JP2692673B2 - Optical shutter device - Google Patents

Optical shutter device

Info

Publication number
JP2692673B2
JP2692673B2 JP8068653A JP6865396A JP2692673B2 JP 2692673 B2 JP2692673 B2 JP 2692673B2 JP 8068653 A JP8068653 A JP 8068653A JP 6865396 A JP6865396 A JP 6865396A JP 2692673 B2 JP2692673 B2 JP 2692673B2
Authority
JP
Japan
Prior art keywords
liquid crystal
phase
temperature
optical
substrates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8068653A
Other languages
Japanese (ja)
Other versions
JPH08304830A (en
Inventor
哲郎 松本
豊 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP8068653A priority Critical patent/JP2692673B2/en
Publication of JPH08304830A publication Critical patent/JPH08304830A/en
Application granted granted Critical
Publication of JP2692673B2 publication Critical patent/JP2692673B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、強誘電性液晶を用
いた液晶電気光学装置を備える光シャッター装置に関す
る。 【0002】 【従来の技術】ネマチック液晶を用いた表示装置は、消
費電力が少ないこと、駆動電圧が小さいこと、薄く小型
にできることなどの利点をもち、電卓、時計その他様々
な用途に多く用いられている。しかし、その電気光学的
応答は遅く、高速応答を必要とする分野、例えば光通
信、プリンターヘッド等の光シャッター装置への応用は
制限されてきた。 【0003】最近、強誘電性液晶を用いた電気光学装置
の報告がなされた(例えば、N.A.Clark,S.T.Lagerwall,
Appl.Phys.Lett.36,p.899(1980))。これは、液晶がカイ
ラルスメクチックC相及びH相において強誘電性を示す
ことを利用したものである。これらの相において、液晶
分子は層構造をなし、その分子長軸方向は、層垂直方向
に対しある一定角度だけ傾いている。この分子に垂直
で、かつ層平面に含まれる方向に自発分極をもち、外部
から印加された電界の方向に対し、自発分極の方向をそ
ろえようとすることで、分子の向きが変わり、光学的な
変化がおきる。 【0004】その電気光学的応答は、従来の液晶装置の
応答に比較して、10〜1000倍速いものであり、高
速光シャッター装置への応用が可能である。また、電界
に対して、双安定性をもたせることも可能であることか
ら、大型の表示装置への応用が可能である。 【0005】しかしながら、これらの装置を作るには、
液晶が均一に配向したセルを作成する必要があるが、ス
メクチック液晶は配向制御がネマチック液晶に比べ難し
く、実用化をはばむ原因の一つになっている。従来、強
誘電性液晶を配向させる手段としては、次のような方法
がある。 【0006】(1)強力な磁場を印加しつつ、等方相よ
り冷却する。 (2)セルを構成する2枚の基板を、ずらす方向に微小
に振動させる。 (3)配向制御膜を形成し、等方相より冷する。 【0007】(1)の方法は、強力な磁場を発生させる
のに大きな装置が必要であり、また10μm以下のセル
厚においては配向制御が難しい。(2)についても振動
を与えるための装置を必要とし、またセルのシール方法
など、解決すべき問題点が多く残っている。(3)の方
法に関しては、最も実用的な方法ではあるが、液晶の温
度コントロールを厳密に行わなければならず、セルを一
定温度に保つ装置が必要であり、また冷に時間がかか
るという欠点がある。 【0008】 【発明が解決しようとする課題】このように、従来の強
誘電性スメクチック液晶の配向制御法を用いる電気光学
装置は、セルの周辺に配向制御を行うための装置を必要
とするため、小型化できないという欠点を有し、またこ
れらの配向制御方法でつくられた配向の均一度は満足の
いくものではなかった。 【0009】 【課題を解決するための手段】本発明は、上記のような
従来のものの欠点を除去するためになされたもので、2
枚の電極付基板間に、メモリー性を有するカイラルスメ
クチックC相を示す強誘電性液晶層を保持した液晶電気
光学装置を備えた光シャッター装置であって、前記2枚
の電極付基板に配向制御膜としてラビングした有機高分
子膜が備えられ、ほぼ平行に配向制御処理がほどこさ
れ、該液晶層にはカイラルスメクチックC相より高い温
度においてコレステリック相をもち、かつコレステリッ
ク相の下限温度から5℃以上の温度までにわたってらせ
んピッチの長さが基板間の距離の4倍以上である液晶を
用い、コレステリック相を示す温度からスメクチック相
を示す温度まで冷却することにより液晶分子が配向せし
められ、偏光板を強誘電液晶層の外側に設けてなる液晶
電気光学装置を備えたことを特徴とする光シャッター装
を提供する。 【0010】図1は、本発明の光シャッター装置に用い
基本的な液晶電気光学装置の断面図である。2枚の透
明基板1a、1bの表面に、それぞれ透明な導電膜2
a、2bと配向制御膜3a、3bを形成する。導電膜2
a、2bは、基板間に保持された液晶層4に電界を印加
するための電極であり、電気光学的応答を生じさせる目
的で設けられているもので、In23 か、SnO2
からなり、所定のパターンに形成されている。 【0011】配向制御膜3a、3bは、液晶を水平配向
させるものであり、代表的なものとしては、有機高分子
膜、特にポリイミド系高分子膜を形成し、布で一定方向
にラビングしたものが好ましいが、その他、ポリアミド
系高分子膜、ポリイシドアミド系高分子膜、ポリパラキ
シリレン等の高分子膜をラビングしたもの及びSiO等
の斜め蒸着膜も有効でありまたオーバーコート膜を形成
せずに、直接、導電膜2a、2bをラビングして配向制
御膜を形成してもよい。すなわち、ネマチック液晶を水
平配向させる手段は、本発明にも有効である。 【0012】このような配向処理を行ったのち、該基板
が平行、かつ一定の間隔で保持されるように、スペーサ
ー、例えば、有機ビーズ、アルミナ粒子をはさみ、シー
ル剤5で周囲を固定し、セルとする。この際、2枚の基
板の配向制御方向は、お互いに平行になるようにする。 【0013】その後、強誘電性液晶組成物をコレステリ
ック相、あるいは等方相まで加熱し、セルに注入した
後、封止する。セルの外側に2枚の偏光板6a、6bを
その偏光板がお互いに直交し、かつ基板の配向制御方向
と一定角度をなすように配置する。この角度は、液晶材
料、装置の動作温度、駆動方法等によって変わり最もコ
ントラスト特性等のよい角度を選べばよく、また場合に
よっては2枚の偏光板の偏光軸を直交から僅かにずらし
て配置する場合もある。 【0014】基板1b側に光源7を置き、反対側へ光が
透過するようにする。なお、反射型で用いる場合には、
偏光板6bの外側に反射板を設ければよい。 【0015】本発明の強誘電性液晶組成物としては、カ
イラルスメクチックC相(以下SmC* 相と略す)をも
ち、それより高い温度においてコレステリック相(以下
Ch相と略す)をもち、かつCh相におけるらせんピッ
チの長さpが基板1aと1b間の距離dの4倍以上長い
液晶を用いる。またCh相とSmC* 相の間にスメクチ
ックA相(以上SmA相と略す)をもつことが、配向の
均一性の点で望ましい。 【0016】このような液晶としては、光学活性物質、
スメクチック液晶化合物、ネマチック液晶化合物を適当
な割合で混合することで得られ、必要に応じて非液晶添
加物を加える場合もある。特に、Ch相におけるピッチ
を長くするには、左らせんを生じさせる光学活性物質
と、右らせんを生じさせる光学活性物質を、らせんを生
じさせる力の大きさに応じて混合するのが有効である。 【0017】通常、Ch相におけるらせんピッチの長さ
は温度とともに変化する。均一な配向を得るには、コレ
ステリック−スメクチック相転移点の直上でp>4dの
条件を満たすことが必要である。 【0018】しかし、この条件を満たす温度範囲が転移
点のごく近傍に限られる場合は、温度降下速度が速い場
合においては、らせん構造がほどけずにスメクチック相
へ転移してしまう。この場合には均一な配向が得られな
いので、らせん構造がほどけるまでp>4dを満たす温
度に保持するか、温度降下速度を遅くする必要がある。
この理由かららせんピッチpが基板間距離dの4倍以上
になる温度範囲は、コレステリック−スメクチック相転
移点より5℃以上の範囲にわたることが好ましく、さら
にCh相全温度範囲にわたることがより好ましい。 【0019】また、液晶の結晶化、あるいは高電圧印加
により配向不良が生じたときのために、液晶層の温度を
上昇させる手段を備えることが好ましい。この手段とし
ては、外部に温度上昇のためのヒーターを備えてもよい
が、セル内部又は外部の電極に電流を流し、直接加熱す
ればより簡単な装置となる。 【0020】 【作用】本発明における液晶層4の液晶分子の配向状態
を模式的に示したのが図2、図3である。図2はCh相
における配向状態を示し、図3はSmA相における配向
状態を示した図であり、それぞれ分図(a)は基板の上
方より見た図、分図(b)は基板の側方より見た図であ
る。 【0021】図2において、41は液晶分子を表し、p
>4dの条件を満たしているため、液晶層はらせん構造
はとらずに分子全部が配向処理方向301にそろった均
一な配向となっている。この状態でSmA相の温度まで
低下させると図3に示すように液晶分子41は層状をな
すスメクチック相特有の構造をとるが、配向方向の均一
性は失われない。 【0022】図4、図5は比較例として、p<4dの場
合における液晶分子の配向状態を示す模式図であり、そ
れぞれ分図(a)は基板の上方より見た図、分図(b)
は基板の側方より見た図である。 【0023】Ch相においては、図4のようにらせん構
造をなしており、一定の方向には向いていない。そのた
め、SmA相まで温度を降ろし配向状態を見ると、図5
に示すようにランダムな方向に層構造ができ、均一な配
向とはならない。なお、図4はπ回転のらせん構造を示
したが、ピッチが短い場合にはさらに2π回転、3π回
転等のらせん構造となる。 【0024】図6は、本発明の図3の配向状態からさら
にSmC* 相まで温度を低下させた場合の分子配向の様
子と、電界による応答を基板上方より示した図である。
SmC* 相においては分子層の状態はSmA相と同様で
あるが、分子は分子層垂線方向、この場合は配向制御方
向301に対してある一定角θだけ傾き、さらに配向制
御方向と分子長軸方向でなす平面に対し垂直方向に自発
分極を生じる。基板上の電極を通じて電界を印加するこ
とで、その電界方向と自発分極の方向が同じになるよう
に分子の傾く方向が変化する。 【0025】後述の実施例に示す液晶組成物の場合は、
電界の向きが紙面の表側から裏側に向いている場合(以
下、正の電界と称する)は、図6の分図(a)のよう
に、液晶分子41は401の方向に配列し、電界の方向
が逆の場合(負の電界)においては図6の分図(b)の
ように402の方向へ配列する。 【0026】基板の上、下に配置する偏光板の偏光軸の
向きを図7の方向601、及びそれに直交する方向60
2にすれば、正の電界が印加された場合には、分子の長
軸方向すなわち光学弾性軸と偏光軸が一致するために光
は透過しない。また、負の電界を印加した場合には、偏
光軸と分子長軸のなす角度が2θとなるため液晶の複屈
折性のために次の数1で表される光量が透過する。 【0027】 【数1】 【0028】ここでIは入射光の強度、△nは液晶の屈
折率異方性、λは光の波長を表す。この透過率の電界の
向きによる変化を利用して、光シャッター及び表示装置
として用いる。 【0029】 【実施例】 (実施例1)In23 −SnO2 の透明電極をパター
ニングしたガラス基板表面を布でラビングし配向処理と
した後、粒径約1μmのアルミナ粒子をスペーサーとし
て散布し、透明電極面が相対向するように配置し周辺を
シールしてセルとした。このセル中央部の基板間距離を
測定したところ、1.6μmであった。このセルに、表
2記載のSmC* 相を示す液晶組成物を約100℃まで
熱し、注入し、注入口をエポキシ樹脂で封止した。 【0030】表2中の液晶材料の構造式は表1に示した
とおりであり、物質番号1及び物質番号2の化合物は単
体ではCh相をもたないが、物質番号4の化合物とのそ
れぞれ10%及び20%の混合物でCh相におけるピッ
チの向きを測定したところ、物質番号1と物質番号4の
混合物は右らせんを示し、物質番号2と物質番号4の混
合物は左らせんを示した。物質番号4の物質は光学活性
でないことから、物質番号1の化合物は右らせんを、物
質番号2の化合物は左らせんを生じさせる物質であるこ
とがわかる。 【0031】表2の組晶組成物のCh相である93℃に
おけるピッチは97μmであり、Ch相全温度範囲にわ
たり、p>4dなる条件をみたしていることを確認し
た。 【0032】該セルを100℃まで加熱し、SmC*
の50℃まで冷却した後、その配向状態を調べたとこ
ろ、良好な配向が得られていることがわかった。該セル
の片側に配向処理方向に対し偏光軸が約20°になるよ
うに偏光板を配置し、この偏光軸と直交する方向にもう
1枚の偏光板の偏光軸を合わせ配置した。光源にハロゲ
ン・ランプを用い、セルの透過光強度をフォトマルで測
定できるようにした。 【0033】図8は、この装置の電気光学特性を示す図
であり、0.1Hz、4Vの三角波を印加した場合の透
過率変化を示した図である。電圧の正負によってコント
ラスト比10以上の特性が得られている。また、電圧が
−1〜1Vの範囲においては電圧を−4Vから上げてい
った場合と、+4Vより下げた場合で2つの透過率の異
なる状態があり、このメモリー効果を利用してメモリー
型大型表示装置に利用できる。 【0034】(比較例1)実施例1と同様の方法で作成
したセル中に、表3記載の液晶組成物を100℃まで加
熱、注入した後、封止し、60℃まで冷却し配向状態を
調べたところ、ランダムな配向であった。この液晶組成
物の94℃におけるピッチを測定したところ、5.6μ
mでありp>4dなる条件を満たしていない。実施例1
と同様の装置においてその電気光学特性を調べたが、コ
ントラスト比1.7の特性しか得られなかった。 【0035】(実施例2)In23 −SnO2 の透明
電極をパターニングしたガラス基板上にポリイミド系高
分子(日立化成社製PIX−5400)をスピンコート
し、300℃において30分焼成し、布で一方向にラビ
ングした後、実施例1と同様の方法でセルとした。この
セルに、表2記載の液晶組成物を加熱注入後、封止した
後、50℃まで冷却したところ、きわめて良好な配向が
得られた。実施例1と同様の装置とし、電気光学特性を
測定したところ、コントラスト比20以上の特性が得ら
れた。 【0036】(実施例3)基板間距離とらせんピッチ、
及び温度下降条件と、配向状態の関係を調べるため、基
板間距離の異なるセルを作成した。スペーサー材として
1μm径のアルミナ粒子及び3μm径のガラスファイバ
ーを用い、周辺のシール剤硬化の際の圧力を変化させた
他は、実施例2と同様のセル作成法を用いた。作成し
た、セルの基板間距離は1.5μm、2.5μm、3.
4μmであった。 【0037】これらのセルに表4に示した液晶組成物を
加熱注入した。この組成物中、物質番号2は左らせん、
物質番号3は右らせんを生じさせる物質である。この組
成物のピッチは、97.0℃で9.0μm、94℃で1
0.6μm、90.0℃で13.8μmであり、それぞ
れのセルにおいてp>4dを満たす温度範囲を表5に示
す。 【0038】これらのセルを一度100℃まで加熱した
後に、温度下降速度を10℃/分、2℃/分、0.2℃
/分、と変化した場合の配向状態の良否を60℃におけ
るコントラスト比で評価を行った。p>4dを満たす温
度範囲が狭い場合ほど、温度下降速度を遅くする必要が
あることがわかった。 【0039】すなわち、基板間距離3.4μmの例では
コントラスト10以上を得るには0.2℃/分程度以下
のきわめて低速で温度下降を行わなければならないのに
対し、基板間距離2.5μmの例では、p>4dの範囲
がCh相の下限温度よりも10℃/分でコントラストが
やや低下するものであった。特に基板間距離1.5μm
の例では、Ch相の全温度範囲でp>4dの関係を満た
すため10℃/分で降温しても高いコントラストが得ら
れ、作業性がよく信頼性が高いものであった。 【0040】 【表1】【0041】 【表2】 【0042】 【表3】 【0043】 【表4】【0044】 【表5】 【0045】 【発明の効果】以上、述べたように、本発明によれば強
誘電性液晶の良好な配向が簡単に得られるため、コント
ラスト比が高く、メモリー作用もある安価で小型の高速
応答液晶電気光学装置が得られ、光シャッター装置に用
いることができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical shutter device having a liquid crystal electro-optical device using a ferroelectric liquid crystal. 2. Description of the Related Art A display device using a nematic liquid crystal has many advantages such as low power consumption, low driving voltage, and thin size, and is widely used for various purposes such as a calculator, a watch and the like. ing. However, its electro-optical response is slow, and its application to fields requiring high-speed response, such as optical communication and optical shutter devices such as printer heads, has been limited. Recently, an electro-optical device using a ferroelectric liquid crystal has been reported (for example, NAClark, STLagerwall,
Appl. Phys. Lett. 36, p. 899 (1980)). This utilizes the fact that liquid crystal exhibits ferroelectricity in the chiral smectic C phase and H phase. In these phases, the liquid crystal molecules form a layered structure, and the major axis direction of the molecules is inclined at a certain angle with respect to the layer vertical direction. This molecule has spontaneous polarization in a direction perpendicular to the molecule and included in the plane of the layer, and attempts to align the direction of the spontaneous polarization with the direction of the electric field applied from the outside. There is a big change. The electro-optical response is 10 to 1000 times faster than the response of the conventional liquid crystal device, and it can be applied to a high-speed optical shutter device. In addition, since it is possible to have bistability against an electric field, it can be applied to a large-sized display device. However, to make these devices,
Although it is necessary to prepare a cell in which liquid crystals are uniformly aligned, smectic liquid crystals are difficult to control in alignment as compared with nematic liquid crystals, which is one of the reasons that prevent practical use. Conventionally, the following methods have been known as means for orienting the ferroelectric liquid crystal. (1) Cooling from the isotropic phase while applying a strong magnetic field. (2) The two substrates forming the cell are slightly vibrated in the direction of displacement. (3) the orientation control film is formed, gradually cooled from isotropic phase. The method (1) requires a large device to generate a strong magnetic field, and it is difficult to control the orientation when the cell thickness is 10 μm or less. With regard to (2) as well, a device for giving vibration is required, and there are still many problems to be solved such as a cell sealing method. For the method of (3), although the most practical way, must be strictly carried out the temperature control of the liquid crystal, a need for an apparatus to keep the cells at a constant temperature, and the slow cooling takes time There are drawbacks. As described above, the conventional electro-optical device using the alignment control method of the ferroelectric smectic liquid crystal requires a device for controlling the alignment around the cell. However, it has a drawback that it cannot be miniaturized, and the uniformity of the orientation produced by these orientation control methods is not satisfactory. The present invention has been made to eliminate the above-mentioned drawbacks of the conventional ones.
An optical shutter device comprising a liquid crystal electro-optical device in which a ferroelectric liquid crystal layer exhibiting a chiral smectic C phase having a memory property is held between two substrates with electrodes, wherein alignment control is performed on the two substrates with electrodes. A rubbing organic polymer film is provided as a film, and an alignment control treatment is applied substantially parallel to the liquid crystal layer. The liquid crystal molecules are aligned by cooling from a temperature showing a cholesteric phase to a temperature showing a smectic phase using a liquid crystal in which the length of the helical pitch is 4 times or more the distance between the substrates up to the temperature of An optical shutter device characterized by comprising a liquid crystal electro-optical device provided outside a ferroelectric liquid crystal layer.
Provide a replacement . FIG. 1 is used for the optical shutter device of the present invention.
That is a cross-sectional view of a basic liquid crystal electro-optical device. The transparent conductive films 2 are formed on the surfaces of the two transparent substrates 1a and 1b, respectively.
a and 2b and alignment control films 3a and 3b are formed. Conductive film 2
Reference characters a and 2b are electrodes for applying an electric field to the liquid crystal layer 4 held between the substrates, and are provided for the purpose of producing an electro-optical response, such as In 2 O 3 or SnO 2. And formed in a predetermined pattern. The orientation control films 3a and 3b are for horizontally aligning the liquid crystal, and typically, an organic polymer film, particularly a polyimide polymer film is formed and rubbed in a certain direction with a cloth. In addition, polyamide-based polymer film, polyisidamide-based polymer film, rubbing polymer film such as polyparaxylylene, and obliquely vapor-deposited film such as SiO are also effective and do not form an overcoat film. Alternatively, the alignment films may be formed by directly rubbing the conductive films 2a and 2b. That is, the means for horizontally aligning the nematic liquid crystal is effective for the present invention. After carrying out such an orientation treatment, spacers such as organic beads and alumina particles are sandwiched between the substrates so that the substrates are held in parallel and at regular intervals, and the periphery is fixed with a sealant 5. Let it be a cell. At this time, the orientation control directions of the two substrates are set to be parallel to each other. After that, the ferroelectric liquid crystal composition is heated to a cholesteric phase or an isotropic phase, injected into the cell, and then sealed. Two polarizing plates 6a and 6b are arranged outside the cell so that the polarizing plates are orthogonal to each other and form a certain angle with the orientation control direction of the substrate. This angle changes depending on the liquid crystal material, the operating temperature of the device, the driving method, etc., and the angle with the best contrast characteristics may be selected. In some cases, the polarization axes of the two polarizing plates are arranged so as to be slightly offset from the orthogonal. In some cases. The light source 7 is placed on the side of the substrate 1b so that light is transmitted to the opposite side. In addition, when using in a reflective type,
A reflecting plate may be provided outside the polarizing plate 6b. The ferroelectric liquid crystal composition of the present invention has a chiral smectic C phase (hereinafter abbreviated as SmC * phase), a cholesteric phase (hereinafter abbreviated as Ch phase) at a higher temperature, and a Ch phase. A liquid crystal having a helical pitch length p of 4 times or more the distance d between the substrates 1a and 1b is used. Further, it is desirable to have a smectic A phase (abbreviated as SmA phase above) between the Ch phase and the SmC * phase from the viewpoint of orientation uniformity. As such a liquid crystal, an optically active substance,
It is obtained by mixing the smectic liquid crystal compound and the nematic liquid crystal compound in an appropriate ratio, and a non-liquid crystal additive may be added as necessary. In particular, in order to lengthen the pitch in the Ch phase, it is effective to mix an optically active substance that causes a left helix and an optically active substance that causes a right helix according to the magnitude of the force that causes the helix. . Usually, the length of the helical pitch in the Ch phase changes with temperature. In order to obtain uniform orientation, it is necessary to satisfy the condition of p> 4d just above the cholesteric-smectic phase transition point. However, when the temperature range satisfying this condition is limited to the vicinity of the transition point, the spiral structure is not unraveled and is transformed into the smectic phase when the temperature drop rate is high. In this case, since uniform orientation cannot be obtained, it is necessary to keep the temperature at which p> 4d is satisfied until the helical structure is unwound or to slow the temperature drop rate.
For this reason, the temperature range in which the helical pitch p is 4 times or more the inter-substrate distance d is preferably 5 ° C. or more from the cholesteric-smectic phase transition point, and more preferably the entire Ch phase temperature range. Further, it is preferable to provide a means for raising the temperature of the liquid crystal layer in the case where the liquid crystal is crystallized or alignment failure occurs due to application of a high voltage. As a means for this, a heater for increasing the temperature may be provided outside, but a simpler device can be obtained by applying a current to the electrode inside or outside the cell and heating directly. 2 and 3 schematically show the alignment state of the liquid crystal molecules of the liquid crystal layer 4 in the present invention. 2 shows the alignment state in the Ch phase, and FIG. 3 shows the alignment state in the SmA phase. FIG. 2 (a) is a view from above the substrate, and FIG. 3 (b) is the substrate side. FIG. In FIG. 2, reference numeral 41 denotes liquid crystal molecules, p
Since the condition of> 4d is satisfied, the liquid crystal layer does not have a helical structure, and all molecules are aligned uniformly in the alignment treatment direction 301. When the temperature of the SmA phase is lowered in this state, the liquid crystal molecules 41 have a layered structure unique to the smectic phase as shown in FIG. 3, but the uniformity of the alignment direction is not lost. 4 and 5 are schematic views showing alignment states of liquid crystal molecules in the case of p <4d as comparative examples, and FIG. 4A is a view seen from above the substrate and FIG. )
Is a view seen from the side of the substrate. The Ch phase has a helical structure as shown in FIG. 4, and is not oriented in a fixed direction. Therefore, when the temperature is lowered to the SmA phase and the orientation state is seen,
As shown in, a layered structure is formed in random directions, and uniform orientation is not obtained. Although FIG. 4 shows a π-rotation spiral structure, when the pitch is short, a 2π rotation, 3π rotation, or other spiral structure is formed. FIG. 6 is a diagram showing the state of molecular orientation when the temperature is further lowered to the SmC * phase from the orientation state of FIG. 3 of the present invention and the response due to the electric field from above the substrate.
In the SmC * phase, the state of the molecular layer is the same as in the SmA phase, but the molecules are tilted by a certain angle θ with respect to the direction normal to the molecular layer, in this case the orientation control direction 301, and the orientation control direction and the molecular long axis Spontaneous polarization occurs in the direction perpendicular to the plane formed by the directions. By applying an electric field through the electrodes on the substrate, the tilting direction of the molecules changes so that the direction of the electric field and the direction of spontaneous polarization are the same. In the case of the liquid crystal compositions shown in the examples below,
When the direction of the electric field is from the front side to the back side of the paper (hereinafter referred to as the positive electric field), the liquid crystal molecules 41 are arranged in the direction of 401 as shown in FIG. When the directions are opposite (negative electric field), they are arranged in the direction of 402 as shown in FIG. 6 (b). The direction of the polarization axes of the polarizing plates arranged above and below the substrate is the direction 601 in FIG. 7 and the direction 60 orthogonal thereto.
When the value is 2, when a positive electric field is applied, light does not pass because the long axis direction of the molecule, that is, the optical elastic axis and the polarization axis coincide with each other. When a negative electric field is applied, the angle formed by the polarization axis and the long axis of the molecule is 2θ, so that the light quantity expressed by the following equation 1 is transmitted due to the birefringence of the liquid crystal. [Equation 1] Here, I is the intensity of incident light, Δn is the refractive index anisotropy of the liquid crystal, and λ is the wavelength of light. By utilizing the change of the transmittance depending on the direction of the electric field, it is used as an optical shutter and a display device. Example 1 A glass substrate surface on which a transparent electrode of In 2 O 3 —SnO 2 was patterned was rubbed with a cloth for alignment treatment, and then alumina particles having a particle diameter of about 1 μm were sprayed as spacers. Then, the transparent electrode surfaces were arranged so as to face each other, and the periphery was sealed to form a cell. The distance between the substrates at the center of the cell was measured and found to be 1.6 μm. A liquid crystal composition exhibiting the SmC * phase shown in Table 2 was heated to about 100 ° C. and injected into this cell, and the injection port was sealed with an epoxy resin. The structural formulas of the liquid crystal materials in Table 2 are as shown in Table 1, and the compounds of substance number 1 and substance number 2 do not have a Ch phase by themselves, but are different from the compound of substance number 4 respectively. When the pitch direction in the Ch phase was measured with the 10% and 20% mixtures, the mixture of substance number 1 and substance number 4 showed a right helix and the mixture of substance number 2 and substance number 4 showed a left helix. Since the substance of substance number 4 is not optically active, it can be seen that the compound of substance number 1 is a substance that causes a right helix and the compound of substance number 2 is a substance that causes a left helix. It was confirmed that the pitch at 93 ° C., which is the Ch phase of the mixed crystal composition of Table 2, was 97 μm, and the condition p> 4d was satisfied over the entire temperature range of the Ch phase. After heating the cell to 100 ° C. and cooling the SmC * phase to 50 ° C., the alignment state was examined, and it was found that good alignment was obtained. A polarizing plate was arranged on one side of the cell so that the polarization axis was about 20 ° with respect to the alignment treatment direction, and the polarization axis of the other polarizing plate was aligned in the direction orthogonal to the polarization axis. A halogen lamp was used as the light source so that the transmitted light intensity of the cell could be measured by Photomul. FIG. 8 is a diagram showing the electro-optical characteristics of this device, and is a diagram showing the change in transmittance when a 0.1 Hz, 4 V triangular wave is applied. A characteristic with a contrast ratio of 10 or more is obtained depending on whether the voltage is positive or negative. Also, in the voltage range of -1 to 1V, there are two different transmittance states when the voltage is raised from -4V and when it is lowered from + 4V. Utilizing this memory effect, large memory type It can be used for display devices. Comparative Example 1 A liquid crystal composition shown in Table 3 was heated to 100 ° C. in a cell prepared by the same method as in Example 1 and injected, then sealed and cooled to 60 ° C. for alignment. As a result, the orientation was random. The pitch of this liquid crystal composition at 94 ° C. was measured and found to be 5.6 μm.
m, which does not satisfy the condition of p> 4d. Example 1
When the electro-optical characteristics of the same apparatus as described above were examined, only the characteristics having a contrast ratio of 1.7 were obtained. Example 2 A polyimide polymer (PIX-5400 manufactured by Hitachi Chemical Co., Ltd.) was spin-coated on a glass substrate having a transparent electrode of In 2 O 3 —SnO 2 patterned, and baked at 300 ° C. for 30 minutes. Then, after rubbing in one direction with a cloth, a cell was prepared in the same manner as in Example 1. After injecting the liquid crystal compositions shown in Table 2 into this cell by heating, sealing and cooling to 50 ° C., extremely good alignment was obtained. When the electro-optical characteristics were measured using the same apparatus as in Example 1, characteristics with a contrast ratio of 20 or more were obtained. (Embodiment 3) Distance between substrates and spiral pitch,
In order to investigate the relationship between the temperature lowering condition and the orientation state, cells with different distances between the substrates were prepared. The same cell manufacturing method as in Example 2 was used, except that alumina particles having a diameter of 1 μm and glass fibers having a diameter of 3 μm were used as the spacer material, and the pressure at the time of curing the sealant around the periphery was changed. The cell-to-substrate distances that were created were 1.5 μm, 2.5 μm, and 3.
It was 4 μm. The liquid crystal compositions shown in Table 4 were heated and injected into these cells. In this composition, substance number 2 is the left helix,
Substance number 3 is a substance that causes a right helix. The pitch of this composition is 9.0 μm at 97.0 ° C. and 1 at 94 ° C.
Table 5 shows the temperature ranges of 0.6 μm and 13.8 μm at 90.0 ° C. and satisfying p> 4d in each cell. After heating these cells to 100 ° C. once, the temperature descending rate was 10 ° C./min, 2 ° C./min, 0.2 ° C.
/ Min, the quality of the alignment state was evaluated by the contrast ratio at 60 ° C. It was found that the lower the temperature range satisfying p> 4d, the slower the temperature lowering rate should be. That is, in the example of the substrate-to-substrate distance of 3.4 μm, the temperature must be lowered at an extremely low speed of about 0.2 ° C./min or less to obtain a contrast of 10 or more, while the substrate-to-substrate distance of 2.5 μm. In the above example, the contrast was slightly lowered in the range of p> 4d at 10 ° C./minute below the lower limit temperature of the Ch phase. In particular, the distance between substrates is 1.5 μm
In the above example, since the relationship of p> 4d was satisfied in the entire temperature range of the Ch phase, a high contrast was obtained even when the temperature was lowered at 10 ° C./minute, and the workability was good and the reliability was high. [Table 1] [Table 2] [Table 3] [Table 4] [Table 5] As described above, according to the present invention, since a good alignment of the ferroelectric liquid crystal can be easily obtained, the contrast ratio is high, and the memory action is also inexpensive, small, and has a high-speed response. Liquid crystal electro-optical device can be obtained and used for optical shutter device
Can be.

【図面の簡単な説明】 【図1】本発明の基本構成を示す断面図。 【図2】本発明の液晶層の配向状態(Ch相)を模式的
に示した図。 【図3】本発明の液晶層の配向状態(SmA相)を模式
的に示した図。 【図4】比較例の液晶層の配向状態(Ch相)を示す
図。 【図5】比較例の液晶層の配向状態(SmA相)を示す
図。 【図6】本発明のSmC* 相での液晶層の配向状態及び
電界に対する変化を示した図。 【図7】本発明の基本構成の配置図。 【図8】実施例の電気光学効果の特性図。 【符号の説明】 1a、1b:透明基板 2a、2b:導電膜 3a、3b:配向制御膜 4:液晶層 5:シール剤 6a、6b:偏光板
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view showing a basic configuration of the present invention. FIG. 2 is a diagram schematically showing the alignment state (Ch phase) of the liquid crystal layer of the present invention. FIG. 3 is a diagram schematically showing the alignment state (SmA phase) of the liquid crystal layer of the present invention. FIG. 4 is a diagram showing an alignment state (Ch phase) of a liquid crystal layer of a comparative example. FIG. 5 is a diagram showing an alignment state (SmA phase) of a liquid crystal layer of a comparative example. FIG. 6 is a diagram showing changes in the alignment state of the liquid crystal layer and the electric field in the SmC * phase of the present invention. FIG. 7 is a layout diagram of a basic configuration of the present invention. FIG. 8 is a characteristic diagram of the electro-optical effect of the example. [Description of Reference Signs] 1a, 1b: Transparent substrates 2a, 2b: Conductive films 3a, 3b: Alignment control film 4: Liquid crystal layer 5: Sealing agents 6a, 6b: Polarizing plate

Claims (1)

(57)【特許請求の範囲】 1.2枚の電極付基板間に、メモリー性を有するカイラ
ルスメクチックC相を示す強誘電性液晶層を保持した液
晶電気光学装置を備えた光シャッター装置であって、前
記2枚の電極付基板に配向制御膜としてラビングした有
機高分子膜が備えられ、ほぼ平行に配向制御処理がほど
こされ、該液晶層にはカイラルスメクチックC相より高
い温度においてコレステリック相をもち、かつコレステ
リック相の下限温度から5℃以上の温度までにわたって
らせんピッチの長さが基板間の距離の4倍以上である液
晶を用い、コレステリック相を示す温度からスメクチッ
ク相を示す温度まで冷却することにより液晶分子が配向
せしめられ、偏光板を強誘電液晶層の外側に設けてなる
液晶電気光学装置を備えたことを特徴とする光シャッタ
ー装置。 2.該液晶層の複屈折を用いて光学的応答が発生される
請求項1記載の光シャッター装置
(57) [Claims] An optical shutter device comprising: a liquid crystal electro-optical device in which a ferroelectric liquid crystal layer exhibiting a chiral smectic C phase having a memory property is held between two substrates with electrodes. Then, the two electrode-attached substrates are provided with rubbed organic polymer films as alignment control films and subjected to alignment control treatment substantially in parallel, and the liquid crystal layer exhibits a cholesteric phase at a temperature higher than that of the chiral smectic C phase. A liquid crystal having a helical pitch length of 4 times or more the distance between the substrates from the lower limit temperature of the cholesteric phase to a temperature of 5 ° C. or higher is used to cool from the temperature showing the cholesteric phase to the temperature showing the smectic phase. light sheet, wherein the liquid crystal molecules is made to oriented, with a liquid crystal electro-optical device formed by providing on the outside of the ferroelectric liquid crystal layer polarizers by Jitter
-Device. 2. The optical shutter device according to claim 1, wherein an optical response is generated by using birefringence of the liquid crystal layer.
JP8068653A 1996-03-25 1996-03-25 Optical shutter device Expired - Fee Related JP2692673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8068653A JP2692673B2 (en) 1996-03-25 1996-03-25 Optical shutter device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8068653A JP2692673B2 (en) 1996-03-25 1996-03-25 Optical shutter device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP59274073A Division JPH0754382B2 (en) 1984-12-27 1984-12-27 Method for manufacturing liquid crystal electro-optical device

Publications (2)

Publication Number Publication Date
JPH08304830A JPH08304830A (en) 1996-11-22
JP2692673B2 true JP2692673B2 (en) 1997-12-17

Family

ID=13379886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8068653A Expired - Fee Related JP2692673B2 (en) 1996-03-25 1996-03-25 Optical shutter device

Country Status (1)

Country Link
JP (1) JP2692673B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE526384T1 (en) * 2006-06-27 2011-10-15 Asahi Glass Co Ltd LIQUID CRYSTALLINE COMPOSITION, LIQUID CRYSTALLINE OPTICAL ELEMENT AND METHOD FOR PRODUCING A LIQUID CRYSTALLINE OPTICAL ELEMENT

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0754382B2 (en) * 1984-12-27 1995-06-07 旭硝子株式会社 Method for manufacturing liquid crystal electro-optical device
JPH0754382A (en) * 1993-08-12 1995-02-28 Ebara Corp Inflow pressure fluctuation relaxing device for direct-coupled water supply system

Also Published As

Publication number Publication date
JPH08304830A (en) 1996-11-22

Similar Documents

Publication Publication Date Title
EP1038204B1 (en) Phase separated composite organic film and methods for the manufacture thereof
KR100216160B1 (en) Lcd element
JP3520376B2 (en) Liquid crystal display device and method of manufacturing the same
US7604850B2 (en) Biaxial liquid crystal electro-optic devices
JPS61249019A (en) Liquid crystal element
JP2005208353A (en) Liquid crystal display element
JPH01302226A (en) Ferroelectric liquid crystal element
JPH0750272B2 (en) Method for manufacturing ferroelectric smectic liquid crystal electro-optical device
JPH05273554A (en) Ferroelectric liquid crystal element
JP2647828B2 (en) Liquid crystal device manufacturing method
KR100751188B1 (en) Method of Fabricating Ferroelectric Liquid Crystal Display
JP2692673B2 (en) Optical shutter device
JPH0754382B2 (en) Method for manufacturing liquid crystal electro-optical device
JP3102972B2 (en) Liquid crystal display device and method of manufacturing the same
JP4817161B2 (en) Horizontal electric field type liquid crystal device and method for manufacturing the same
JPS6147930A (en) Liquid crystal electrooptic device
JP2001226674A (en) Monostable ferroelectric liquid crystal display device
JP2692674B2 (en) Optical shutter device
JPS63309920A (en) Liquid crystal display element and its production
JP4252202B2 (en) Liquid crystal light modulator using ferroelectric liquid crystal and manufacturing method thereof
JP2804763B2 (en) Liquid crystal electro-optical device
JP2753206B2 (en) Guest-host type liquid crystal display
JPS6252528A (en) Electrooptic device using ferroelectric liquid crystal
JP2000122043A (en) Liquid crystal optical modulator and its production
JP3068736B2 (en) Liquid crystal display

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970805

LAPS Cancellation because of no payment of annual fees