JP2689269B2 - Diamond and its vapor phase synthesis method - Google Patents

Diamond and its vapor phase synthesis method

Info

Publication number
JP2689269B2
JP2689269B2 JP1023386A JP2338689A JP2689269B2 JP 2689269 B2 JP2689269 B2 JP 2689269B2 JP 1023386 A JP1023386 A JP 1023386A JP 2338689 A JP2338689 A JP 2338689A JP 2689269 B2 JP2689269 B2 JP 2689269B2
Authority
JP
Japan
Prior art keywords
diamond
gas
plasma
phase synthesis
synthesis method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1023386A
Other languages
Japanese (ja)
Other versions
JPH01308896A (en
Inventor
敬一朗 田辺
貴浩 今井
直治 藤森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP1023386A priority Critical patent/JP2689269B2/en
Publication of JPH01308896A publication Critical patent/JPH01308896A/en
Application granted granted Critical
Publication of JP2689269B2 publication Critical patent/JP2689269B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、化学的気相合成法により、高品質のダイヤ
モンドを高速で合成または被覆する方法に関するもので
あり、高熱伝導性、低誘電性、高透光性、高比弾性、高
強度、耐摩耗性等を要求される分野、例えば窓材、振動
板、切削工具、ヒートシンク、ICボンダー等に応用でき
るものである。
TECHNICAL FIELD The present invention relates to a method for synthesizing or coating high-quality diamond at high speed by a chemical vapor deposition method, which has high thermal conductivity and low dielectric constant. It can be applied to fields requiring high translucency, high specific elasticity, high strength, wear resistance, etc., such as window materials, diaphragms, cutting tools, heat sinks, and IC bonders.

[従来の技術] 従来、ダイヤモンドは高温、高圧下の熱力学的平衡状
態において合成されてきたが、近年、非平衡状態を積極
的に利用した気相からの合成法(CVD法)によってもダ
イヤモンドの合成が可能となっている。
[Prior Art] Conventionally, diamond has been synthesized in a thermodynamic equilibrium state under high temperature and high pressure, but in recent years, diamond has also been synthesized by a vapor phase synthesis method (CVD method) that positively utilizes a nonequilibrium state. Can be synthesized.

ダイヤモンドの気相合成法としては、一般に10倍(体
積)以上の水素で希釈した炭化水素を用い、ガスをプラ
ズマもしくは熱フィラメントで励起する方法が提案され
ている。例えば、特開昭58−91100号には、炭化水素と
水素との混合ガスを、1000℃以上に加熱した熱電子放射
材によって予備加熱した後、混合ガスを加熱した基板表
面に導入して炭化水素の熱分解でダイヤモンドを析出す
る方法が、また特開昭58−110494号には、水素ガスをマ
イクロ波無電極放電中を通過させた後に炭化水素と混合
して同じようにダイヤモンドを析出する方法が、更に特
開昭59−3098号公報には、水素ガスと不活性ガスとの混
合ガスにマイクロ波を導入してマイクロ波プラズマを発
生させ、この中に基板を設置して、300〜1300℃の温度
で加熱し、炭化水素を分解してダイヤモンドを析出する
方法が記載されている。
As a vapor phase synthesis method of diamond, a method in which a hydrocarbon diluted with 10 times (volume) or more of hydrogen is generally used and a gas is excited by plasma or a hot filament has been proposed. For example, in JP-A-58-91100, a mixed gas of hydrocarbon and hydrogen is preheated by a thermoelectron emitting material heated to 1000 ° C. or higher, and then the mixed gas is introduced onto a heated substrate surface to carbonize the gas. A method for depositing diamond by thermal decomposition of hydrogen, and Japanese Patent Laid-Open No. 58-110494 discloses that diamond is similarly deposited by passing hydrogen gas through a microwave electrodeless discharge and then mixing it with hydrocarbon. The method is further disclosed in JP-A-59-3098, in which microwave is introduced into a mixed gas of hydrogen gas and an inert gas to generate microwave plasma, a substrate is placed in the microwave plasma, and A method of heating at a temperature of 1300 ° C. to decompose hydrocarbons and depositing diamond is described.

[発明が解決しようとする課題] このような従来のダイヤモンド気相合成法は、基本的
に水素及び炭素を含む原料ガス(例えば、炭素水素系ガ
ス)のみを用いる為に、50Torr程度までの比較的低圧で
しかプラズマを安定して生成することが出来ず、ダイヤ
モンドの合成条件、合成速度、合成面積等が制約される
問題があり、応用面で不十分であった。
[Problems to be Solved by the Invention] Since such a conventional diamond vapor phase synthesis method basically uses only a raw material gas containing hydrogen and carbon (for example, carbon-hydrogen gas), comparison up to about 50 Torr is performed. It is not sufficient in terms of application because there is a problem that plasma can be stably generated only at extremely low pressure, and the synthesis conditions, rate, area, etc. of diamond are restricted.

本発明はこれらの課題を解決しようとするものであ
る。
The present invention is intended to solve these problems.

[課題を解決するための手段] 本発明者らは、安定で活性度の高いプラズマを発生さ
せるために各種の条件を検討した結果、混合ガスの条件
を次の通りにした場合に極めて高速度でダイヤモンドを
合成できることを見い出した。
[Means for Solving the Problems] As a result of studying various conditions for generating stable and highly active plasma, the present inventors have found that extremely high velocity is achieved when the mixed gas conditions are as follows. It was found that diamond can be synthesized with.

即ち、30〜600Torrの圧力で水素ガス(A)、不活性
ガス(B)及び有機化合物ガス(C)を、それらのモル
比が、 なる条件を満たすように含む混合ガスを非断熱膨張的
に反応容器に導き、プラズマを発生させてダイヤモンド
を合成した。より好ましくは、3種のガスのモル比が、 なる条件を満たすように含む混合ガスを非断熱膨張的
に反応容器に導き、プラズマを発生させ、ダイヤモンド
を合成すると、不活性ガスを使用しない場合に比べて数
百倍(数十μm/h)の成長速度で、かつ均一に、広い面
積(数十平方ミリ)上にダイヤモンドを合成し得ること
を見い出した。
That is, the hydrogen gas (A), the inert gas (B), and the organic compound gas (C) at a pressure of 30 to 600 Torr and their molar ratios are A mixed gas satisfying the following conditions was introduced into the reaction vessel in a nonadiabatic expansion manner and plasma was generated to synthesize diamond. More preferably, the molar ratio of the three gases is If a mixed gas that satisfies the following conditions is introduced into the reaction vessel in a non-adiabatic expansion manner, plasma is generated, and diamond is synthesized, then several hundred times (several tens of μm / h) compared to the case where no inert gas is used It has been found that diamond can be synthesized on a large area (tens of square millimeters) at a uniform growth rate and of a uniform area.

本発明の方法において、上記3種のガスのモル比は、 なる条件を満たすのが最も好ましい。In the method of the present invention, the molar ratio of the above three gases is Most preferably, the following condition is satisfied.

本発明においてプラズマの発生源としては、500MHz以
上のマイクロ波を用いる。投入電力は、一般に1W/cm2
上である。
In the present invention, a microwave of 500 MHz or more is used as a plasma generation source. Input power is generally 1 W / cm 2 or more.

本発明で用いる不活性ガスの種類は、ヘリウム、ネオ
ン、アルゴン、クリプトン、キセノン、あるいはこれら
の混合物でよく、いずれを用いても効果は変わらない
が、安価で入手し安いアルゴンが好ましい。
The type of inert gas used in the present invention may be helium, neon, argon, krypton, xenon, or a mixture thereof, and the effect is the same regardless of which is used, but argon is preferable because it is inexpensive and easily available.

炭素含有化合物ガスは、CVD条件下で気体である炭素
を含む化合物ガス、例えば気体状のメタン、エタン等の
脂肪族炭化水素またはベンゼン等の芳香族炭化水素であ
ってもよく、一酸化炭素、二酸化炭素等の無機化合物、
アルコール、チオール、ケトン、エーテル等の分子に少
量の酸素、窒素、硫黄等のヘテロ原子を含む有機化合物
であっても良い。本発明においては、アルゴン等の不活
性ガスがプラズマ発生雰囲気中に存在している為に、プ
ラズマ出力が数十W以上という通常の条件でなくても、
出力が数十W以下という低出力で、数百Torr以上の圧力
領域でも安定して活性度の高いプラズマを生成すること
が可能であり、通常プラズマが集中するので適正な基板
温度(700〜1200℃)でダイヤモンドを被覆する事が困
難な3次元的な基材にもダイヤモンドを被覆することが
できる。基材の材質は、従来のCVD法で用いられている
ものと同様である。特に好ましい基材は、Si,Mo,W,Ta,N
b,Zr,B,C,Al,SiC,Si3N4,MoC,Mo2C,WC,W2C,TaC,NbC,BN,B
4C,AlN,TiC,TiN,Tiなどである。
The carbon-containing compound gas may be a compound gas containing carbon that is a gas under CVD conditions, for example, gaseous methane, an aliphatic hydrocarbon such as ethane or an aromatic hydrocarbon such as benzene, carbon monoxide, Inorganic compounds such as carbon dioxide,
It may be an organic compound containing a small amount of a hetero atom such as oxygen, nitrogen or sulfur in a molecule such as alcohol, thiol, ketone or ether. In the present invention, since the inert gas such as argon is present in the plasma generation atmosphere, the plasma output is not a normal condition of several tens W or more,
With a low output of several tens of W or less, it is possible to stably generate highly active plasma even in a pressure region of several hundred Torr or more. Normally, the plasma is concentrated, so an appropriate substrate temperature (700 to 1200 It is possible to coat the diamond on a three-dimensional substrate that is difficult to coat with diamond at (° C.). The material of the base material is the same as that used in the conventional CVD method. Particularly preferred substrates are Si, Mo, W, Ta, N
b, Zr, B, C, Al, SiC, Si 3 N 4 , MoC, Mo 2 C, WC, W 2 C, TaC, NbC, BN, B
4 C, AlN, TiC, TiN , Ti or the like.

また本発明の条件範囲では粒径数百μm以上のダイヤ
モンド粒子を高速で成長させることも可能である。
Further, it is possible to grow diamond particles having a particle size of several hundreds of μm or more at a high speed within the range of the conditions of the present invention.

ここで活性度の高いプラズマは、プラズマの発光分光
分析及びプラズマの目視によって確認できる。つまり、
発光分光分析によれば、活性度の高いプラズマでは相対
的にH2連続帯の強度が弱く、H(α)等の水素ラジカル
ならびにC2およびCHラジカルの強度が強いことに特徴が
ある。又、目視によってもC2ラジカル(スワンバンド)
の緑色がかった発光を帯びることが多く観察される。
Here, the highly active plasma can be confirmed by optical emission spectroscopic analysis of the plasma and visual observation of the plasma. That is,
According to the emission spectroscopic analysis, the intensity of the H 2 continuous band is relatively weak in the highly active plasma, and the intensity of hydrogen radicals such as H (α) and C 2 and CH radicals are strong. In addition, C 2 radical (swan band) can be visually observed.
Often observed to have a greenish luminescence.

このような現象から、本発明の条件下では原料ガスの分
解がより効率良く行われているものと考えられる。
From such a phenomenon, it is considered that the raw material gas is decomposed more efficiently under the conditions of the present invention.

本発明の不活性ガスの添加効果は、上述のように30To
rr以上600Torr以下の圧力範囲で現れる。一般に、圧力
が低いと、成長速度が遅くなり、圧力が高いと、プラズ
マの収縮が顕著になる為析出面積が狭くなる。実用的な
析出面積(数十平方ミリ)で析出速度の増加効果をもた
らす為には、60Torr以上400Torr以下の圧力範囲がより
好ましい。
As described above, the effect of adding the inert gas of the present invention is 30 To
Appears in the pressure range from rr to 600 Torr. Generally, when the pressure is low, the growth rate becomes slow, and when the pressure is high, the shrinkage of plasma becomes remarkable and the deposition area becomes narrow. A pressure range of 60 Torr or more and 400 Torr or less is more preferable in order to bring about an effect of increasing the deposition rate in a practical deposition area (tens of square millimeters).

原料ガスが、水素ガス(A)、不活性ガス(B)及び
炭素含有化合物ガス(C)の必須成分に加え、ドーピン
グガス(D)、たとえばジボラン(B2H6)、窒素(N2
を含む場合にも、不活性ガスの添加効果は同様に現れ
る。この様な場合には、水素ガス(A)、不活性ガス
(B)、炭素含有化合物ガス(C)及びドーピングガス
(D)のモル比が なる条件を満たすように各ガスを混合して用いるのが好
ましい。
In addition to the essential components of hydrogen gas (A), inert gas (B) and carbon-containing compound gas (C), the source gas is a doping gas (D) such as diborane (B 2 H 6 ), nitrogen (N 2 ).
The effect of adding the inert gas also appears in the case of including. In such a case, the molar ratio of hydrogen gas (A), inert gas (B), carbon-containing compound gas (C) and doping gas (D) is It is preferable to mix and use each gas so as to satisfy the following condition.

なる条件では本発明効果が小さくなる。 Under these conditions, the effect of the present invention becomes small.

なお、プラズマを用いたダイヤモンドの気相合成にお
いては、プラズマの発生源としては500MHz以上のマイク
ロ波を用いるのが最も好ましい。
In the gas-phase synthesis of diamond using a plasma, it is preferred to use the microwave over 500 mH z is as a source of plasma.

本発明の方法により得られたダイヤモンド膜成長表面
の平均結晶粒径(E)及び成長膜厚(F)を、光学顕微
鏡及び査型電子顕微鏡(SEM)により観察したところ、
平均結晶粒径(E)が成長膜厚(F)に対して比較的大
きいことが特徴であることがわかった。
When the average crystal grain size (E) and the grown film thickness (F) of the diamond film growth surface obtained by the method of the present invention were observed by an optical microscope and a scanning electron microscope (SEM),
It was found that the average crystal grain size (E) is relatively large with respect to the grown film thickness (F).

そして、この様に比較的大きな結晶粒径を持つダイヤ
モンドでは、透過型電子顕微鏡(TEM)観察により、転
位等の結晶欠陥やアモルファスカーボン等の非ダイヤモ
ンド成分の析出が多いと考えられているダイヤモンド結
晶粒界が少なく、低欠陥結晶であることがわかった。
Then, in the diamond having such a relatively large crystal grain size, a diamond crystal which is considered to have many crystal defects such as dislocations and precipitation of non-diamond components such as amorphous carbon by a transmission electron microscope (TEM) observation. It was found that there were few grain boundaries and the crystals had low defects.

又、紫外から赤外領域における透過スペクトル測定か
ら高い透光性を示すこと、熱伝導率測定から高い熱伝導
率を有するなど、多くのダイヤモンド本来の特性を示す
こともわかった。
It was also found that the diamond exhibits many original characteristics such as a high light-transmittance measured by a transmission spectrum in the ultraviolet to infrared region and a high thermal conductivity measured by a thermal conductivity measurement.

そしてこの結晶粒径の大きさが効果を示すのは、膜厚
(F)が5μm以上で、平均結晶粒径(E)と膜厚
(F)が、 なる関係を満たす場合である。(但し、E,Fはμm単
位) の範囲では、上記ダイヤモンドの特性が低下する。そし
て本発明法によれば容易にこの領域のダイヤモンドを得
ることが出来る。
The effect of this crystal grain size is that the film thickness (F) is 5 μm or more, and the average crystal grain size (E) and the film thickness (F) are That is the case when the relationship (However, E and F are in μm units) In the range of 1, the characteristics of the diamond are deteriorated. According to the method of the present invention, diamond in this region can be easily obtained.

本発明で利用するダイヤモンド合成用の装置を第1図
に示す。
An apparatus for diamond synthesis used in the present invention is shown in FIG.

第1図はマイクロ波プラズマCVD装置、第2図は比較
実験に用いた直流プラズマCVD装置のそれぞれ概略図で
ある。図中、1は基材、2は石英管、3は真空排気口、
4は供給ガス導入口、5は発生プラズマ、6はマグネト
ロン、7は導波管、8はプランジャー、10はDC電源、11
は基材支持台、12は絶縁シール、13はカソードである。
一般に、石英管は、50mm以上の直径を有する。
FIG. 1 is a schematic diagram of a microwave plasma CVD apparatus, and FIG. 2 is a schematic diagram of a DC plasma CVD apparatus used in a comparative experiment. In the figure, 1 is a substrate, 2 is a quartz tube, 3 is a vacuum exhaust port,
4 is a supply gas inlet, 5 is generated plasma, 6 is a magnetron, 7 is a waveguide, 8 is a plunger, 10 is a DC power source, 11
Is a base material support, 12 is an insulating seal, and 13 is a cathode.
Generally, the quartz tube has a diameter of 50 mm or more.

次に、本発明の効果を実施例及び比較例によって具体
的に説明する。
Next, the effects of the present invention will be specifically described with reference to Examples and Comparative Examples.

実施例1 ダイヤモンド合成法として、マイクロ波プラズマCVD
法(以下、μ−PCVDという。)、直流プラズマCVD法
(以下、DC−PCVDという。)のいずれかの方法を用いた
(第1表及び第2表参照)。基材としては、40×35×10
mm3のモリブデン板を#600のダイヤモンドパウダーで最
終研磨したものを用いた。
Example 1 As a diamond synthesis method, microwave plasma CVD
Either a method (hereinafter referred to as μ-PCVD) or a direct current plasma CVD method (hereinafter referred to as DC-PCVD) was used (see Tables 1 and 2). As the base material, 40 × 35 × 10
A mm 3 molybdenum plate that was finally polished with # 600 diamond powder was used.

まず、図面の石英管2の中に不活性ガスを導入口4か
ら導入し、圧力1Torrでプラズマ発生源によりプラズマ
5を発生させ、そのプラズマでモリブデン板を5分間ク
リーニングした。その後、第1表及び第2表に示す条件
でプラズマCVDを行い、気相合成したダイヤモンドによ
りモリブデン板を被覆した。
First, an inert gas was introduced through the inlet 4 into the quartz tube 2 shown in the drawing, a plasma 5 was generated by a plasma generation source at a pressure of 1 Torr, and the molybdenum plate was cleaned with the plasma for 5 minutes. After that, plasma CVD was performed under the conditions shown in Tables 1 and 2, and the molybdenum plate was covered with vapor phase synthesized diamond.

合成中の基材表面温度を光学式パイロメーターにより
測定したところ、800〜1200℃の範囲であった。
The surface temperature of the base material during the synthesis was measured by an optical pyrometer and found to be in the range of 800 to 1200 ° C.

また、プラズマCVD法で形成したダイヤモンド膜につ
いて、走査型電子顕微鏡による表面観察及び膜厚観察、
X線回折及びラマン散乱分光法による結晶性の評価を行
ったところ、第1表及び第2表に示すような結果が得ら
れた。なお、表中、「Dia」はダイヤモンドを、「a−
c」はアモルアモルファスカーボンを示す。
Further, for the diamond film formed by the plasma CVD method, surface observation and film thickness observation by a scanning electron microscope,
When the crystallinity was evaluated by X-ray diffraction and Raman scattering spectroscopy, the results shown in Tables 1 and 2 were obtained. In the table, "Dia" means diamond and "a-
"c" indicates an amorphous carbon.

不活性ガスの全ガスに対するモル比、炭素含有化合物
ガスの全ガスに対するモル比及び反応圧力が本発明の条
件範囲内にあれば、ダイヤモンドの蒸着速度を、例えば
400μm/hと非常に高速にすることが可能である。一方、
本発明の条件範囲外では、不活性ガスを添加せずに高圧
力でプラズマを発生させようとしてもプラズマは安定し
て生じず、例えプラズマを発生できたとしてもダイヤモ
ンド膜はアモルファスカーボンを含む粗悪なものであ
り、しかも蒸着速度は最大でも2μm/hと遅くなる。
If the molar ratio of the inert gas to the total gas, the molar ratio of the carbon-containing compound gas to the total gas, and the reaction pressure are within the range of the conditions of the present invention, the deposition rate of diamond is, for example,
It is possible to achieve a very high speed of 400 μm / h. on the other hand,
Outside the condition range of the present invention, even if an attempt is made to generate plasma at a high pressure without adding an inert gas, the plasma is not stably generated, and even if the plasma can be generated, the diamond film contains amorphous carbon and is poor. In addition, the vapor deposition rate is as slow as 2 μm / h at maximum.

又、第2表に示す試料No.14〜18の熱伝導率を簡易型
サーミスタを用いた熱伝導率測定装置により測定したと
ころ、本発明の条件で製造された試料においては2W/cmK
から15W/cmKという高熱伝導性が確認されたのに対し、
比較条件で製造された試料においては2W/cmK未満であっ
た。
Further, the thermal conductivity of Sample Nos. 14 to 18 shown in Table 2 was measured by a thermal conductivity measuring device using a simple thermistor, and it was 2 W / cmK in the sample manufactured under the conditions of the present invention.
Although high thermal conductivity of 15 W / cmK was confirmed from,
It was less than 2 W / cmK in the sample manufactured under the comparative conditions.

実施例2 第1表に示す試料No.4から剥離したダイヤモンド板
(10×10×0.2mm3)を40×34×10mm3のモリブデン板上
に置き、マイクロ波出力800W、圧力300Torrの条件下、
水素流量1000SCCM、アルゴン流量500SCCM及びエタノー
ル流量40SCCMで導入しながら、3時間、マイクロ波プラ
ズマCVDを行ったところ、ダイヤモンド板の厚さは0.2mm
から1mmに成長した。このダイヤモンド板は、元の試料N
o.4ダイヤモンド板と同様に、X線回折及びラマン分光
法によって結晶性の良い、(100)優先配向のダイヤモ
ンドであることが判った。
Example 2 A diamond plate (10 × 10 × 0.2 mm 3 ) exfoliated from sample No. 4 shown in Table 1 was placed on a 40 × 34 × 10 mm 3 molybdenum plate under the conditions of a microwave output of 800 W and a pressure of 300 Torr. ,
Microwave plasma CVD was performed for 3 hours while introducing hydrogen at a flow rate of 1000 SCCM, argon flow rate of 500 SCCM and ethanol flow rate of 40 SCCM, and the diamond plate thickness was 0.2 mm.
Has grown to 1 mm. This diamond plate is the original sample N
As with the o.4 diamond plate, it was found by X-ray diffraction and Raman spectroscopy that it was a (100) preferentially oriented diamond with good crystallinity.

実施例3 直径40mm及び厚さ20mmのモリブデン板の中心付近に、
超高圧法により作成した粒径250μmのダイヤモンド単
結晶砥粒5個を置き、アルゴン流量2000SCCM、水素流量
1000SCCM、アセチレン流量20SCCM、マイクロ波出力800
W、圧力500Torrの条件で、5時間マイクロ波プラズマCV
Dを行ったところ、直径1mmの単結晶砥粒5個が得られ
た。X線回折及びラマン分光法により、結晶性の良いダ
イヤモンドであることが確認された。
Example 3 In the vicinity of the center of a molybdenum plate having a diameter of 40 mm and a thickness of 20 mm,
Place 5 diamond single crystal abrasive grains with a grain size of 250 μm prepared by ultra high pressure method, argon flow rate 2000SCCM, hydrogen flow rate
1000SCCM, acetylene flow rate 20SCCM, microwave output 800
Microwave plasma CV for 5 hours under the conditions of W and pressure of 500 Torr
When D was performed, 5 single crystal abrasive grains having a diameter of 1 mm were obtained. It was confirmed by X-ray diffraction and Raman spectroscopy that the diamond had good crystallinity.

実施例4 40×35×10mm3のモリブデン板の中心に、超高圧法に
より作成した直径3mmのダイヤモンド単結晶粒を置き、
ヘリウム流量2000SCCM、水素流量500SCCM、プロパン流
量20SCCM、マイクロ波出力200W、圧力600Torrの条件
で、5時間マイクロ波プラズマCVDを行ったところ、直
径4mmに増加していた。
Example 4 A diamond single crystal grain having a diameter of 3 mm prepared by an ultrahigh pressure method was placed at the center of a 40 × 35 × 10 mm 3 molybdenum plate,
When microwave plasma CVD was performed for 5 hours under the conditions of a helium flow rate of 2000 SCCM, a hydrogen flow rate of 500 SCCM, a propane flow rate of 20 SCCM, a microwave output of 200 W, and a pressure of 600 Torr, the diameter increased to 4 mm.

表面は少しグラファイト化している様であったが、ク
ロム酸処理が進行するにつれてダイヤモンドの自形がは
っきりと現れた。これはX線回折及びラマン分光法によ
りダイヤモンドであることが確認された。
Although the surface seemed to be a little graphitized, diamond automorphism appeared clearly as the chromic acid treatment proceeded. It was confirmed to be diamond by X-ray diffraction and Raman spectroscopy.

実施態様 本発明のより好ましい実施態様を次に示す。Embodiment A more preferable embodiment of the present invention will be described below.

1.プラズマ発生の為に、周波数が500MHz以上のマイクロ
波を用いる。
1. For plasma generation, frequency using microwaves than 500 mH z.

2.使用する炭素含有化合物ガスとして、CVD条件下で気
体の脂肪族炭化水素、芳香族炭化水素、アルコール、チ
オール、ケトン、エーテル、一酸化炭素、二酸化炭素等
から選ばれた少なくとも1種の化合物を用いる。
2. The carbon-containing compound gas used is at least one compound selected from aliphatic hydrocarbons, aromatic hydrocarbons, alcohols, thiols, ketones, ethers, carbon monoxide, carbon dioxide, etc., which are gaseous under CVD conditions. To use.

3.不活性ガスとして、ヘリウム、ネオン、アルゴン、ク
リプトン、キセノンから選ばれた少なくとも1種を用い
る。
3. As the inert gas, at least one selected from helium, neon, argon, krypton, and xenon is used.

4.プラズマの発生に対する投入電力が、1W/cm2以上であ
り、圧力が60〜400Torrである。
4. Input power for plasma generation is 1 W / cm 2 or more, and pressure is 60 to 400 Torr.

5.反応管径が直径50mm以上である。5. The reaction tube diameter is 50 mm or more.

6.ダイヤモンド生成反応部における混合ガスの流速が0.
1cm/sec以上、5cm/sec以下である。
6. The flow rate of the mixed gas in the diamond formation reaction section is 0.
It is 1 cm / sec or more and 5 cm / sec or less.

7.水素ガス(A)、不活性ガス(B)、炭素含有化合物
ガス(C)からなる混合ガスのモル比が、 の条件を満たす。
7. The molar ratio of the mixed gas consisting of hydrogen gas (A), inert gas (B), and carbon-containing compound gas (C) is Satisfies the condition.

[発明の効果] 本発明の方法は、以下の様な効果を有する。[Effects of the Invention] The method of the present invention has the following effects.

数百μm/h以上という非常に高速でもダイヤモンドを
合成することが可能であり、析出面積の減少を押さえた
状態(数十平方ミリ)でも数十μm/hという高速でダイ
ヤモンドを合成できる。
It is possible to synthesize diamond at a very high speed of several hundreds of μm / h or more, and even with the reduction of the deposition area (tens of square millimeters), diamond can be synthesized at a high speed of several tens of μm / h.

又、ダイヤモンド膜成長のみならず、ダイヤモンド粒
子の成長も、選択的に安定して、且つ高速(数十μm/h
以上)で行える。
In addition to diamond film growth, diamond particle growth is selectively stable and at high speed (several tens of μm / h).
Above).

更に、従来、高圧法に依っていたダイヤモンドヒート
シンクやダイヤモン砥粒への応用が可能であり、又、高
熱伝導性、低誘電性、高透光性、高比弾性、高強度、耐
摩耗性等が要求される分野、例えば、窓材、振動板、切
削工具、ヒートシンク、ICボンダーへの薄膜(数μm以
下)のみならず、基材(数十μm以上)としてダイヤモ
ンドを提供する事も可能となる。
Furthermore, it can be applied to diamond heat sinks and diamond abrasive grains that have hitherto relied on the high pressure method, and also has high thermal conductivity, low dielectric properties, high translucency, high specific elasticity, high strength, wear resistance, etc. It is possible to provide diamond as a base material (several tens of μm or more) as well as thin films (several μm or less) for fields such as window materials, diaphragms, cutting tools, heat sinks, and IC bonders. Become.

加えて、本発明の方法は、プラズマトーチ等を利用す
る高温プラズマ装置等に比べて、従来の装置に容易に適
用可能であり、安定操業、設備コスト、原料コストの点
で優れている。
In addition, the method of the present invention can be easily applied to a conventional apparatus as compared with a high temperature plasma apparatus using a plasma torch and the like, and is excellent in stable operation, equipment cost, and raw material cost.

【図面の簡単な説明】[Brief description of the drawings]

第1図はマイクロ波プラズマCVD装置、第2図が直流プ
ラズマCVD装置のそれぞれ概略図である。 1:基材、2:石英管、3:真空排気口、4:供給ガス導入口、
5:発生プラズマ、6:マグネトロン、7:導波管、8:プラン
ジャー、10:DC電源、11:基板支持台、12:絶縁シール、1
3:カソード。
FIG. 1 is a schematic diagram of a microwave plasma CVD apparatus, and FIG. 2 is a schematic diagram of a direct current plasma CVD apparatus. 1: substrate, 2: quartz tube, 3: vacuum exhaust port, 4: supply gas inlet port,
5: Generated plasma, 6: Magnetron, 7: Waveguide, 8: Plunger, 10: DC power supply, 11: Substrate support, 12: Insulation seal, 1
3: Cathode.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤森 直治 兵庫県伊丹市昆陽北1丁目1番1号 住 友電気工業株式会社伊丹製作所内 (56)参考文献 特開 昭62−158195(JP,A) 特開 昭61−183198(JP,A) 特開 昭60−137898(JP,A) 特開 昭59−18197(JP,A) 特公 平3−46436(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Naoji Fujimori 1-1-1 Kunyokita, Itami City, Hyogo Prefecture Itami Works, Sumitomo Electric Industries, Ltd. (56) Reference JP 62-158195 (JP, A) ) JP-A-61-183198 (JP, A) JP-A-60-137898 (JP, A) JP-A-59-18197 (JP, A) JP-B-3-46436 (JP, B2)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】原料ガスが水素ガス(A)、不活性ガス
(B)及び炭素含有ガス(C)からなり、それらのモル
比が なる条件を満たす、あらかじめ混合されたガスを6020sc
cm以下の流量で、非断熱膨張的に反応容器中に導き、プ
ラズマ発生部に設けた基板の温度を700〜1200℃とし、3
0〜600Torrの圧力下、500MHz以上のマイクロ波の電磁界
によって、プラズマを発生させて基板上にダイヤモンド
を形成することを特徴とする透光性ダイヤモンドの気相
合成法。
1. A raw material gas comprising hydrogen gas (A), an inert gas (B) and a carbon-containing gas (C), the molar ratio of which is 6020sc premixed gas that meets the following conditions
At a flow rate of less than or equal to cm, non-adiabatic expansion was introduced into the reaction vessel and the temperature of the substrate provided in the plasma generation part was adjusted to 700 to 1200 ° C.
A vapor-phase synthesis method of translucent diamond, which comprises forming plasma on a substrate by generating plasma by a microwave electromagnetic field of 500 MHz or more under a pressure of 0 to 600 Torr.
【請求項2】マイクロ波気相合成法により形成され、表
面ダイヤモンド膜の平均結晶粒径(E)および膜厚
(F)が なる関係を満たし、2W/cmK以上の熱伝導率を有し、かつ
膜厚(F)が5μm以上であることを特徴とする透光性
ダイヤモンド。
2. An average crystal grain size (E) and a film thickness (F) of a surface diamond film formed by a microwave vapor phase synthesis method. A translucent diamond which satisfies the following relationship, has a thermal conductivity of 2 W / cmK or more, and has a film thickness (F) of 5 μm or more.
JP1023386A 1988-02-01 1989-02-01 Diamond and its vapor phase synthesis method Expired - Lifetime JP2689269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1023386A JP2689269B2 (en) 1988-02-01 1989-02-01 Diamond and its vapor phase synthesis method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2264088 1988-02-01
JP63-22640 1988-02-01
JP1023386A JP2689269B2 (en) 1988-02-01 1989-02-01 Diamond and its vapor phase synthesis method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP7103914A Division JPH07300394A (en) 1988-02-01 1995-04-27 Diamond and its vapor-phase synthesis

Publications (2)

Publication Number Publication Date
JPH01308896A JPH01308896A (en) 1989-12-13
JP2689269B2 true JP2689269B2 (en) 1997-12-10

Family

ID=26359899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1023386A Expired - Lifetime JP2689269B2 (en) 1988-02-01 1989-02-01 Diamond and its vapor phase synthesis method

Country Status (1)

Country Link
JP (1) JP2689269B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009196832A (en) * 2008-02-20 2009-09-03 National Institute Of Advanced Industrial & Technology Method for manufacturing single crystal diamond by plasma cvd process
WO2010068419A2 (en) * 2008-11-25 2010-06-17 Carnegie Institution Of Washington Production of single crystal cvd diamond rapid growth rate
US9637838B2 (en) * 2010-12-23 2017-05-02 Element Six Limited Methods of manufacturing synthetic diamond material by microwave plasma enhanced chemical vapor deposition from a microwave generator and gas inlet(s) disposed opposite the growth surface area
CN113186597A (en) * 2020-01-14 2021-07-30 宁波材料所杭州湾研究院 Low-cost, large-size and high-quality monocrystalline diamond and preparation method and application thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918197A (en) * 1982-07-19 1984-01-30 Sumitomo Electric Ind Ltd Gaseous phase synthesis of diamond
JPS60137898A (en) * 1983-12-24 1985-07-22 Namiki Precision Jewel Co Ltd Production of thin diamond film
JPS61183198A (en) * 1984-12-29 1986-08-15 Kyocera Corp Production of diamond film
JP2682153B2 (en) * 1989-07-14 1997-11-26 日本電信電話株式会社 Switch network for multipoint connection

Also Published As

Publication number Publication date
JPH01308896A (en) 1989-12-13

Similar Documents

Publication Publication Date Title
Zhou et al. Synthesis of nanocrystalline diamond thin films from an Ar–CH 4 microwave plasma
US5776552A (en) Process for the vapor phase synthesis of diamond and highly crystalline diamond
Zhang et al. The roles of argon addition in the hot filament chemical vapor deposition system
US5270028A (en) Diamond and its preparation by chemical vapor deposition method
Liu et al. Growth of microcrystalline and nanocrystalline diamond films by microwave plasmas in a gas mixture of 1% methane/5% hydrogen/94% argon
Wang et al. A periodic magnetic field assisted chemical vapor deposition technique to fabricate diamond film with preferred orientation
JP3605634B2 (en) Vapor phase synthesis of cubic boron nitride
US5380516A (en) Process for synthesizing diamond in a vapor phase
JP2689269B2 (en) Diamond and its vapor phase synthesis method
Han et al. NH3 effect on the growth of carbon nanotubes on glass substrate in plasma enhanced chemical vapor deposition
EP0327051B1 (en) Diamond and its preparation by chemical vapor deposition method
JPS60127293A (en) Production of diamond
JPH07300394A (en) Diamond and its vapor-phase synthesis
JP2636167B2 (en) Gas phase synthesis of diamond
Ku et al. Effects of CCl4 concentration on nanocrystalline diamond film deposition in a hot-filament chemical vapor deposition reactor
Mills et al. Role of atomic hydrogen density and energy in low power chemical vapor deposition synthesis of diamond films
JPH01301586A (en) Vapor synthesis of diamond
JPH075432B2 (en) Gas phase synthesis of diamond
JPH0481552B2 (en)
JP4480192B2 (en) Method for synthesizing high purity diamond
JPH06280019A (en) Production of thin film of diamond-like carbon
Lin et al. Fabrication of nanogranular diamond films by MPJCVD system
JPS60186500A (en) Method for synthesizing diamond from vapor phase
JPH01201479A (en) Diamond coated hydrogen embrittlement metal and its production
Nayak et al. Electron beam activated plasma chemical vapour deposition of polycrystalline diamond films

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090829

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090829

Year of fee payment: 12