JP2694696B2 - Carbon-based product manufacturing method - Google Patents

Carbon-based product manufacturing method

Info

Publication number
JP2694696B2
JP2694696B2 JP1009975A JP997589A JP2694696B2 JP 2694696 B2 JP2694696 B2 JP 2694696B2 JP 1009975 A JP1009975 A JP 1009975A JP 997589 A JP997589 A JP 997589A JP 2694696 B2 JP2694696 B2 JP 2694696B2
Authority
JP
Japan
Prior art keywords
carbon
resin
silicon
based product
organosilicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1009975A
Other languages
Japanese (ja)
Other versions
JPH02192411A (en
Inventor
吉久 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Pencil Co Ltd
Original Assignee
Mitsubishi Pencil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Pencil Co Ltd filed Critical Mitsubishi Pencil Co Ltd
Priority to JP1009975A priority Critical patent/JP2694696B2/en
Publication of JPH02192411A publication Critical patent/JPH02192411A/en
Application granted granted Critical
Publication of JP2694696B2 publication Critical patent/JP2694696B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は炭素系製品の製造方法にかんする。詳しく
は、本発明は、半導体工業用加工熱板、例えばシリコン
ウェハーなどのエピタキシャル気相成長、その他各種絶
縁膜の気相成長、多結晶膜気相成長等の工程に於けるサ
セプターとして、又は分析用炭材、音響用炭材、電極用
炭材、その他各種用途に用いられる緻密組成構造の炭素
系製品の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a carbon-based product. More specifically, the present invention is a processing hot plate for the semiconductor industry, for example, epitaxial vapor phase growth of silicon wafers, vapor phase growth of other various insulating films, as a susceptor in processes such as polycrystalline film vapor phase growth, or analysis. The present invention relates to a method for producing a carbon-based product having a dense composition structure, which is used for carbon materials for use, carbon materials for acoustics, carbon materials for electrodes, and various other purposes.

(従来の技術) 一般に、熱硬化性樹脂を焼成することにより製造され
る緻密組成構造炭素であるガラス状炭素は、熱的安定
性、化学的安定性、機械的強度、気体不透過性等におい
て優れた性質を有しており、化学工業、金属工業、電気
工業等の分野で広く使用されている。
(Prior Art) In general, glassy carbon, which is a dense compositional structure carbon produced by firing a thermosetting resin, has thermal stability, chemical stability, mechanical strength, gas impermeability, and the like. It has excellent properties and is widely used in fields such as chemical industry, metal industry, and electrical industry.

しかしながら、ガラス状炭素の固有抵抗、熱膨脹率、
硬度、気体透過率、曲げ強度、ヤング率、耐酸化性等の
各性質は、ある限られた範囲内に限定されるため、用途
分野によっては大きな障害となっている。例えば、半導
体工業用サセプターとしては、一般に、炭素材の表面に
炭化ケイ素被覆を施したものが広く用いられてきたが、
炭素材と炭化ケイ素との間の熱膨脹係数の差がある為、
サセプターの使用中に層間亀裂やはく離が発生し易い。
また、電気化学用電極として使用する際に、酸化消耗し
易い等である。
However, the resistivity of glassy carbon, the coefficient of thermal expansion,
Properties such as hardness, gas permeability, bending strength, Young's modulus, and oxidation resistance are limited within a certain limited range, which is a major obstacle in some fields of application. For example, as a susceptor for the semiconductor industry, generally, a carbon material having a surface coated with silicon carbide has been widely used.
Due to the difference in coefficient of thermal expansion between carbon material and silicon carbide,
Interlayer cracks and delamination are likely to occur during use of the susceptor.
Further, when used as an electrode for electrochemical use, it is easily consumed by oxidation.

(発明が解決しようとする問題点) 本発明の目的は、ガラス状炭素の固有抵抗、熱膨脹係
数、硬度、気体透過率、曲げ強度、ヤング率、耐酸化性
等の各性質を改善し、各用途に適応する性質を持った炭
素系製品を提供せんとするものである。
(Problems to be Solved by the Invention) An object of the present invention is to improve the properties of glassy carbon such as specific resistance, thermal expansion coefficient, hardness, gas permeability, bending strength, Young's modulus, and oxidation resistance. It aims to provide carbon-based products with properties that are suitable for the intended use.

(問題点を解決するための手段) 本願発明者は、上記の目的を達成する為に鋭意研究の
結果、熱硬化性樹脂と有機ケイ素樹脂とを混合したもの
を用いることで、固有抵抗、熱膨脹係数、硬度、気体透
過率、曲げ強度、ヤング率、耐酸化性等の各性質を改善
した炭素系製品を製造するに至った。すなわち、本発明
は、熱硬化性樹脂のモノマー又は初期縮合物と有機ケイ
素樹脂とを混合後、所望の形状に賦形し、加熱硬化体と
した後、不活性ガス雰囲気中で焼成することから成る炭
素系製品の製造方法により従来の問題点を解決すること
ができた。
(Means for Solving the Problems) As a result of earnest research to achieve the above-mentioned object, the inventor of the present application uses a mixture of a thermosetting resin and an organosilicon resin to obtain a specific resistance and a thermal expansion coefficient. A carbon-based product having improved properties such as coefficient, hardness, gas permeability, bending strength, Young's modulus, and oxidation resistance has been manufactured. That is, the present invention, after mixing the monomer or initial condensate of the thermosetting resin and the organosilicon resin, shaped into a desired shape, to form a heat-cured body, after firing in an inert gas atmosphere The conventional problems can be solved by the manufacturing method of the carbon-based product.

以下,この発明について詳しく説明する。 The present invention will be described in detail below.

熱硬化性樹脂のモノマー又は初期縮合物と有機ケイ素
樹脂、これに必要に応じ、これら両樹脂を共溶する溶
剤、もしくは比較的揮発し易い可塑剤を添加し、良く混
練してブレンドポリマー化させたものを得る。このブレ
ンドポリマーを、剥離膜を有するバックシートを用い、
コーターまたはカレンダーロールにより所望の厚さのフ
ィルム又はシートに予備成形の後、該混練物が可塑性を
有する領域(Bステージ)においてバックシートを取り
除き、プレス成形機、真空成形機、ブロー成形機等を用
いて、所望の形状に成形・硬化して成形体を得る。或い
は、ブレンドポリマーを注入、射出成形方法等を用い
て、所望の形状に成形・硬化して成形体を得る。得られ
た成形体を、エアオーブン中で加熱して、含有する溶剤
及び可塑剤を充分に揮発させると共に、熱硬化性樹脂の
硬化反応を進行させ、完全硬化体とした後,不活性ガス
雰囲気中で室温から徐々に昇温し、700℃以上、好まし
くは1000℃〜2200℃に加熱して炭素化し,冷却後取り出
して製品を得る。加熱の具体的な温度は、ブレンドポリ
マー中の有機ケイ素樹脂種によって異なるが、主鎖がケ
イ素のみからなる樹脂及び主鎖がケイ素と炭素からなる
樹脂は2200℃程度、主鎖がケイ素と酸素とからなる樹脂
は1800℃程度、主鎖がケイ素と窒素とからなる樹脂は19
00℃程度である。
Monomer or initial condensate of thermosetting resin and organosilicon resin, if necessary, a solvent co-dissolving these resins or a plasticizer which is relatively volatile is added, and well kneaded to form a blend polymer. Get what you got. This blend polymer, using a back sheet having a release film,
After preforming into a film or sheet having a desired thickness with a coater or a calender roll, the backsheet is removed in a region (B stage) where the kneaded product has plasticity, and a press molding machine, a vacuum molding machine, a blow molding machine or the like is used. Using it, it is molded into a desired shape and cured to obtain a molded body. Alternatively, a blended polymer is injected, injection molding, or the like is used to mold and cure into a desired shape to obtain a molded body. The obtained molded body is heated in an air oven to sufficiently volatilize the solvent and plasticizer contained therein, and the curing reaction of the thermosetting resin is allowed to proceed to form a completely cured body, and then an inert gas atmosphere. The temperature is gradually raised from room temperature to carbonize by heating to 700 ° C or higher, preferably 1000 ° C to 2200 ° C, and after cooling, the product is obtained. The specific temperature of heating varies depending on the organosilicon resin species in the blend polymer, but the resin whose main chain is composed only of silicon and the resin whose main chain is composed of silicon and carbon are about 2200 ° C, and the main chain is composed of silicon and oxygen. The resin consisting of is about 1800 ° C, and the resin whose main chain is composed of silicon and nitrogen is 19
It is about 00 ° C.

ここで用いる熱硬化性樹脂は、フラン樹脂、フエノー
ル樹脂、キシレン樹脂、トルエン樹脂、イミド樹脂等の
モノマー又は初期縮合物の一種又は二種以上の混合物で
ある。また、有機ケイ素樹脂としては、ポリシラン、ポ
リシルメチレン、ポリシルフェニレン、ポリシロキサ
ン、ポリシラザン、ポリシルチアン、ポリシルフェニレ
ンシロキサン、ポリフェニレンオキシシロキサン、ポリ
メタロシロキサン、ポリ(トリメチルビニルシラン)、
ポリ(P−トリメチルシリルスチレン)等の主鎖がケイ
素、ケイ素と炭素、ケイ素とヘテロ原子(及び炭素原
子)、及びケイ素を含む原子団が炭素骨格ポリマーの側
鎖として存在する樹脂の一種又は二種以上の混合物であ
る。
The thermosetting resin used here is one or a mixture of two or more of monomers or initial condensation products such as furan resin, phenol resin, xylene resin, toluene resin and imide resin. Further, as the organosilicon resin, polysilane, polysilmethylene, polysilphenylene, polysiloxane, polysilazane, polysilthiane, polysilphenylenesiloxane, polyphenyleneoxysiloxane, polymetallosiloxane, poly (trimethylvinylsilane),
One or two kinds of resins in which a main chain such as poly (P-trimethylsilylstyrene) has silicon, silicon and carbon, silicon and a hetero atom (and carbon atom), and an atomic group containing silicon as a side chain of a carbon skeleton polymer. It is a mixture of the above.

一般に、熱硬化性樹脂を炭化することで得られるガラ
ス状炭素の性質は、 固有抵抗 4〜8×10-3Ωcm、 熱膨脹係数 2〜3×10-6/℃、 ショアー硬度 70〜120、 曲げ強度 80〜120MPa、 ヤング率 10〜30GPa で、耐熱性に優れ(不活性雰囲気中)、耐薬品性に優れ
る等である。
Generally, the properties of glassy carbon obtained by carbonizing a thermosetting resin are as follows: specific resistance 4 to 8 × 10 −3 Ωcm, thermal expansion coefficient 2 to 3 × 10 −6 / ° C., Shore hardness 70 to 120, bending It has a strength of 80 to 120 MPa and a Young's modulus of 10 to 30 GPa, and has excellent heat resistance (in an inert atmosphere) and chemical resistance.

一方、熱硬化性樹脂と有機ケイ素樹脂とのブレンドポ
リマーを用いた本発明の方法による炭素系製品の性質
は、熱硬化性樹脂と有機ケイ素樹脂との比率、有機ケイ
素樹脂種、加熱処理温度等によって異なるが、 固有抵抗 5×10-3Ωcm、 熱膨脹係数 2〜5×10-6/℃、 ショアー硬度 80〜120、 曲げ強度 100〜350MPa、 ヤング率 20〜50GPa で、酸化雰囲気中での耐酸化性の向上等、従来のガラス
状炭素では得られなかった性質を有する。
On the other hand, the properties of the carbon-based product by the method of the present invention using the blend polymer of the thermosetting resin and the organosilicon resin are as follows: the ratio of the thermosetting resin to the organosilicon resin, the organosilicon resin species, the heat treatment temperature, etc. Depending on the specific resistance 5 × 10 -3 Ωcm, coefficient of thermal expansion 2-5 × 10 -6 / ° C, Shore hardness 80-120, bending strength 100-350MPa, Young's modulus 20-50GPa, acid resistance in oxidizing atmosphere. It has properties that cannot be obtained with conventional glassy carbon, such as improved chemical conversion.

(実施例) 以下に,本発明を実施例により詳細に説明するが,本
発明は実施例によって限定されるものではない。
(Examples) Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited to the Examples.

実施例1 フルフリルアルコール/フルフラール樹脂の初期縮合
物70重量部と、ジメチルジクロロシランをトルエン中Na
触媒下で脱塩素反応することで得たポリジメチルシラン
30重量部、硬化剤としてのトリクロロ酢酸4重量部を高
速ホモミキサーを用いて、室温下で充分攪拌しながら減
圧脱泡機を通して、脱泡操作を施した。得られたブレン
ドポリマー原料液を、ドクターブレードを有するコータ
ーにより剥離膜を有するバックシート上に塗布し、予備
硬化させ、未だ充分柔軟な可塑性を有するBステージ状
態の予備シートを得た。
Example 1 70 parts by weight of an initial condensate of furfuryl alcohol / furfural resin and dimethyldichlorosilane were added to Na in toluene.
Polydimethylsilane obtained by dechlorination reaction under catalyst
30 parts by weight and 4 parts by weight of trichloroacetic acid as a curing agent were subjected to a defoaming operation using a high speed homomixer at room temperature through a vacuum defoaming machine while sufficiently stirring. The obtained blended polymer raw material liquid was applied onto a back sheet having a release film by a coater having a doctor blade and pre-cured to obtain a preliminary sheet in a B-stage state having still sufficient flexibility.

次に、バックシートを取り除き、真空成形機により成
形し、100℃の温度で加熱硬化させて脱型し成形体を得
た。得られた成形体を、エア・オーブン中で200℃迄昇
温加熱して炭素前駆体処理を施した後、アルゴン雰囲気
中で、500℃までは15℃/時、500℃以上1000℃までは50
℃/時、1000℃以上2100℃までは100℃/時の昇温速度
で加熱し、2200℃で3時間保持した後、自然冷却し炭素
系製品を得た。
Next, the back sheet was removed, the product was molded by a vacuum molding machine, heat-cured at a temperature of 100 ° C., and demolded to obtain a molded product. The obtained molded body is heated to 200 ° C in an air oven to be heated and treated with a carbon precursor. Then, in an argon atmosphere, it is 15 ° C / hour up to 500 ° C and 500 ° C to 1000 ° C. 50
After heating at a heating rate of 100 ° C./hour from 1000 ° C./hour to 1000 ° C. to 2100 ° C., and holding at 2200 ° C. for 3 hours, natural cooling was performed to obtain a carbon-based product.

このようにして得られた炭素系製品の性質は、 固有抵抗 5×10-2Ωcm、 熱膨脹係数 3.3×10-6/℃、 ショアー硬度 120、 曲げ強度 220MPa、 ヤング率 35GPa で、耐酸化性改善(300℃エア・オーブン中で1%重量
減少する時間がフラン樹脂のみからなるガラス状炭素に
比べ約2倍ほど長くなった)等の性質を有する炭素系製
品が得られた。これによって得られた炭素は、特に熱膨
脹係数SiCとほぼ同等であることか、半導体工業用のサ
セプターに適する。
The properties of the carbon-based product thus obtained are as follows: resistivity 5 × 10 -2 Ωcm, coefficient of thermal expansion 3.3 × 10 -6 / ° C, Shore hardness 120, flexural strength 220 MPa, Young's modulus 35 GPa. A carbon-based product having such properties as (1% weight reduction time in a 300 ° C. air oven was about twice as long as that of glassy carbon composed of only furan resin) was obtained. The carbon thus obtained has a coefficient of thermal expansion approximately equal to that of SiC, or is suitable for a susceptor for the semiconductor industry.

実施例2 フルフラール/フェノール共縮合樹脂65重量部と、オ
ルガノポリシロキサン35重量部、硬化剤としてのP−ト
ルエンスルホン酸2重量部とを高速ホモミキサーを用
い、室温下で充分攪拌しながら減圧脱泡機を通して、脱
泡操作を施した。得られたブレンドポリマー原料液を,
射出成形機に投入、成形、140℃で硬化処理後、脱型し
成形体を得た。得られた成形体を、エア・オーブン中20
0℃まで昇温加熱し炭素前駆体化処理を施した後、窒素
ガス雰囲気中、500℃までは15℃/時、500℃以上1000℃
までは50℃/時、1000℃以上1500℃までは100℃/時の
昇温速度で加熱し、1500℃に3時間保持した後、自然冷
却して炭素系製品を得た。
Example 2 65 parts by weight of a furfural / phenol co-condensation resin, 35 parts by weight of organopolysiloxane, and 2 parts by weight of P-toluenesulfonic acid as a curing agent were decompressed under reduced pressure with sufficient stirring at room temperature. A defoaming operation was performed through a foamer. The obtained blend polymer raw material liquid is
It was put into an injection molding machine, molded, cured at 140 ° C., and then demolded to obtain a molded body. The obtained molded body is placed in an air oven for 20
After heating to 0 ° C and applying carbon precursor treatment, in a nitrogen gas atmosphere, up to 500 ° C, 15 ° C / hour, 500 ° C or more, 1000 ° C
Was heated at a heating rate of 50 ° C./hour up to 1000 ° C. and 1500 ° C. at 100 ° C./hour, held at 1500 ° C. for 3 hours, and then naturally cooled to obtain a carbon-based product.

このようにして得られた炭素系製品の性質は、 固有抵抗 9×10-3Ωcm、 熱膨脹係数 3.0×10-6/℃、 ショアー硬度 100、 曲げ強度 180MPa、 ヤング率 25GPa で、耐酸化性改善(300℃エア・オーブン中で1%重量
減少する時間がフラン樹脂のみからなるガラス状炭素に
比べ約5倍ほど長くなった)等の性質を有する炭素系製
品が得られた。
The properties of the carbon-based product thus obtained are as follows: specific resistance 9 × 10 -3 Ωcm, coefficient of thermal expansion 3.0 × 10 -6 / ° C, Shore hardness 100, bending strength 180MPa, Young's modulus 25GPa. A carbon-based product having properties such as (the time for 1% weight loss in a 300 ° C. air oven was about 5 times longer than that of glassy carbon made of only furan resin) was obtained.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】焼成後高硬度不通気性を有するガラス状硬
質炭素を生成し、かつ高い炭素残査収率を示す熱硬化性
樹脂のモノマー又は初期縮重合物と、有機ケイ素樹脂と
を混合後、所望の形状に賦形し、加熱硬化体とした後、
不活性ガス雰囲気中で焼成することから成る炭素系製品
の製造方法。
1. After mixing a monomer or an initial polycondensation product of a thermosetting resin which produces a glassy hard carbon having high hardness and impermeability and has a high residual carbon yield after firing with an organosilicon resin. , After shaping into a desired shape and forming a heat-cured body,
A method for producing a carbon-based product, which comprises firing in an inert gas atmosphere.
【請求項2】該熱硬化性樹脂は、フラン樹脂、フエノー
ル樹脂、キシレン樹脂、トルエン樹脂、イミド樹脂等の
モノマー又は初期縮合物の一種又は二種以上の混合物か
ら選ばれる第1項記載の炭素系製品の製造方法。
2. The carbon according to claim 1, wherein the thermosetting resin is selected from one or a mixture of two or more monomers or initial condensation products such as furan resin, phenol resin, xylene resin, toluene resin and imide resin. Manufacturing method.
【請求項3】該有機ケイ素樹脂は、ポリシラン、ポリシ
ルメチレン、ポリシルフェニレン、ポリシロキサン、ポ
リシラザン、ポリシルチアン、ポリシルフェニレンシロ
キサン、ポリフェニレンオキシシロキサン、ポリメタロ
シロキサン、ポリ(トリメチルビニルシラン)、ポリ
(P−トリメチルシリルスチレン)等の、主鎖がケイ
素、ケイ素と炭素、ケイ素とヘテロ原子(および炭素原
子)、及びケイ素を含む原子団が炭素骨格ポリマーの側
鎖として存在する樹脂の一種又は二種以上の混合物から
選ばれる第1項に記載の炭素系製品の製造方法。
3. The organosilicon resin is polysilane, polysilmethylene, polysilphenylene, polysiloxane, polysilazane, polysilthiane, polysilphenylenesiloxane, polyphenyleneoxysiloxane, polymetallosiloxane, poly (trimethylvinylsilane), poly (P). -Trimethylsilylstyrene) such as one or two or more resins whose main chains are silicon, silicon and carbon, silicon and heteroatoms (and carbon atoms), and atomic groups containing silicon as side chains of the carbon skeleton polymer. The method for producing a carbon-based product according to item 1, which is selected from a mixture.
JP1009975A 1989-01-20 1989-01-20 Carbon-based product manufacturing method Expired - Fee Related JP2694696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1009975A JP2694696B2 (en) 1989-01-20 1989-01-20 Carbon-based product manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1009975A JP2694696B2 (en) 1989-01-20 1989-01-20 Carbon-based product manufacturing method

Publications (2)

Publication Number Publication Date
JPH02192411A JPH02192411A (en) 1990-07-30
JP2694696B2 true JP2694696B2 (en) 1997-12-24

Family

ID=11734916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1009975A Expired - Fee Related JP2694696B2 (en) 1989-01-20 1989-01-20 Carbon-based product manufacturing method

Country Status (1)

Country Link
JP (1) JP2694696B2 (en)

Also Published As

Publication number Publication date
JPH02192411A (en) 1990-07-30

Similar Documents

Publication Publication Date Title
US6403750B1 (en) Apparatus and process for making ceramic composites from photo-curable pre-ceramic polymers
US4336215A (en) Sintered ceramic body and process for production thereof
JPS6028781B2 (en) Method for producing heat-resistant ceramic sintered bodies
EP0742184B1 (en) Method of forming Ceramic matrix composites using modified hydrogen silsesquioxane resin
EP0037249B1 (en) Sintered ceramic body and process for production thereof
JPH10114827A (en) Cross-linker for silazane polymer
US5545687A (en) Preparation of high density boron carbide ceramics with preceramic polymer binders
JPH05254965A (en) Ceramic matrix composite and production thereof
EP0698589A1 (en) Preparation of high density titanium carbide ceramics with preceramic polymer binders
EP0694509A2 (en) Preparation of high density zirconium diboride ceramics with preceramic polymer binders
JP2694696B2 (en) Carbon-based product manufacturing method
AU690699B2 (en) Preparation of high density titanium diboride ceramics with preceramic polymer binders
AU689270B2 (en) Preparation of high density zirconium carbide ceramics with preceramic polymer binders
CA1241973A (en) Ceramic materials from polycarbosilanes
US5294574A (en) Production of nonoxide monolithic ceramic shaped articles
JPH05319959A (en) Production of high-density ceramic
EP0893420B1 (en) Sintered silicon carbide fibers bonded material
Kang et al. Preparation of SiC/C composite sheet from polycarbosilane/carbon-based resin mixture
JPH02267167A (en) Composite ceramic sheet-like molded product and production thereof
JPH01131061A (en) Production of silicon carbide sheet
JPH10114828A (en) Cross-linker for silazane polymer
JPH04362062A (en) Production of glassy carbon material
JPH0791137B2 (en) Oxidation resistant carbon fiber reinforced carbon material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees