2694851B2 (en) 1988-12-26 1989-04-25 PLZT ceramic raw material powder manufacturing method

Country Status (1)

Country Link
JP (1) JP2694851B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4601462B2 (en) * 2005-03-03 2010-12-22 第一稀元素化学工業株式会社 Perovskite complex oxide and method for producing the same

Also Published As

Publication number Publication date
JPH02258628A (en) 1990-10-19

Similar Documents

Publication Publication Date Title
JPH0345025B2 (en)
US5908802A (en) Nonaqueous solution synthesis process for preparing oxide powders of lead zirconate titanate and related materials
JPS6214489B2 (en)
JP2726439B2 (en) Method for producing ceramic powder having perovskite structure
JPS6214490B2 (en)
JP3319807B2 (en) Perovskite-type compound fine particle powder and method for producing the same
JP2694851B2 (en) PLZT ceramic raw material powder manufacturing method
JPH0159967B2 (en)
JPS623004A (en) Production of easily sintering perovskite raw material powder by wet method
JPH0818871B2 (en) Method for manufacturing lead zirconate titanate-based piezoelectric ceramic
JPS6363511B2 (en)
JPS63288960A (en) Production of (pb, bi) (zr, ti)o3
JPH0524089B2 (en)
JPS63151673A (en) Manufacture of lead zirconate titanate base piezoelectric ceramic
JP2607519B2 (en) Manufacturing method of optical ceramics
JPS6236023A (en) Production of calcined powder of easily sinterable perovskite
JPS63218514A (en) Production of perovskite ceramic powder containing zirconium
JPS6259529A (en) Production of powdery raw material of easily sinterable titanium-containing perovskite and solid solution thereof
JPS6363512B2 (en)
JPH0193419A (en) Production of piezoelectric ceramics raw material powder
JP2608558B2 (en) Method for producing optical ceramics
JPS62158117A (en) Production of calcinated powder of plzt
JPH0818867B2 (en) Method for producing perovskite ceramics containing zirconium
JPS6265907A (en) Production of easy-to-sinter perovskite powder
JP2607518B2 (en) Manufacturing method of optical ceramics