JP2692717B2 - Evaporative titanium getter pump - Google Patents

Evaporative titanium getter pump

Info

Publication number
JP2692717B2
JP2692717B2 JP3107091A JP10709191A JP2692717B2 JP 2692717 B2 JP2692717 B2 JP 2692717B2 JP 3107091 A JP3107091 A JP 3107091A JP 10709191 A JP10709191 A JP 10709191A JP 2692717 B2 JP2692717 B2 JP 2692717B2
Authority
JP
Japan
Prior art keywords
titanium
melting
rare gas
getter pump
evaporation source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3107091A
Other languages
Japanese (ja)
Other versions
JPH04334537A (en
Inventor
憲二 尾高
新次郎 上田
Original Assignee
科学技術庁長官官房会計課長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 科学技術庁長官官房会計課長 filed Critical 科学技術庁長官官房会計課長
Priority to JP3107091A priority Critical patent/JP2692717B2/en
Publication of JPH04334537A publication Critical patent/JPH04334537A/en
Application granted granted Critical
Publication of JP2692717B2 publication Critical patent/JP2692717B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/006Processes utilising sub-atmospheric pressure; Apparatus therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は蒸発型のチタンゲッタポ
ンプに係り、特に、チタンの蒸発時に希ガスの放出がな
く極高真空を発生するのに好適なチタン蒸発源に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an evaporation type titanium getter pump, and more particularly to a titanium evaporation source suitable for generating an extremely high vacuum without releasing a rare gas when titanium is evaporated.

【0002】[0002]

【従来の技術】従来蒸発型チタンゲッタポンプのチタン
蒸発源として用いられているチタンあるいはチタン合金
は、製造過程で不純物の低減のための精製や合金形成の
ために、アルゴン雰囲気中での溶解を経験した入手の容
易な材料が用いられていた。
2. Description of the Related Art Titanium or a titanium alloy conventionally used as a titanium evaporation source of an evaporation type titanium getter pump has to be dissolved in an argon atmosphere for refining or alloy formation for reducing impurities in a manufacturing process. Experienced readily available materials were used.

【0003】[0003]

【発明が解決しようとする課題】本発明が解決しようと
する課題を、図2により説明する。真空容器4を排気す
る蒸発型のチタンゲッタポンプは、チタン蒸発源5及
び、その表面上にチタン膜を付着,形成するためのシュ
ラウド6と呼ばれる部材から構成される。真空容器中に
Tiが侵入せぬように、遮蔽板7が置かれる。蒸発型の
チタンゲッタポンプはTi蒸発時に水素,チタン,水,
一酸化炭素及び二酸化炭素等の不純物ガスが多量に放出
されるので、これらの不純物ガスを出来るかぎり系外に
排気するために、大きなガス負荷に耐えることの出来る
拡散ポンプ,イオンポンプ或いはターボ分子ポンプ等の
補助ポンプ8が併用される。チタンの蒸着が進んでチタ
ンゲッタポンプが活発に作用し、真空容器4内の圧力が
補助ポンプ8の到達圧力を下まわると、補助ポンプから
真空容器内へガスが流入するようになるので、バルブ9
を閉じて真空容器4と補助ポンプ8を切り離して、補助
ポンプ8からのガスの逆流を防止する。
The problem to be solved by the present invention will be described with reference to FIG. The evaporation type titanium getter pump for evacuating the vacuum container 4 is composed of a titanium evaporation source 5 and a member called a shroud 6 for adhering and forming a titanium film on the surface thereof. The shielding plate 7 is placed so that Ti does not enter the vacuum container. Evaporative titanium getter pump is used for hydrogen, titanium, water,
Since a large amount of impurity gases such as carbon monoxide and carbon dioxide are released, in order to exhaust these impurity gases out of the system as much as possible, a diffusion pump, an ion pump or a turbo molecular pump that can withstand a large gas load. Auxiliary pump 8 is also used. When the titanium getter pump actively operates due to the progress of vapor deposition of titanium and the pressure inside the vacuum container 4 falls below the ultimate pressure of the auxiliary pump 8, gas will flow from the auxiliary pump into the vacuum container. 9
Is closed to disconnect the vacuum container 4 from the auxiliary pump 8 to prevent the reverse flow of gas from the auxiliary pump 8.

【0004】蒸発型チタンゲッタポンプでは、従来技術
ではチタン蒸発源5として、アルゴンアーク溶解やアル
ゴンプラズマビーム溶解等のようにアルゴン雰囲気中で
溶解処理した、純チタンあるいはチタン合金等のチタン
材料を用いている。アルゴン雰囲気中で溶解されたチタ
ン材料中には、微量のアルゴン及びアルゴンの不純物で
あるネオンやヘリウム等の希ガスが残留している。チタ
ン蒸発源5を加熱,蒸発させると水素,メタン,水,一
酸化炭素及び二酸化炭素等と共に、蒸発源中に残留して
いる微量のアルゴンをはじめネオンやヘリウム等の希ガ
スが、蒸発源5の内部を拡散して真空中に放出される。
希ガスは不活性なためチタンゲッタポンプでは殆んど排
気されず、大部分が補助ポンプ8によって系外に排出さ
れるが、極く僅かの量は蒸着によってシュラウド6の内
面に形成されたチタン膜に付着して残留し、チタンの蒸
着が終了した後に少しずつ脱離して真空容器4中に放出
される。補助ポンプ8は、希ガスに対する排気速度をも
つので、排気に補助ポンプを併用している間は、チタン
蒸着膜から脱離してくる極く僅かの希ガスは補助ポンプ
で排気されて真空容器内の圧力に影響を及ぼさない。チ
タンの蒸着量が増加してチタンゲッタポンプが活発に作
用し、真空容器4内の圧力が補助ポンプ8の到達圧力を
下まわった後、補助ポンプからのガスの逆流を防止する
ため、補助ポンプ8がバルブ9で切り離されて真空容器
4がチタンゲッタポンプのみで排気されるようになる
と、チタン蒸着膜から脱離してくる希ガスが真空容器4
内に蓄積されて、容器内の圧力を押し上げる。希ガスの
中でもアルゴンやネオンは、シュラウド6と共にチタン
蒸着面を液体窒素で冷却すると物理吸着するため、その
影響を小さくあるいはなくすことが可能である。しか
し、ヘリウムは液体窒素温度では殆んど物理吸着しない
ので、ヘリウムによる圧力上昇をなくすことは非常にむ
ずかしく、これがチタンゲッタポンプを用いて10~10
Pa 台以下に圧力を低下させることを困難にしている
大きな原因の一つである。このように、従来技術では、
チタン蒸発源から希ガスが放出される点について考慮が
されておらず、極高真空排気を困難にするという問題点
があった。
In the conventional evaporation type titanium getter pump, as the titanium evaporation source 5, a titanium material such as pure titanium or titanium alloy, which is subjected to a melting treatment in an argon atmosphere such as argon arc melting or argon plasma beam melting, is used in the prior art. ing. A trace amount of argon and a rare gas such as neon and helium, which are impurities of argon, remain in the titanium material dissolved in the argon atmosphere. When the titanium vaporization source 5 is heated and vaporized, along with hydrogen, methane, water, carbon monoxide, carbon dioxide, etc., a trace amount of argon remaining in the vaporization source, as well as rare gases such as neon and helium, are generated in the vaporization source 5 Is diffused inside and released into a vacuum.
Since the rare gas is inert, it is hardly exhausted by the titanium getter pump, and most of it is exhausted out of the system by the auxiliary pump 8. However, a very small amount of titanium is formed on the inner surface of the shroud 6 by vapor deposition. It remains attached to the film, and is released little by little after the vapor deposition of titanium is completed and released into the vacuum container 4. Since the auxiliary pump 8 has an evacuation speed for rare gas, while the auxiliary pump is also used for evacuation, a very small amount of rare gas desorbed from the titanium vapor deposition film is exhausted by the auxiliary pump and the inside of the vacuum container is exhausted. Does not affect the pressure of. After the deposition amount of titanium increases and the titanium getter pump actively operates, and the pressure inside the vacuum container 4 falls below the ultimate pressure of the auxiliary pump 8, in order to prevent the reverse flow of gas from the auxiliary pump, the auxiliary pump When 8 is separated by the valve 9 and the vacuum container 4 is exhausted only by the titanium getter pump, the rare gas desorbed from the titanium vapor deposition film becomes the vacuum container 4
Accumulates in and boosts the pressure in the container. Among the rare gases, argon and neon physically adsorb when the titanium vapor deposition surface is cooled with liquid nitrogen together with the shroud 6, so the influence can be reduced or eliminated. However, since helium is hardly physically adsorbed at the temperature of liquid nitrogen, it is very difficult to eliminate the pressure increase due to helium, and this is 10 to 10 using a titanium getter pump.
This is one of the major causes that make it difficult to reduce the pressure below the Pa level. Thus, in the conventional technology,
No consideration has been given to the point where the rare gas is released from the titanium evaporation source, and there is a problem that it becomes difficult to perform extremely high vacuum exhaust.

【0005】[0005]

【課題を解決するための手段】上記目的は、以下の手段
によって達成される。すなわち、蒸発型のチタンゲッタ
ポンプのチタン蒸発源として、精製や合金製造過程にお
いて、アルゴンアーク溶解やアルゴンプラズマビーム溶
解のような希ガス中での溶解過程を経ないで、真空アー
ク溶解,高真空電子ビーム溶解或いは水素プラズマアー
ク溶解等により精製,溶解したチタン材料を用いる。
The above object is achieved by the following means. That is, as a titanium evaporation source of an evaporation type titanium getter pump, vacuum arc melting, high vacuum, without refining or alloy manufacturing processes, such as argon arc melting or argon plasma beam melting in a rare gas. A titanium material purified and melted by electron beam melting or hydrogen plasma arc melting is used.

【0006】[0006]

【作用】希ガス中での溶解過程を経ないで、真空アーク
溶解,高真空電子ビーム溶解或いは水素プラズマアーク
溶解等により精製,溶解したチタン材料を用いて製作し
たチタン蒸発源を、真空容器内で加熱しつつ補助ポンプ
で排気すると、チタン蒸発源に内蔵される水素,炭素及
び酸素等の不純物はチタン蒸発源中を拡散してその表面
から水素,水,チタン,一酸化炭素及び二酸化炭素等と
して脱離し、その殆んどが補助ポンプによって真空容器
外へ排出され、一部がチタン蒸着膜のゲッタ作用により
捕捉,吸着される。しかし、チタン蒸発源は希ガスを含
まないため、チタン蒸発源を加熱しても希ガスが放出さ
れることはなく、チタン蒸着膜に吸着,残留することも
ない。従って、チタンの蒸着量が増加してチタンゲッタ
ポンプの作用が活発になり、真空容器内の圧力が補助ポ
ンプでの到達圧力を下まわった後、補助ポンプから真空
容器内へガスが逆流するのを防ぐためにバルブを閉じて
補助ポンプを切離しても、希ガスに起因する圧力上昇は
起らず、蒸着されたチタン膜のゲッタ作用によって極高
真空を容易に発生することができる。
[Operation] A titanium evaporation source manufactured by using a titanium material that has been purified and melted by vacuum arc melting, high vacuum electron beam melting, hydrogen plasma arc melting, etc. without passing through a melting process in a rare gas is placed in a vacuum container. When heated by the auxiliary pump and exhausted with hydrogen, impurities such as hydrogen, carbon, and oxygen contained in the titanium evaporation source diffuse in the titanium evaporation source and hydrogen, water, titanium, carbon monoxide, carbon dioxide, etc. As a result, most of them are discharged to the outside of the vacuum container by an auxiliary pump, and part of them is captured and adsorbed by the gettering action of the titanium vapor deposition film. However, since the titanium evaporation source does not contain a rare gas, the rare gas is not released even when the titanium evaporation source is heated, and is not adsorbed or remains on the titanium vapor deposition film. Therefore, the amount of deposited titanium increases, the action of the titanium getter pump becomes active, and after the pressure in the vacuum container falls below the ultimate pressure of the auxiliary pump, gas flows backward from the auxiliary pump into the vacuum container. Even if the valve is closed and the auxiliary pump is disconnected to prevent this, the pressure rise due to the rare gas does not occur, and an extremely high vacuum can be easily generated by the gettering action of the deposited titanium film.

【0007】[0007]

【実施例】以下、本発明の実施例を図1により説明す
る。チタン鉱石からの還元の中間段階の生成物である四
塩化チタンTiCl4 を溶融塩電解によって還元した粗
チタン(金属チタン)を、真空アーク溶解,高真空電子
ビーム溶解あるいは水素プラズマアーク溶解により精製
したチタン材料を用い、機械加工によって中空球とした
もの中空部1にヒータ2を設置し、このヒータに通電す
るための電極を設け、チタン蒸気が電極に付着すること
を防ぐためのカバー3を設けて、チタン蒸発源を構成す
る。このチタン蒸発源のチタンは希ガス中での溶解工程
を経験していないため希ガスを含有せず、真空容器中に
設置して補助ポンプで排気しつつ、ヒータ2を用いて高
温に加熱してチタンを蒸発させるときに、水素,水,メ
タン,一酸化炭素及び二酸化炭素等は放出されるが、希
ガスは放出されることがないので、ゲッタポンプとして
作用するチタン蒸着膜に希ガスが吸着することも無い。
An embodiment of the present invention will be described below with reference to FIG. Crude titanium (titanium metal) obtained by reducing titanium tetrachloride TiCl 4 which is an intermediate product of reduction from titanium ore by molten salt electrolysis was purified by vacuum arc melting, high vacuum electron beam melting or hydrogen plasma arc melting. A hollow sphere formed by machining using a titanium material. A heater 2 is installed in a hollow portion 1, an electrode for energizing the heater is provided, and a cover 3 for preventing titanium vapor from adhering to the electrode is provided. And constitutes a titanium evaporation source. Since titanium of this titanium evaporation source has not undergone a melting process in a rare gas, it does not contain a rare gas, so it is installed in a vacuum container and evacuated by an auxiliary pump while being heated to a high temperature by using the heater 2. Hydrogen, water, methane, carbon monoxide, carbon dioxide, etc. are released when titanium is vaporized, but no rare gas is released, so the rare gas is adsorbed on the titanium vapor deposition film that acts as a getter pump. There is nothing to do.

【0008】本実施例によれば、蒸発型のチタンゲッタ
ポンプにおいて、チタン蒸発源から希ガスが放出されな
い。従って、チタン蒸着が進んでチタンゲッタポンプの
作用が活発になり、真空容器内の圧力が補助ポンプの到
達圧力を下まわった後、補助ポンプから真空容器内へガ
スが逆流するのを防ぐために、バルブを閉じて補助ポン
プを切り離しても、希担ガスに起因する圧力上昇は起こ
らず、極高真空を容易に発生することが出来る。
According to this embodiment, in the evaporation type titanium getter pump, no rare gas is released from the titanium evaporation source. Therefore, in order to prevent the reverse flow of gas from the auxiliary pump into the vacuum container after the titanium deposition progresses and the action of the titanium getter pump becomes active, and the pressure inside the vacuum container falls below the ultimate pressure of the auxiliary pump, Even if the valve is closed and the auxiliary pump is disconnected, the pressure rise due to the rare gas does not occur and an extremely high vacuum can be easily generated.

【0009】チタン材料として、クロール法(Mg還元
法)やハンター法(Na還元法)を用いて還元された粗
チタンを用い、この粗チタンを真空アーク溶解,高真空
電子ビーム溶解あるいは水素プラズマアーク溶解により
精製したチタンを用いることもできる。また、ヨウ化物
熱分解法(ヨード法,Van Arkel 法)により精製された
チタン、あるいはこのチタンをさらに真空アーク溶解,
高真空電子ビーム溶解あるいは水素プラズマアーク溶解
で精製したチタンを用することもできる。
As the titanium material, crude titanium reduced by the Kroll method (Mg reduction method) or Hunter method (Na reduction method) is used, and the crude titanium is vacuum arc melted, high vacuum electron beam melted or hydrogen plasma arc. It is also possible to use titanium purified by melting. Also, titanium purified by iodide thermal decomposition method (iodine method, Van Arkel method), or this titanium is further vacuum arc melted,
Titanium purified by high vacuum electron beam melting or hydrogen plasma arc melting can also be used.

【0010】本発明の他の実施例を、図3により説明す
る。これは、希ガス中での溶解工程を経ていないタング
ステン,モリブデンあるいはタンタル等のチタンよりも
融点の高い金属の線材を骨格10として、その上に上記
の実施例で述べたチタン材料を細い針金状にしたもの1
1を巻きつけて全体として棒状に形成し、直接通電で加
熱してチタンを蒸発させる型式のものである。
Another embodiment of the present invention will be described with reference to FIG. This is a wire 10 made of a metal having a melting point higher than that of titanium such as tungsten, molybdenum, or tantalum, which has not been subjected to a melting step in a rare gas, as a skeleton 10, and the titanium material described in the above-mentioned embodiment is thinly wire-shaped on the skeleton 10. The one
It is a type in which 1 is wound to form a rod shape as a whole, and titanium is evaporated by heating by directly energizing.

【0011】本発明の他の実施例を、図4により説明す
る。これは、上記の実施例で述べたチタン材料を棒状に
成型して陽極としたもの12と陰極13との間に放電を
行ない、陰極13から放出される電子を陽極12に衝突
させて電子のエネルギで陽極12を加熱する、電子衝撃
加熱によってチタンを蒸発させることにより、チタン蒸
発源として用いるものである。
Another embodiment of the present invention will be described with reference to FIG. This is because the titanium material described in the above-mentioned embodiment is molded into a rod shape to serve as an anode, a discharge is performed between the cathode 12 and the cathode 13, and electrons emitted from the cathode 13 collide with the anode 12 to generate electrons. It is used as a titanium evaporation source by heating the anode 12 with energy and evaporating titanium by electron impact heating.

【0012】さらに本発明による別の形式のチタン蒸発
源として、上記の実施例で述べたチタン材料と、希ガス
中での溶解工程を経ていないモリブデンあるいはタンタ
ルとを、希ガス中での溶解工程を用いずに、真空アーク
溶解,高真空電子ビーム溶解あるいは水素プラズマアー
ク溶解などによって合金とした線材を、直接通電で加熱
してチタンを蒸発させる型式のものを用いることもでき
る。
As another type of titanium evaporation source according to the present invention, the titanium material described in the above embodiment and molybdenum or tantalum which has not been subjected to the melting step in the rare gas are dissolved in the rare gas. It is also possible to use a type in which a wire made of an alloy by vacuum arc melting, high vacuum electron beam melting, hydrogen plasma arc melting, or the like is heated by direct energization to evaporate titanium without using.

【0013】[0013]

【発明の効果】本発明によれば、蒸発型のチタンゲッタ
ポンプにおいて、チタン蒸発源から希ガスが放出される
ことがないので、チタンゲッタポンプの排気作用によっ
て真空容器内の圧力が補助ポンプの到達圧力を下まわっ
た後、バルブを閉じて補助ポンプを切り離してガスの逆
流を防いでも、希ガスに起因する圧力上昇が起こらず、
極高真空を容易に発生することができる。
According to the present invention, in the evaporation type titanium getter pump, since the rare gas is not released from the titanium evaporation source, the pressure inside the vacuum container is reduced by the exhaust action of the titanium getter pump. After lowering the ultimate pressure, even if the valve is closed and the auxiliary pump is disconnected to prevent gas backflow, the pressure rise due to the rare gas does not occur,
An extremely high vacuum can be easily generated.

【0014】また、アルゴンやネオンをチタン蒸着膜に
物理吸着させて取り除く必要が無いので、チタン蒸着膜
を液体窒素で冷却することが不要となり、排気操作が容
易になるとともに、運転に必要な費用を低減することが
できる。
Further, since it is not necessary to physically remove argon or neon from the titanium vapor deposition film to remove it, it is not necessary to cool the titanium vapor deposition film with liquid nitrogen, which facilitates the exhaust operation and the cost required for the operation. Can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例のチタン蒸発源の縦断面図。FIG. 1 is a vertical sectional view of a titanium evaporation source according to an embodiment of the present invention.

【図2】蒸発源チタンゲッタポンプを用いた排気装置。FIG. 2 is an exhaust device using an evaporation source titanium getter pump.

【図3】本発明の他の実施例のチタン蒸発源の斜視図。FIG. 3 is a perspective view of a titanium evaporation source according to another embodiment of the present invention.

【図4】本発明の他の実施例を示すチタン蒸発源の説明
図。
FIG. 4 is an explanatory view of a titanium evaporation source showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…純チタン球、2…ヒータ、3…カバー。 1 ... Pure titanium ball, 2 ... Heater, 3 ... Cover.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】チタンの精製過程において、希ガス中での
溶解過程を経たことが無く、真空アーク溶解,高真空電
子ビーム溶解或いは水素プラズマアーク溶解等によって
精製,溶解してインゴットとしたチタン材料を、チタン
蒸発源として用いることを特徴とする蒸発型チタンゲッ
タポンプ。
1. A titanium material which has not been subjected to a melting process in a rare gas in the refining process of titanium and has been purified and melted by vacuum arc melting, high vacuum electron beam melting, hydrogen plasma arc melting or the like to form an ingot. Is used as a titanium evaporation source, an evaporation type titanium getter pump.
【請求項2】請求項1において、チタン材料と、希ガス
中での溶解過程を経たことの無いモリブデン或いはタン
タルとを、希ガス中での溶解工程を用いずに、真空アー
ク溶解,高真空電子ビーム溶解或いは水素プラズマアー
ク溶解等によって製造した合金を、チタン蒸発源として
用いる蒸発型チタンゲッタポンプ。
2. The method according to claim 1, wherein the titanium material and molybdenum or tantalum which has not been subjected to a melting process in a rare gas are vacuum arc melted or high vacuum without using a melting process in a rare gas. An evaporation type titanium getter pump that uses an alloy manufactured by electron beam melting or hydrogen plasma arc melting as a titanium evaporation source.
JP3107091A 1991-05-13 1991-05-13 Evaporative titanium getter pump Expired - Lifetime JP2692717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3107091A JP2692717B2 (en) 1991-05-13 1991-05-13 Evaporative titanium getter pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3107091A JP2692717B2 (en) 1991-05-13 1991-05-13 Evaporative titanium getter pump

Publications (2)

Publication Number Publication Date
JPH04334537A JPH04334537A (en) 1992-11-20
JP2692717B2 true JP2692717B2 (en) 1997-12-17

Family

ID=14450237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3107091A Expired - Lifetime JP2692717B2 (en) 1991-05-13 1991-05-13 Evaporative titanium getter pump

Country Status (1)

Country Link
JP (1) JP2692717B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10209423A1 (en) 2002-03-05 2003-09-18 Schwerionenforsch Gmbh Coating from a getter metal alloy and arrangement and method for producing the same

Also Published As

Publication number Publication date
JPH04334537A (en) 1992-11-20

Similar Documents

Publication Publication Date Title
EP1066899B1 (en) Method of making a sputtering target
US7704478B2 (en) Method and apparatus for refining silicon using an electron beam
US5222547A (en) Intermediate pressure electron beam furnace
US5100463A (en) Method of operating an electron beam furnace
JP3537798B2 (en) Electron beam melting method for metallic materials
TW201219590A (en) Sputtering target and/or coil and process for producing same
JP2001342506A (en) Method for production of powder material and method for producing target material
JP2692717B2 (en) Evaporative titanium getter pump
US2948607A (en) Tantalum-titanium getter element
JPH0778263B2 (en) Medium pressure electron beam furnace
US3056740A (en) Vapourisation of metals
JP2651945B2 (en) How to deoxidize titanium
US4250832A (en) Apparatus for storing radioactive materials
US3071310A (en) Vacuum pump
JP2981090B2 (en) Production method of high purity metal
JP2596434B2 (en) Method for producing ultrafine alloy particles
JP2601843B2 (en) Semiconductor device and method of manufacturing the same
JP2694659B2 (en) Method for producing ultrafine metal nitride particles
JPH06251744A (en) Evaporation type getter pump
CN220335289U (en) Electron beam heating melting equipment
JPH0948606A (en) Purification of silicon
JPS5842150A (en) Ion source for ion implanting device
JPS5957423A (en) Formation of metal conductor layer
JPH0781553B2 (en) Evacuation method
JPH10103234A (en) Evaporation type getter pump

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term