JP2691393B2 - Method for preparing Si melt for pulling single crystal - Google Patents

Method for preparing Si melt for pulling single crystal

Info

Publication number
JP2691393B2
JP2691393B2 JP33735194A JP33735194A JP2691393B2 JP 2691393 B2 JP2691393 B2 JP 2691393B2 JP 33735194 A JP33735194 A JP 33735194A JP 33735194 A JP33735194 A JP 33735194A JP 2691393 B2 JP2691393 B2 JP 2691393B2
Authority
JP
Japan
Prior art keywords
melt
single crystal
pulling
rare gas
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33735194A
Other languages
Japanese (ja)
Other versions
JPH07232994A (en
Inventor
宏治 泉妻
新明 黄
一高 寺嶋
茂行 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Japan Science and Technology Agency
Original Assignee
Toshiba Corp
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26575150&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2691393(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toshiba Corp, Japan Science and Technology Corp filed Critical Toshiba Corp
Priority to JP33735194A priority Critical patent/JP2691393B2/en
Publication of JPH07232994A publication Critical patent/JPH07232994A/en
Application granted granted Critical
Publication of JP2691393B2 publication Critical patent/JP2691393B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、所定レベルで酸素濃度
が安定したSi単結晶の育成に適したSi融液の調整方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for preparing a Si melt suitable for growing a Si single crystal having a stable oxygen concentration at a predetermined level.

【0002】[0002]

【従来の技術】融液から単結晶を育成する代表的な方法
として、チョクラルスキー法がある。チョクラルスキー
方法では、図1に示すように密閉容器1の内部に配置し
たルツボ2を、回転及び昇降可能にサポート3で支持す
る。ルツボ2の外周には、ヒータ4及び保温材5が同心
円状に設けられ、ルツボ2に収容した原料をヒータ4で
集中的に加熱し、融液6を調製する。融液6は、単結晶
成長に好適な温度に維持される。融液6に種結晶7を接
触させ、種結晶7の結晶方位を倣った単結晶8を成長さ
せる。種結晶7は、ワイヤ9を介して回転巻取り機構1
0から吊り下げられ、単結晶8の成長に応じて回転しな
がら引上げられる。また、ルツボ2も、サポート3を介
して適宜回転しながら下降する。サポート3の降下速
度,回転速度及び種結晶7の回転速度,上昇速度等は、
融液6から引上げられる単結晶8の成長速度に応じて制
御される。
2. Description of the Related Art A typical method for growing a single crystal from a melt is the Czochralski method. In the Czochralski method, a crucible 2 arranged inside a closed container 1 as shown in FIG. A heater 4 and a heat insulating material 5 are provided concentrically on the outer periphery of the crucible 2, and the raw material contained in the crucible 2 is intensively heated by the heater 4 to prepare a melt 6. Melt 6 is maintained at a temperature suitable for single crystal growth. The seed crystal 7 is brought into contact with the melt 6 to grow a single crystal 8 that follows the crystal orientation of the seed crystal 7. The seed crystal 7 is rotated by a rotary winding mechanism 1 through a wire 9.
It is hung from 0 and pulled up while rotating in accordance with the growth of the single crystal 8. The crucible 2 also descends while rotating appropriately via the support 3. The lowering speed and rotation speed of the support 3 and the rotation speed and rising speed of the seed crystal 7 are as follows.
It is controlled according to the growth rate of the single crystal 8 pulled from the melt 6.

【0003】Sbをn型不純物として添加した融液6を
使用して引き上げを行うと、得られた単結晶8にSbが
導入され、高伝導度の半導体材料が得られる。また、融
液6にルツボ2から溶出したSiO2 に起因する酸素が
導入されており、その酸素も単結晶8に取り込まれる。
単結晶8に含まれる酸素は、単結晶8が熱処理されると
きバルク中に析出し、析出欠陥となる。この析出欠陥
は、電子デバイスを構成する半導体単結晶基板の表面に
残存する重金属不純物を捕捉して無害化するゲッタリン
グ中心として利用される。また、固溶している酸素は、
半導体単結晶基板の強度を向上させる作用も呈する。こ
のようなことから、融液の酸素濃度を高くすると、単結
晶中に取り込まれる酸素濃度を増大させる上で、融液の
酸素濃度を高く維持することが望まれる。しかし、従来
の方法においては、Si融液の酸素濃度を高レベルに安
定維持することは困難であった。本発明者等は、Si融
液の物性を調査・研究する過程で、多量にSbドープし
たSi融液を使用するとき、Sb含有量の上昇に伴って
Si融液の酸素濃度が一義的に減少することを見い出し
た。そして、特願平5−69924号で、このSb含有
量と酸素濃度との関係を利用し、融液のSb含有量から
酸素濃度を算出する方法を提案した。
When pulling is performed using the melt 6 to which Sb is added as an n-type impurity, Sb is introduced into the obtained single crystal 8, and a semiconductor material having high conductivity is obtained. Further, oxygen derived from SiO 2 eluted from the crucible 2 is introduced into the melt 6, and the oxygen is also taken into the single crystal 8.
Oxygen contained in the single crystal 8 precipitates in the bulk when the single crystal 8 is heat-treated, and becomes a precipitation defect. This precipitation defect is used as a gettering center for trapping and rendering harmless heavy metal impurities remaining on the surface of the semiconductor single crystal substrate constituting the electronic device. Also, the oxygen dissolved in the solid
It also has the function of improving the strength of the semiconductor single crystal substrate. For this reason, when the oxygen concentration of the melt is increased, it is desired to maintain the oxygen concentration of the melt high in order to increase the concentration of oxygen taken into the single crystal. However, in the conventional method, it has been difficult to stably maintain the oxygen concentration of the Si melt at a high level. In the process of investigating and studying the physical properties of the Si melt, the present inventors have found that when using a large amount of Sb-doped Si melt, the oxygen concentration of the Si melt is uniquely increased as the Sb content increases. We found that it decreased. In Japanese Patent Application No. 5-69924, a method of calculating the oxygen concentration from the Sb content of the melt using the relationship between the Sb content and the oxygen concentration was proposed.

【0004】[0004]

【発明が解決しようとする課題】多量のSbを添加した
Si融液では、Sb2 O,SiO等として酸素が融液表
面から雰囲気中に放出され易くなる。この傾向は、P,
As,Bi等の他のV族元素でドープしたSi融液でも
同様にみられる。融液表面から酸素が放出されることに
より、融液中の酸素濃度が変動し、育成したSi単結晶
の酸素濃度を著しく変化する。そのため、Sb添加から
単結晶引上げ開始までの融液均質化段階で、SiO及び
Sb2 Oの蒸発によってSbやOの濃度が低下する。こ
の濃度変動は、得られるSi単結晶の酸素濃度を不安定
にする要因である。そのため、融液の再調整が必要とさ
れ、生産性が悪くなる。本発明は、このような問題を解
消すべく案出されたものであり、単結晶引上げ開始まで
のSi融液を制御雰囲気下に保持することにより、Si
融液から蒸発するV族元素酸化物の蒸発量を調整し、単
結晶引上げ開始時点で所望のV族元素及び酸素を含むS
i融液を用意することを目的とする。
In a Si melt to which a large amount of Sb has been added, oxygen such as Sb 2 O and SiO is easily released from the melt surface into the atmosphere. This tendency is
The same applies to a Si melt doped with another group V element such as As or Bi. The release of oxygen from the surface of the melt changes the oxygen concentration in the melt, which significantly changes the oxygen concentration of the grown Si single crystal. Therefore, in the melt homogenization stage from the addition of Sb to the start of pulling the single crystal, the concentration of Sb and O decreases due to the evaporation of SiO and Sb 2 O. This fluctuation in concentration is a factor that makes the oxygen concentration of the obtained Si single crystal unstable. Therefore, readjustment of the melt is required, and productivity is deteriorated. The present invention has been devised to solve such a problem, and by keeping the Si melt until the start of pulling the single crystal under a controlled atmosphere,
The evaporation amount of the group V element oxide evaporated from the melt is adjusted so that S containing the desired group V element and oxygen at the start of pulling the single crystal.
The purpose is to prepare a melt.

【0005】[0005]

【課題を解決するための手段】本発明のSi融液調整方
法は、その目的を達成するため、V族元素を添加したS
i原料をルツボで溶解した後、単結晶引上げ開始までの
間、希ガスを充満させた雰囲気圧100トール以上のチ
ャンバー内でSi融液を保持することを特徴とする。雰
囲気ガスとしては、質量が大きいAr,Kr,Xe,R
n等の希ガス、或いは質量の小さいHe,Ne等の希ガ
スが使用される。また、質量が大きいKr,Xe,Rn
等の希ガス、又は質量の小さいHe,Ne等の希ガスを
Arに配合した雰囲気ガスを使用することもできる。質
量の異なる希ガスの使用は、同じ引き上げ工程において
Si融液の酸素濃度に応じて経時的に切り替えることが
できる。この場合、雰囲気圧を変えることなく、酸素濃
度の調製が可能になる。この制御された雰囲気は、Si
原料の溶解から引上げ開始までの間、或いは引上げ中断
から引上げ再開までの間維持され、Si融液から蒸発す
るシリコン酸化物及びV族元素酸化物の蒸発量を調整す
る。本発明は、P,As,Sb,Bi等のV族元素でド
ープしたSi融液、具体的にはP及びAsで1.0×1
-4原子%以上,Sb及びBiで0.01原子%以上の
V族元素が添加されたSi融液に対して有効である。な
お、酸素濃度は、JEIDA換算値(3.03)を使用
して表される。
In order to achieve the object, the method for preparing a Si melt according to the present invention has an S-content added with a group V element.
It is characterized in that the Si melt is held in a chamber filled with a rare gas at an atmospheric pressure of 100 Torr or more after melting the i raw material in the crucible and starting pulling the single crystal. As the atmosphere gas, Ar, Kr, Xe, R having a large mass
A rare gas such as n or a rare gas having a small mass such as He or Ne is used. In addition, Kr, Xe, Rn with large mass
It is also possible to use an atmosphere gas in which a rare gas such as Al or a rare gas having a small mass such as He or Ne is mixed with Ar. The use of rare gases having different masses can be switched over time in the same pulling step depending on the oxygen concentration of the Si melt. In this case, the oxygen concentration can be adjusted without changing the atmospheric pressure. This controlled atmosphere is
It is maintained from the melting of the raw material to the start of pulling, or from the suspension of pulling to the restart of pulling, and the evaporation amount of silicon oxide and group V element oxide evaporated from the Si melt is adjusted. The present invention relates to a Si melt doped with a group V element such as P, As, Sb, Bi, etc., specifically 1.0 × 1 for P and As.
It is effective for a Si melt to which a group V element of 0 -4 atomic% or more and 0.01 atomic% or more of Sb and Bi is added. The oxygen concentration is expressed using the JEIDA conversion value (3.03).

【0006】[0006]

【作用】V族元素は、ルツボから融液に溶出したOと反
応し、蒸気圧の大きなPOx ,AsOx ,SbOx ,B
iOx 等の酸化物として雰囲気に蒸発する。他方、Si
融液が収容されたルツボは、通常Arが充填された減圧
雰囲気に配置されている。したがって、Si融液の液面
からシリコン酸化物及びV族元素の酸化物が盛んに蒸発
し、Si融液に含まれているV族元素及び酸素が減少す
る。本発明においては、酸化物の蒸発を、雰囲気圧を高
くすることによって抑制している。質量の大きな希ガス
を雰囲気ガスとして使用すること、或いは質量の大きな
Kr,Xe等をArに配合した混合ガスを雰囲気ガスと
して使用することによっても、酸化物の蒸発が抑制され
る。したがって、酸素濃度の高いSi融液が調製され
る。また、質量の小さな希ガスを単独であるいはArと
混合した雰囲気として使用すると、逆にV族元素及び酸
素の蒸発が加速され、酸素濃度の低いSi融液が調製さ
れる。質量の大きな希ガスを含む雰囲気及び雰囲気圧
は、次のようなメカニズムで酸化物の蒸発を抑えている
ものと推察される。他方、質量の小さな希ガスを含む雰
囲気では、逆のメカニズムによって蒸発を促進させるも
のと考えられる。理想気体が充満されている雰囲気にS
i融液がおかれ、Si融液から単結晶が引き上げられて
いるものと仮定する。融液表面から蒸発する気体分子が
雰囲気のガス分子と衝突する回数fは、雰囲気の圧力P
との間にf∝P2 の関係をもっている。衝突回数fが大
きくなると、融液表面からの気体蒸発が抑えられる。
The group V element reacts with O eluted from the crucible into the melt, and has a large vapor pressure of PO x , AsO x , SbO x , B.
Evaporates into the atmosphere as oxides such as iO x . On the other hand, Si
The crucible containing the melt is usually placed in a reduced pressure atmosphere filled with Ar. Therefore, the silicon oxide and the oxide of the V group element are actively evaporated from the liquid surface of the Si melt, and the V group element and the oxygen contained in the Si melt are reduced. In the present invention, the evaporation of the oxide is suppressed by increasing the atmospheric pressure. Evaporation of the oxide is also suppressed by using a large-mass rare gas as the atmospheric gas or using a large-mass mixed gas in which Kr, Xe, etc. are mixed with Ar as the atmospheric gas. Therefore, a Si melt having a high oxygen concentration is prepared. Further, when a rare gas having a small mass is used alone or as an atmosphere mixed with Ar, the evaporation of the group V element and oxygen is accelerated, and a Si melt having a low oxygen concentration is prepared. It is speculated that the atmosphere and the atmosphere pressure containing a rare gas having a large mass suppress evaporation of oxides by the following mechanism. On the other hand, in an atmosphere containing a rare gas with a small mass, it is considered that evaporation is promoted by the reverse mechanism. S in an atmosphere filled with ideal gas
It is assumed that the i melt is placed and the single crystal is pulled from the Si melt. The number f of collisions of gas molecules evaporated from the melt surface with gas molecules of the atmosphere is determined by the pressure P of the atmosphere.
And have a relationship of f∝P 2 . When the number of collisions f increases, gas evaporation from the melt surface is suppressed.

【0007】特に、V族元素でドープされているSi融
液では、それぞれの元素単体及び酸化物が融液表面から
蒸発するが、1500℃以下の温度域ではこれら蒸発物
がSiOに比較して高い蒸気圧を示すことから、雰囲気
圧による影響が大きく現れる。希ガスの質量は、次のよ
うなメカニズムで融液表面の酸素濃度に影響を与えてい
るものと推察される。理想気体が充満されている雰囲気
にSi融液がおかれ、このSi融液から単結晶が引き上
げられているものと仮定する。Si融液の表面から蒸発
する気体分子が雰囲気のガス分子と衝突する回数fは、
雰囲気ガスの質量mg の平方根に反比例する。一回当り
の衝突エネルギーEは、質量mg との間にE=K・mg
(K:定数)の関係をもっている。したがって、蒸発す
る気体分子と雰囲気ガスとの衝突の起こり易さ、すなわ
ち衝突パラメータは、質量mg の平方根に比例する。
Particularly, in the Si melt doped with the group V element, the elemental element and the oxide are evaporated from the surface of the melt, but in the temperature range of 1500 ° C. or lower, these evaporates are compared with SiO. Since it has a high vapor pressure, the influence of the atmospheric pressure is significant. It is presumed that the mass of the rare gas affects the oxygen concentration on the melt surface by the following mechanism. It is assumed that the Si melt is placed in the atmosphere filled with the ideal gas and the single crystal is pulled from the Si melt. The number f of collisions of gas molecules evaporated from the surface of the Si melt with gas molecules in the atmosphere is
It is inversely proportional to the square root of the mass m g of the atmospheric gas. Collision energy E per one time, E between the mass m g = K · m g
(K: constant). Therefore, the likelihood of collision between the vaporized gas molecules and the atmospheric gas, that is, the collision parameter, is proportional to the square root of the mass m g .

【0008】このことから、単結晶の引上げに通常使用
されているArよりも質量が大きな希ガスを使用する
と、融液表面から気体の蒸発が抑えられ、酸化物の蒸発
量が少なくなり、融液表面の酸素濃度、ひいては得られ
たSi単結晶の酸素濃度が高レベルに維持されることが
予想される。希ガスの質量が酸素濃度に与える影響は、
単結晶引上げに通常使用されているArガスに希ガスを
配合した場合でも同様に維持される。したがって、雰囲
気圧を大きくしたり、雰囲気圧を一定にして質量の大き
な希ガスを使用することにより、酸化物の蒸発が抑えら
れる。特に、雰囲気圧による影響は、100トール以上
で顕著になる。そのため、添加されたV族元素やルツボ
から溶出した酸素は、単結晶引上げ開始までの融液均質
化過程で蒸発損失なく、育成された単結晶に消費され
る。得られた単結晶は、酸素濃度が高く、V族元素をド
ーパントとして含んでいることから、リーク電流が少な
く、重金属類を効率よくゲッタリングできる等の特性を
もった半導体材料として使用される。しかも、酸素濃度
が所定範囲に調整されているので、品質に関する信頼性
が高いものとなる。逆に、質量の小さな希ガスを使用す
ると、Si融液の酸素濃度が低レベルに維持される。こ
のような融液から得られた単結晶は、酸素濃度が低いた
め、表面から数μmを無欠陥領域として必要なMOSデ
バイスとして使用される。
From this, when a rare gas having a larger mass than Ar, which is usually used for pulling a single crystal, is used, the evaporation of gas from the melt surface is suppressed, and the evaporation amount of oxides is reduced, resulting in It is expected that the oxygen concentration on the liquid surface, and thus the oxygen concentration of the obtained Si single crystal, will be maintained at a high level. The effect of the mass of the rare gas on the oxygen concentration is
The same is maintained even when a rare gas is mixed with Ar gas which is usually used for pulling a single crystal. Therefore, evaporation of oxides can be suppressed by increasing the atmospheric pressure or by using a rare gas having a large mass while keeping the atmospheric pressure constant. Especially, the influence of the atmospheric pressure becomes remarkable at 100 Torr or more. Therefore, the added group V element and oxygen eluted from the crucible are consumed in the grown single crystal without evaporation loss in the melt homogenization process until the start of pulling the single crystal. Since the obtained single crystal has a high oxygen concentration and contains a Group V element as a dopant, it has a small leak current and is used as a semiconductor material having properties such as efficient gettering of heavy metals. In addition, since the oxygen concentration is adjusted to a predetermined range, the reliability regarding the quality is high. On the contrary, when a rare gas having a small mass is used, the oxygen concentration of the Si melt is maintained at a low level. Since the single crystal obtained from such a melt has a low oxygen concentration, it is used as a MOS device which requires a few μm from the surface as a defect-free region.

【0009】[0009]

【実施例】【Example】

実施例1:純Si20gを直径50mm及び高さ60m
mのルツボに入れ、垂直方向の温度差50℃をつけて表
面温度1450℃に加熱した。この状態で30分間保持
した後、0.7gの純SbをSi融液に添加した。引き
続き同じ温度条件下で30分間保持し、SbドープSi
融液を用意した。このSbドープSi融液のSb含有量
及び酸素濃度を測定したところ、それぞれ0.8原子%
及び0.001原子%であった。雰囲気圧を種々変化さ
せたアルゴン雰囲気中でSbドープSi融液を1426
〜1542℃に加熱し、90分間保持した後、融液のS
b含有量及び酸素濃度を測定した。測定値を雰囲気圧で
整理した結果を示す図2から明らかなように、雰囲気圧
が50トールより低いとき、90分間保持後のSb含有
量は、当初のSb含有量0.80原子%に比較して大幅
に低い値を示した。Sb含有量の低下度は、雰囲気圧の
上昇に従って次第に小さくなり、200トールを超える
雰囲気圧では、僅か0.03原子%以内に留まってい
た。
Example 1: 20 g of pure Si is 50 mm in diameter and 60 m in height
m, and heated to a surface temperature of 1450 ° C. with a vertical temperature difference of 50 ° C. After maintaining this state for 30 minutes, 0.7 g of pure Sb was added to the Si melt. Sb-doped Si is then kept for 30 minutes under the same temperature condition.
A melt was prepared. When the Sb content and oxygen concentration of this Sb-doped Si melt were measured, they were each 0.8 atom%
And 0.001 atomic%. 1426 the Sb-doped Si melt in an argon atmosphere with various atmospheric pressure changes.
After heating to ~ 1542 ° C and holding for 90 minutes, S of the melt
The b content and oxygen concentration were measured. As is clear from FIG. 2 showing the results of rearranging the measured values by the atmospheric pressure, when the atmospheric pressure is lower than 50 Torr, the Sb content after holding for 90 minutes is compared with the initial Sb content of 0.80 atomic%. And showed a significantly low value. The degree of decrease in the Sb content gradually decreased as the atmospheric pressure increased, and at an atmospheric pressure exceeding 200 Torr, it remained within 0.03 atomic%.

【0010】他方、ルツボから溶出して融液に取り込ま
れる酸素も、低い雰囲気圧ほど小さな濃度を示した。S
b含有量が低い領域では、Sb2 Oとして失われる酸素
が少なく且つルツボから連続的な酸素の補給があるた
め、酸素濃度が雰囲気圧に応じて大きく低下することは
なかった。これに対し、100トール以上の雰囲気圧で
は、Sb含有量が高いにも拘らず、1.4×10-3原子
%以上の高い酸素濃度に維持することができた。このこ
とから、Si融液が接する雰囲気を圧力100トール以
上に維持することにより、Sb2 Oとして失われるSb
及びOの量を少なくし、添加されたSb及び溶出したO
を効率よく単結晶に取り込めることが判る。
On the other hand, the oxygen eluted from the crucible and taken into the melt also showed a smaller concentration at a lower atmospheric pressure. S
In the region where the b content is low, the amount of oxygen lost as Sb 2 O is small and the oxygen is continuously replenished from the crucible, so that the oxygen concentration does not greatly decrease according to the atmospheric pressure. On the other hand, at an atmospheric pressure of 100 Torr or more, it was possible to maintain a high oxygen concentration of 1.4 × 10 −3 atomic% or more, despite the high Sb content. Therefore, by maintaining the atmosphere in contact with the Si melt at a pressure of 100 Torr or more, Sb 2 O lost as Sb 2 O is lost.
And O to reduce the amount of added Sb and eluted O
It can be seen that can be efficiently incorporated into a single crystal.

【0011】実施例2:実施例1と同じ条件下でSbド
ープSi融液を溶解し、種々の雰囲気下で90分保持し
た。そして、90分保持後に、Si融液のSb含有量及
び酸素濃度を測定した。測定結果を、雰囲気圧及び希ガ
スの種類ごとに表1に示す。表1から明らかなように、
同じ雰囲気圧であっても質量の大きな希ガスを雰囲気圧
として使用した場合、Sb含有量及び酸素濃度の低下が
抑制されていることが判る。
Example 2: The Sb-doped Si melt was melted under the same conditions as in Example 1 and held under various atmospheres for 90 minutes. Then, after holding for 90 minutes, the Sb content and oxygen concentration of the Si melt were measured. The measurement results are shown in Table 1 for each atmospheric pressure and each kind of rare gas. As is clear from Table 1,
It can be seen that when a rare gas having a large mass is used as the atmosphere pressure even with the same atmosphere pressure, the decrease in the Sb content and the oxygen concentration is suppressed.

【0012】[0012]

【表1】 [Table 1]

【0013】実施例3:実施例1と同じ条件下でSbド
ープSi融液を溶解し、種々の配合割合で希ガスを混合
した30トールのAr雰囲気下で90分保持した。そし
て、90分保持後に、Si融液のSb含有量及び酸素濃
度を測定した。測定結果を、希ガスの配合割合ごとに表
1に示す。表1から明らかなように、質量の大きな希ガ
スの配合割りがいが大きくなるほど、Sb含有量及び酸
素濃度の低下が抑制されていることが判る。
Example 3: The Sb-doped Si melt was melted under the same conditions as in Example 1, and the mixture was kept for 90 minutes in an Ar atmosphere of 30 torr in which rare gases were mixed at various blending ratios. Then, after holding for 90 minutes, the Sb content and oxygen concentration of the Si melt were measured. The measurement results are shown in Table 1 for each mixing ratio of the rare gas. As is clear from Table 1, it is understood that the larger the mixing ratio of the rare gas having a large mass, the more the decrease in the Sb content and the oxygen concentration is suppressed.

【0014】[0014]

【表2】 [Table 2]

【0015】[0015]

【発明の効果】以上に説明したように、本発明において
は、V族元素でドープしたSi融液を単結晶引上げ開始
までの間、雰囲気圧を高くし、或いは更に必要に応じて
質量の大きな希ガス又は質量の小さな希ガスを使用する
ことによって酸化物の蒸発を制御している。そのため、
原料溶解後の均質化過程及び引上げ中断時に酸化物とし
て失われるV族元素や酸素の濃度低下が調製され、単結
晶引上げに使用されるSi融液が目標濃度をもったもの
となる。また、Si融液を再調整する必要も少なくな
る。しかも、引上げ開始まで高圧雰囲気を維持すること
によって融液組成の変動が抑えられることから、融液調
整からの経過時間に拘束されず、生産計画に合せて引上
げ操作を行うことも可能になる。
As described above, according to the present invention, the atmosphere pressure is increased until the start of pulling the single crystal of the Si melt doped with the group V element, or the mass is increased if necessary. Evaporation of the oxide is controlled by using a rare gas or a rare gas having a small mass. for that reason,
A reduction in the concentration of group V elements and oxygen lost as oxides during the homogenization process after melting the raw materials and during the interruption of the pulling is adjusted, and the Si melt used for pulling the single crystal has a target concentration. Also, the need to readjust the Si melt is reduced. Moreover, since the fluctuation of the melt composition is suppressed by maintaining the high-pressure atmosphere until the start of pulling, the pulling operation can be performed according to the production plan without being restricted by the elapsed time from the melt adjustment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 融液から単結晶を引き上げるチョクラルスキ
ー法
Fig. 1 Czochralski method for pulling a single crystal from a melt

【図2】 Si融液の酸素濃度及びSb含有量に与える
雰囲気圧の影響
FIG. 2 Influence of atmospheric pressure on oxygen concentration and Sb content of Si melt

【符号の説明】[Explanation of symbols]

1:密閉容器,2:ルツボ,3:サポート,4:ヒー
タ,5:保温材,6:融液7:種結晶,8:単結晶,
9:ワイヤ,10:回転巻取り機構
1: closed container, 2: crucible, 3: support, 4: heater, 5: heat insulating material, 6: melt 7: seed crystal, 8: single crystal,
9: wire, 10: rotary winding mechanism

───────────────────────────────────────────────────── フロントページの続き (72)発明者 黄 新明 茨城県つくば市東光台1−16−2 スカ イハイツC−101 (72)発明者 寺嶋 一高 神奈川県海老名市中野206−3 (72)発明者 木村 茂行 茨城県つくば市竹園3−712 (56)参考文献 特開 平6−219886(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Huang Xinming 1-16-2 Tokodai, Tsukuba, Ibaraki Prefecture Sky Heights C-101 (72) Inventor Kazutaka Terashima Nakano, Ebina 206-3, Kanagawa Prefecture 206-3 (72) Inventor Shigeyuki Kimura 3-712 Takezono, Tsukuba-shi, Ibaraki (56) References JP-A-6-219886 (JP, A)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 V族元素を添加したSi原料をルツボで
溶解した後、単結晶引上げ開始までの間、希ガスを充満
させた雰囲気圧100トール以上のチャンバー内でSi
融液を保持する単結晶引上げ用融液の調整方法。
1. Si melted in a crucible from a Si raw material added with a group V element, and until the start of pulling a single crystal, Si is placed in a chamber filled with a rare gas at an atmospheric pressure of 100 Torr or more.
A method for preparing a melt for holding a melt for pulling a single crystal.
【請求項2】 質量が大きいAr,Kr,Xe,Rn等
の希ガス、又は質量の小さいHe,Ne等の希ガスを雰
囲気ガスとして使用する請求項1記載の調整方法。
2. The adjusting method according to claim 1, wherein a rare gas such as Ar, Kr, Xe, or Rn having a large mass or a rare gas such as He or Ne having a small mass is used as the atmospheric gas.
【請求項3】 質量が大きいKr,Xe,Rn等の希ガ
ス、又は質量の小さいHe,Ne等の希ガスをArに配
合した雰囲気ガスを使用する請求項1記載の調整方法。
3. The adjusting method according to claim 1, wherein a rare gas such as Kr, Xe, or Rn having a large mass or an atmosphere gas in which a rare gas such as He or Ne having a small mass is mixed with Ar is used.
【請求項4】 Si原料の溶解から引上げ開始までの
間、希ガスを充満させた雰囲気圧100トール以上のチ
ャンバー内でSi融液を保持する請求項1〜3の何れか
に記載の単結晶引上げ用融液の調整方法。
4. The single crystal according to claim 1, wherein the Si melt is held in a chamber filled with a rare gas at an atmospheric pressure of 100 Torr or more from the melting of the Si raw material to the start of pulling. Method of adjusting the melt for pulling.
【請求項5】 引上げ中断から引上げ再開までの間、ガ
スを充満させた雰囲気圧100トール以上のチャンバー
内でSi融液を保持する請求項1〜3の何れかに記載の
単結晶引上げ用融液の調整方法。
5. The single crystal pulling melt according to claim 1, wherein the Si melt is held in a chamber filled with gas at an atmospheric pressure of 100 Torr or more from the time when the pulling is suspended until the pulling is restarted. Liquid preparation method.
JP33735194A 1993-12-28 1994-12-26 Method for preparing Si melt for pulling single crystal Expired - Fee Related JP2691393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33735194A JP2691393B2 (en) 1993-12-28 1994-12-26 Method for preparing Si melt for pulling single crystal

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP33535993 1993-12-28
JP5-335359 1993-12-28
JP33735194A JP2691393B2 (en) 1993-12-28 1994-12-26 Method for preparing Si melt for pulling single crystal

Publications (2)

Publication Number Publication Date
JPH07232994A JPH07232994A (en) 1995-09-05
JP2691393B2 true JP2691393B2 (en) 1997-12-17

Family

ID=26575150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33735194A Expired - Fee Related JP2691393B2 (en) 1993-12-28 1994-12-26 Method for preparing Si melt for pulling single crystal

Country Status (1)

Country Link
JP (1) JP2691393B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5904768A (en) * 1996-10-15 1999-05-18 Memc Electronic Materials, Inc. Process for controlling the oxygen content in silicon wafers heavily doped with antimony or arsenic
JP2007112663A (en) 2005-10-20 2007-05-10 Sumco Techxiv株式会社 Apparatus and method for manufacturing semiconductor single crystal
JP5172202B2 (en) 2007-05-10 2013-03-27 Sumco Techxiv株式会社 Single crystal manufacturing method
JP5118386B2 (en) * 2007-05-10 2013-01-16 Sumco Techxiv株式会社 Single crystal manufacturing method
EP3106446A1 (en) 2015-06-18 2016-12-21 Eidgenössische Materialprüfungs- und Forschungsanstalt EMPA Self-prestressed reinforced concrete elements

Also Published As

Publication number Publication date
JPH07232994A (en) 1995-09-05

Similar Documents

Publication Publication Date Title
EP3333288B1 (en) Sic crucible, method of making the crucible and method of producing sic single crystal
JP4361892B2 (en) Method for producing doped semiconductor wafers made of silicon and semiconductor wafers of this kind
WO2012029952A1 (en) Method for producing silicon carbide single crystal, silicon carbide single crystal, and silicon carbide single crystal substrate
US7909930B2 (en) Method for producing a silicon single crystal and a silicon single crystal
CN111892055A (en) Silicon carbide powder doped with rare earth elements and preparation method thereof
JP2691393B2 (en) Method for preparing Si melt for pulling single crystal
JPS6410479B2 (en)
WO2018198663A1 (en) n-TYPE SILICON SINGLE CRYSTAL PRODUCTION METHOD, n-TYPE SILICON SINGLE CRYSTAL INGOT, SILICON WAFER, AND EPITAXIAL SILICON WAFER
JPH03164495A (en) Method for growing antimony doped silicon single crystal
US5477805A (en) Preparation of silicon melt for use in pull method of manufacturing single crystal
JP2720303B2 (en) Method for controlling oxygen concentration of Si melt for pulling single crystal
JP2720283B2 (en) Method for pulling Si single crystal with controlled oxygen concentration
KR100810566B1 (en) Sb-DOPED SILICON SINGLE CRYSTAL AND GROWING METHOD THEREOF
RU2308784C1 (en) Substrate for growing gallium arsenide epitaxial layers
JP2720282B2 (en) Method for pulling Si single crystal with controlled oxygen concentration
JP2760940B2 (en) Si single crystal pulling device that adjusts oxygen concentration by controlling atmosphere
JP7272343B2 (en) Method for producing n-type silicon single crystal
JP5262257B2 (en) Method for producing nitrogen-doped silicon single crystal
JP2733899B2 (en) Method for growing rare earth gallium perovskite single crystal
JP2760932B2 (en) Method for controlling oxygen concentration of Si melt for pulling single crystal
CN110578170B (en) ScAlMgO4Single crystal and device
WO2024034512A1 (en) METHOD FOR GROWING β-GA2O3-BASED SINGLE CRYSTAL FILM
CN114807890A (en) Preparation method of two-dimensional bismuth antimonide with large temperature difference electromotive force
JPH0948695A (en) Production of silicon single crystal
JPH09202695A (en) Production of single crystal silicon doped with antimony

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees