JP2688882B2 - Method for producing composite membrane for gas separation - Google Patents

Method for producing composite membrane for gas separation

Info

Publication number
JP2688882B2
JP2688882B2 JP6166276A JP16627694A JP2688882B2 JP 2688882 B2 JP2688882 B2 JP 2688882B2 JP 6166276 A JP6166276 A JP 6166276A JP 16627694 A JP16627694 A JP 16627694A JP 2688882 B2 JP2688882 B2 JP 2688882B2
Authority
JP
Japan
Prior art keywords
porous support
coating layer
composite membrane
separation
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6166276A
Other languages
Japanese (ja)
Other versions
JPH0747221A (en
Inventor
基ジュン 白
賢洙 李
善ヤン 李
Original Assignee
大林産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大林産業株式会社 filed Critical 大林産業株式会社
Publication of JPH0747221A publication Critical patent/JPH0747221A/en
Application granted granted Critical
Publication of JP2688882B2 publication Critical patent/JP2688882B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/021Manufacturing thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0013Casting processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0088Physical treatment with compounds, e.g. swelling, coating or impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • C01B13/0248Physical processing only
    • C01B13/0251Physical processing only by making use of membranes
    • C01B13/0255Physical processing only by making use of membranes characterised by the type of membrane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/04Purification or separation of nitrogen
    • C01B21/0405Purification or separation processes
    • C01B21/0433Physical processing only
    • C01B21/0438Physical processing only by making use of membranes
    • C01B21/0444Physical processing only by making use of membranes characterised by the membrane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B23/00Noble gases; Compounds thereof
    • C01B23/001Purification or separation processes of noble gases
    • C01B23/0036Physical processing only
    • C01B23/0042Physical processing only by making use of membranes
    • C01B23/0047Physical processing only by making use of membranes characterised by the membrane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • C01B3/503Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion characterised by the membrane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B9/00General methods of preparing halides
    • C01B9/08Fluorides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/30Cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/34Molecular weight or degree of polymerisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0001Separation or purification processing
    • C01B2210/0009Physical processing
    • C01B2210/001Physical processing by making use of membranes
    • C01B2210/0012Physical processing by making use of membranes characterised by the membrane

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Dispersion Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は二つ以上の気体を含む気
体混合物を分離または濃縮させることに使用される気体
分離用複合膜の製造方法に関して、具体的には前記の
体分離用複合膜は多孔性支持体、緻密層およびコーティ
ング層を含み、前記の気体分離用複合膜は二つ以上の気
体混合物に対して選択的分離度を示す物質で多孔性支持
体を製造した後、前記多孔性支持体構成物質に対する揮
発性溶媒または揮発性膨潤剤およびコーティング層構成
物質を含むコーティング溶液を前記多孔性支持体の表面
にコーティングすることによって製造される。
FIELD OF THE INVENTION The present invention relates to a gas used for separating or concentrating a gas mixture containing two or more gases.
A method for manufacturing a separation composite membrane, in particular the vapor <br/> body separation composite membrane porous support comprises a dense layer and coating layer, the gas separation composite membrane two or more After preparing a porous support with a substance exhibiting a selective degree of separation with respect to the gas mixture, a coating solution containing a volatile solvent or a volatile swelling agent for the porous support constituent and a coating layer constituent is It is produced by coating the surface of a porous support.

【0002】[0002]

【従来の技術】気体分離膜は水素および炭酸ガスの回収
および精製、空気中の酸素と窒素の分離等いろいろな用
途に使用されてきたが、気体分離膜を用いる分離装置の
小形軽量化で設備費が少なくかかり運転費が低い点等い
ろいろな長所によって今後も幅広い応用が期待されてい
る。気体分離膜の分離性能は気体分離膜の分離係数と気
体透過性に主に依存する。気体分離膜の分離係数は膜を
形成する構成物質によって左右され、気体の透過性は膜
の厚さが薄いほど反比例で増える。しかしながら、膜の
厚さが過度に薄くなると高圧の運転条件下で耐圧性が弱
くなり膜の分離効率がおちる。このような問題点等を解
決するために幾多の研究人等は複合膜を作ってきた。
2. Description of the Related Art Gas separation membranes have been used for various purposes such as recovery and purification of hydrogen and carbon dioxide, separation of oxygen and nitrogen in air, and the like. Due to various advantages such as low cost and low operating cost, wide application is expected in the future. The separation performance of the gas separation membrane mainly depends on the separation coefficient and gas permeability of the gas separation membrane. The separation coefficient of the gas separation membrane depends on the constituent material of the membrane, and the gas permeability increases in inverse proportion to the thickness of the membrane. However, if the thickness of the membrane becomes too thin, the pressure resistance becomes weak under high-pressure operating conditions and the separation efficiency of the membrane falls. In order to solve these problems, many researchers have made composite membranes.

【0003】複合膜の構造は一般的に大きく分けて多孔
性支持体と活性層とからなっている。一般的に多孔性支
持体は気体のながれにほとんど抵抗を与えずに活性層を
支持することで、膜の分離効率には大きい影響を与えな
いが耐圧性を向上させる。このような複合膜を製造する
方法は非常に多様である。例えば、日本特許公報昭52
−15483号、昭53−86684号および昭58−
55005号等にはオルガノポリシロキサン溶液を多孔
性支持体に含侵またはコーティングして気体分離膜の製
造方法が記述されている。この方法の場合、分離効率は
コーティングによって左右されるので、コーティング厚
さを薄くすれば分離効率がおちるし、厚くコーティング
する場合はオルガノポリシロキサンが多孔性支持体の表
面のみでなく気孔の内部にも充填され気体の流速、すな
わち単位表面当り透過率をおとすので、コーティング厚
さを適切な範囲に維持させなければならない。また、オ
ルガノポリシロキサンの窒素に対する酸素分離効率も
2.0〜2.5程度に高くない方なので前記気体分離膜
の製造方法は高性能の気体分離膜を製造するには不適当
である。
The structure of a composite membrane is generally roughly divided into a porous support and an active layer. Generally, the porous support supports the active layer with almost no resistance to gas flow, and thus does not significantly affect the separation efficiency of the membrane, but improves the pressure resistance. There are various methods for manufacturing such composite membranes. For example, Japanese Patent Publication Sho 52
-15483, Sho 53-86684 and Sho 58-
No. 55005 describes a method for producing a gas separation membrane by impregnating or coating a porous support with an organopolysiloxane solution. In this method, the separation efficiency depends on the coating, so if the coating thickness is made thinner, the separation efficiency will decrease, and when making a thick coating, the organopolysiloxane will be present not only on the surface of the porous support but also inside the pores. The coating thickness must be maintained in an appropriate range as it is also filled and reduces the gas flow rate, ie the permeability per unit surface. Further, since the oxygen separation efficiency of nitrogen from organopolysiloxane is not as high as about 2.0 to 2.5, the method for producing a gas separation membrane is not suitable for producing a high performance gas separation membrane.

【0004】一方、気孔部の断面積が全体膜面積から占
める分率を非常に小さく製造した多孔性支持体上にオル
ガノポリシロキサン溶液をコーティングすることによっ
て気孔を閉鎖充填させ気体分離膜を製造する方法が米国
特許第4,230,463号明細書に記述されている。
このような方法で製造された気体分離膜は意図的に気孔
を閉鎖充填させ気体分離効率が向上されたが、反面に気
体透過速度は低い。また、気孔の閉鎖充填を効率的にさ
せるためにコーティング面の反対側表面を減圧、コーテ
ィングする場合、製造方法が複雑である。また、オルガ
ノポリシロキサン溶液を水面上に展開して作った薄膜を
多孔性支持体上に積層させる方法が日本特許公報昭57
−190606号に記述されている。この方法は気体分
離膜の気体透過度と分離性能を向上させることはできる
が、オルガノポリシロキサン薄膜の製造方法がややこし
く薄膜と多孔性支持体との接着力が弱くこれらの接着の
ための工程が別に必要であるという欠点がある。
On the other hand, a gas separation membrane is manufactured by closing and filling the pores by coating an organopolysiloxane solution on a porous support which is manufactured such that the ratio of the cross-sectional area of the pores to the total membrane area is very small. The method is described in US Pat. No. 4,230,463.
The gas separation membrane manufactured by such a method intentionally closes and fills the pores to improve the gas separation efficiency, but has a low gas permeation rate. In addition, when the surface opposite to the coating surface is depressurized and coated in order to efficiently close and fill the pores, the manufacturing method is complicated. Further, a method of laminating a thin film formed by spreading an organopolysiloxane solution on the surface of water on a porous support is disclosed in Japanese Patent Publication Sho 57/57.
-190606. Although this method can improve the gas permeability and separation performance of the gas separation membrane, the method for producing an organopolysiloxane thin film is complicated, and the adhesive force between the thin film and the porous support is weak, and the steps for adhering these are difficult. There is the disadvantage that it is needed separately.

【0005】[0005]

【課題を解決するための手段】したがって、本発明の目
的は前記問題点等を解決して、一つまたはそれ以上の気
体に対する透過速度が非常に高く維持され気体分離効率
が高い複合膜の製造方法を提供するものである。
SUMMARY OF THE INVENTION Therefore, the object of the present invention is to solve the above problems and to produce a composite membrane having a very high permeation rate for one or more gases and a high gas separation efficiency. It provides a method .

【0006】即ち、本発明は大きい気孔かさを有し気体
混合物中最小限一つの選択的透過度が該気体混合物中残
余気体の選択的透過度より大きい多孔性支持体構成物質
の溶液をキャスティングするか紡糸して多孔性支持体を
製造し、前記多孔性支持体構成物質に対する揮発性溶媒
または揮発性膨潤剤およびコーティング層構成物質を含
むコーティング溶液を前記多孔性支持体の最小限一表面
に塗布し、前記多孔性支持体とコーティング層の間に緻
密層を製造した後、前記コーティング物と緻密層を硬化
することを含む気体分離用複合膜の製造方法を提供する
ものである。以下、本発明を詳細に説明する。
That is, the present invention casts a solution of a porous support component having a large pore bulk and at least one selective permeability in the gas mixture is greater than the selective permeability of the residual gas in the gas mixture. Or spinning to prepare a porous support, and a coating solution containing a volatile solvent or swelling agent for the porous support constituent and a coating layer constituent is applied to at least one surface of the porous support. Then, the present invention provides a method for producing a composite membrane for gas separation, which comprises producing a dense layer between the porous support and the coating layer, and then curing the coating material and the dense layer. Hereinafter, the present invention will be described in detail.

【0007】本発明の気体分離用複合膜は(i) 多孔性支
持体、(ii)コーティング層、そして(iii) 前記二層の間
に独特に形成された緻密層とからなる。本発明の前記複
合膜の分離性能は前記層等間の相対的な分離係数によっ
て左右される。“分離膜の分離係数(αx/y)”は一
対の気体xとyに対してそれぞれの気体の分離膜に対す
る透過度常数(PxとPy)の比として定義され、また
は任意の厚さ(l)を有する分離膜から気体xの透過度
(Px/リットル)および気体yの透過度(Py/リッ
トル)の比に定義されることもあり、気体の透過度は標
準温度および圧力(STP)で1秒当り単位厚さ当り膜
に対して1cmHgの倍分降下で1cm2 の膜を通過す
る気体のかさとして、cm3 ・STP/cm2 ・sec
・cmHg/リットルで示される。任意の物質の“固有
分離係数”は該物質が内部に気孔等の気体通路を有しな
いので気体が溶解および拡散によってのみ該物質内部を
通過する時の分離係数として、該物質が示し得る最大の
分離係数値である。
The gas separation composite membrane of the present invention comprises (i) a porous support, (ii) a coating layer, and (iii) a dense layer uniquely formed between the two layers. The separation performance of the composite membrane of the present invention depends on the relative separation coefficient between the layers and the like. "Separation coefficient (αx / y) of separation membrane" is defined as a ratio of the permeability constant (Px and Py) of each gas to a pair of gases x and y, or an arbitrary thickness (l ) May be defined as the ratio of the permeability of gas x (Px / liter) and the permeability of gas y (Py / liter) from a separation membrane having a gas permeability at standard temperature and pressure (STP). Cm 3 · STP / cm 2 · sec as a bulk of gas passing through a film of 1 cm 2 with a double drop of 1 cmHg per unit thickness per second
-Indicated in cmHg / liter. The "specific separation coefficient" of an arbitrary substance is the maximum separation that the substance can show as the separation factor when a gas passes through the inside of the substance only by dissolution and diffusion because the substance does not have gas passages such as pores inside. It is a separation coefficient value.

【0008】本発明による気体分離用複合膜から多孔性
支持体は“相当な”気孔かさを有することにより複合膜
において多孔性支持体による気体の透過に対する抵抗が
非常に小さい。多孔性支持体の好ましい気孔のかさは外
見かさに対して90%以下であり好ましくは40〜85
%、一層望ましくは75〜85%範囲である。
Due to the "substantial" porosity of the porous support from the composite membrane for gas separation according to the invention, the resistance to gas permeation by the porous support in the composite membrane is very low. The bulkiness of the pores of the porous support is 90% or less of the bulkiness of the appearance, and preferably 40 to 85.
%, More preferably 75 to 85%.

【0009】前記多孔性支持体層(i)は気体分離性能
を有した天然または合成固体物質から製造することがで
き、前記物質が高分子物質である場合、該高分子物質に
対する強い溶媒、例えばNMP(N−メチルピロリド
ン)に溶かした溶液を該物質に対する脆い溶媒または非
溶媒、例えば水に紡糸またはキャスティングさせて多孔
性支持体を製造することができる。この際、紡糸やキャ
ステイング条件は多孔性支持体表面の緻密度に影響を与
えるので適切に選択しなければならない。
The porous support layer (i) may be prepared from a natural or synthetic solid substance having gas separation performance, and when the substance is a polymeric substance, a strong solvent for the polymeric substance, for example, A porous support can be prepared by spinning or casting a solution of NMP (N-methylpyrrolidone) in a brittle solvent or non-solvent for the substance, such as water. At this time, the spinning and casting conditions affect the compactness of the surface of the porous support and must be selected appropriately.

【0010】一般的に有機高分子が多孔性支持体を作る
のに使用され、代表的な有機高分子としてはポリスルホ
ン、酢酸セルロースポリエーテルスルホン、ニトロセル
ロース、ポリカーボネート、ポリアミド、ポリイミド、
スチレンとアクリロニトリルとの共重合体、酸化ポリア
リレン、ポリアクリロニトリル、ポリスチレンとその共
重合体、ポリエステルおよびこれらの置換体、グラフト
重合体およびブレンドがある。前記多孔性支持体構成物
質の選択は多孔性支持体の熱的、化学的、機械的耐久性
に基づいて、最小限一対の気体に対して相対的な分離係
数を有しなければならない。
Organic polymers are generally used to make the porous support, and typical organic polymers are polysulfone, cellulose acetate polyether sulfone, nitrocellulose, polycarbonate, polyamide, polyimide,
There are copolymers of styrene and acrylonitrile, polyarylene oxide, polyacrylonitrile, polystyrene and its copolymers, polyesters and their substitutions, graft polymers and blends. The selection of the porous support constituent material should have a relative separation coefficient for at least one pair of gases based on the thermal, chemical and mechanical durability of the porous support.

【0011】多孔性支持体構成物質としてもっとも一般
的に使用される物質中の一つはポリスルホンであり、ポ
リスルホンに対する代表的な溶媒としてはジメチルホル
ムアミド、ジメチルアセトアミド、N−メチルピロリド
ン等がある。ポリスルホンの場合、溶媒に溶かして普通
10〜50重量%、好ましくは15〜30重量%高分子
溶液を作ってこの溶液をキャスティングするか二重ノズ
で乾湿式紡糸してフィルム形態や中空糸形態の多孔性
支持体を製造することができる。
One of the most commonly used materials for forming the porous support is polysulfone, and typical solvents for polysulfone include dimethylformamide, dimethylacetamide and N-methylpyrrolidone. In the case of polysulfone, it is usually dissolved in a solvent to prepare a polymer solution having a concentration of 10 to 50% by weight, preferably 15 to 30% by weight, and the polymer solution is cast or double- nosed.
It is possible to produce a porous support of the film form or hollow fiber form by dry-wet spinning Le.

【0012】ポリスルホンを用いて中空糸形に多孔性支
持体を製造する工程を簡単に記述すれば次のようであ
る。ポリスルホンをN−メチルピロリドン溶媒によって
溶解槽で溶かして15〜30重量%溶液に作ってこれを
密閉した脱泡槽において約72時間程度放置し気泡を除
く。脱泡が完了したポリスルホン溶液をギヤポンプを使
用して4〜10ml/分の流量で紡糸ノズルに送る。こ
の時、紡糸ノズルの構造は二重ノズルであるが、ポリス
ルホン溶液は該二重ノズルの外側ノズルを通じて出るよ
うになり二重ノズルの内側には3〜8ml/分の流量で
内部凝固剤、例えば水を吐出させ中空糸を放出する。二
重ノズルの外側ノズルの内径は0.5〜1.5mmであ
り、二重ノズルの内側ノズルの内径と外径はそれぞれ
0.2〜0.3mmおよび0.4〜0.6mmである。
内部凝固剤は一般的に水を使用するが支持体のモルホロ
ジを制御するためにアルコール類、例えば2−メトキシ
エタノールを混合して使用することもあり、外部凝固剤
としてはほとんど水を使用する。紡糸された中空糸は凝
固槽で凝固されて形態を整えるようになるが中空糸がノ
ズルから出て凝固液に浸すまでの距離であるエアギャッ
プは0〜30cmに設定する。凝固槽の深さは普通1〜
2mであり、幅と長さはそれぞれ0.5〜1m、1〜3
m程度である。自在に回転するローラを経て凝固槽を出
た中空糸は長さ2〜5mである清浄槽を1〜3個程度経
るが、この時中空糸内部の溶媒が大部分除かれる。清浄
槽を経た中空糸は巻取槽に送られるがここで清浄液に沈
んで回転するボビンに巻取られる。凝固槽、清浄槽、巻
取槽は1〜51/分程度の流量で水を供給し凝固液や清
浄液中の溶媒濃度が1%(かさ/かさ)を越えないよう
にする。ボビンに巻き付いた中空糸は適当な大きさで切
断して普通水中に48〜72時間程度浸しておくことに
より微量の残存溶媒を洗い落とす。水に浸しておく前に
支持体表面のモポロジを制御するためにアルコールや水
等で数回処理することもある。清浄が完了された中空糸
は常温で乾燥させるか50−120℃のオーブンで乾燥
させる。前記ポリスルホン多孔性支持体製造方法は多孔
性支持体製造技術の一例であり、本発明を限定させる
ではない。
The process for producing a hollow fiber-shaped porous support using polysulfone will be briefly described as follows. Polysulfone is dissolved in an N-methylpyrrolidone solvent in a dissolution tank to prepare a 15 to 30% by weight solution, which is left for about 72 hours in a closed defoaming tank to remove bubbles. The defoamed polysulfone solution is sent to the spinning nozzle using a gear pump at a flow rate of 4 to 10 ml / min. At this time, the structure of the spinning nozzle is a double nozzle, but the polysulfone solution comes out through the outer nozzle of the double nozzle, and the inner coagulant, for example, at the flow rate of 3-8 ml / min, flows inside the double nozzle. Water is discharged and hollow fibers are discharged. The inner diameter of the outer nozzle of the double nozzle is 0.5 to 1.5 mm, and the inner diameter and outer diameter of the inner nozzle of the double nozzle are 0.2 to 0.3 mm and 0.4 to 0.6 mm, respectively.
Water is generally used as the internal coagulant, but alcohols such as 2-methoxyethanol may be mixed and used to control the morphology of the support, and almost all water is used as the external coagulant. The spun hollow fibers are coagulated in a coagulation tank to adjust the shape, but the air gap, which is the distance until the hollow fibers come out of the nozzle and are immersed in the coagulation liquid, is set to 0 to 30 cm. The depth of the coagulation tank is usually 1 to
2m, width and length are 0.5-1m, 1-3 respectively
m. The hollow fiber exiting the coagulation tank via the freely rotating roller passes through about 1 to 3 cleaning tanks having a length of 2 to 5 m, but the solvent inside the hollow fiber is largely removed at this time. The hollow fiber that has passed through the cleaning tank is sent to a winding tank, where it is submerged in the cleaning liquid and wound on a rotating bobbin. Water is supplied to the coagulation tank, the cleaning tank and the winding tank at a flow rate of about 1 to 51 / min so that the concentration of the solvent in the coagulation liquid or the cleaning liquid does not exceed 1% (bulk / bulk). The hollow fiber wound around the bobbin is cut into an appropriate size and immersed in ordinary water for about 48 to 72 hours to wash off a small amount of residual solvent. Before being immersed in water, it may be treated several times with alcohol, water or the like in order to control the mopologie of the surface of the support. The cleaned hollow fiber is dried at room temperature or in an oven at 50-120 ° C. The polysulfone porous support manufacturing method is an example of a porous support manufacturing technique, also causes limitation of the present invention
Not to.

【0013】前記コーティング層(ii)および緻密層(ii
i) は前記多孔性支持体に対する揮発性溶媒または揮発
性膨潤剤およびコーティング層構成物質を含むコーティ
ング溶液を前記多孔性支持体の最小限一面にコーティン
グすることにより収得することができる。多孔性支持体
が非対称の際再言して相対的に緻密な領域を有する時コ
ーティング層は該相対的に緻密な領域上に形成するのが
よい。コーティング層は多孔性支持体の気体流入側や出
口側表面中最小限一個所に形成される。多孔性支持体が
中空糸形である際コーティング層は中空糸の外部表面に
形成されるのが製造するには便利である。この際、前記
揮発性溶媒または揮発性膨潤剤は前記多孔性支持体の表
面や気孔部を部分的に溶かすか膨潤させこれらが蒸発さ
れる時多孔性支持体の気孔部が閉鎖されながら前記多孔
性支持体およびコーティング層の間に非常に薄い緻密層
を形成するようになる。
The coating layer (ii) and the dense layer (ii)
i) can be obtained by coating at least one surface of the porous support with a coating solution containing a volatile solvent or a volatile swelling agent for the porous support and a coating layer constituent material. When the porous support is asymmetrical and again has a relatively dense region, the coating layer is preferably formed on the relatively dense region. The coating layer is formed at least at one position on the gas inflow side or the outlet side surface of the porous support. It is convenient to manufacture that the coating layer is formed on the outer surface of the hollow fiber when the porous support is in the hollow fiber form. At this time, the volatile solvent or the volatile swelling agent partially dissolves or swells the surface or pores of the porous support, and when these are evaporated, the pores of the porous support are closed while the pores are closed. It results in the formation of a very thin dense layer between the flexible support and the coating layer.

【0014】前記コーティング層構成物質は天然または
合成の固体物質または高分子量および高沸点の液体物質
でありうるが、多孔性支持体表面に連続状で薄くコーテ
ィングできうることが好ましい。有用なコーティング層
構成物質で代表的なものは高分子として、合成ゴム、天
然ゴム、ポリシロキサンとその共重合体、ポリウレタ
ン、ポリエステル、ポリアルキレングリコール、ポリス
チレンとその共重合体、ポリ−α−メチルスチレン、酸
化ポリアリレン、酢酸セルロース、ニトロセルロース、
ポリスルホンとその置換体、ポリエーテルスルホン、ポ
リビニル系高分子等がある。特に有用なコーティング層
構成物質はポリシロキサンで、これは硬化剤、例えば空
気中の水の存在下で硬化されシリコン高分子を形成する
ことができる。
The coating layer constituent material may be a natural or synthetic solid material or a liquid material having a high molecular weight and a high boiling point , but it is preferable that the surface of the porous support can be continuously and thinly coated. Typical examples of useful coating layer constituent materials include polymers such as synthetic rubber, natural rubber, polysiloxane and copolymers thereof, polyurethane, polyester, polyalkylene glycol, polystyrene and copolymers thereof, and poly-α-methyl. Styrene, oxidized polyarylene, cellulose acetate, nitrocellulose,
Examples include polysulfone and its substitution products, polyether sulfone, and polyvinyl polymers. A particularly useful coating layer constituent is polysiloxane, which can be cured in the presence of a curing agent such as water in air to form a silicone polymer.

【0015】ポリシロキサンは多孔性支持体上にコーテ
ィングされる前に硬化されることもあるがなるべく多孔
性支持体上にコーティングされた後硬化されるのがよ
い。特に有用なポリシロキサンは硬化される前に、1,
000〜300,000好ましくは1,000〜50,
000程度の分子量を有する。コーティング層の厚さが
厚すぎると気体の流れに対する抵抗が高くなり複合膜の
性能に逆作用を与えるのでコーティング層の厚さは薄い
のが好ましい。普通コーテイング層は30μm以下、ほ
とんど0.01から30μmの平均厚さを有する。ある
コーティング層構成物質は該自体としては充分に薄いコ
ーティングを形成することができないので適切な溶剤に
溶解または分散させることもできる。ポリシロキサンの
場合、適当な溶剤としてはペンタン、ヘキサン、シクロ
ヘキサン、ヘプタン等のアルカン系溶媒、メタノール、
エタノール等の脂肪族アルコール、ハロゲン化したアル
カン、ジアルキルエーテルおよびこれらの混合物等があ
る。
The polysiloxane may be cured before being coated on the porous support, but preferably it is cured after being coated on the porous support. Particularly useful polysiloxanes have the following properties:
000 to 300,000, preferably 1,000 to 50,
It has a molecular weight of about 000. If the thickness of the coating layer is too thick, the resistance to gas flow becomes high, which adversely affects the performance of the composite membrane, and therefore the thickness of the coating layer is preferably thin. The common coating layer has an average thickness of less than 30 μm, mostly 0.01 to 30 μm. Since a coating layer constituent substance cannot form a sufficiently thin coating by itself, it can be dissolved or dispersed in a suitable solvent. In the case of polysiloxane, suitable solvents include alkane solvents such as pentane, hexane, cyclohexane, heptane, methanol,
Examples include aliphatic alcohols such as ethanol, halogenated alkanes, dialkyl ethers, and mixtures thereof.

【0016】前記緻密層形成のために使用される揮発性
溶媒や揮発性膨潤剤は多孔性支持体構成物質に対して溶
解力を有すべきであり、多孔性支持体構成物質の種類に
よって異なることがある。揮発性溶媒としてはDMF
(N,N−ジメチルホルムアミド)、THF(テトラ
ドロフラン)、DMA(ジメチルアセトアミド)、クロ
ロホルムおよびこれらの混合物が好ましいし、揮発性膨
潤剤としては普通6〜15個の炭素原子を有した芳香族
炭化水素、アルコール類、塩化メチレン、およびこれら
の混合物が好ましい。揮発性溶媒と揮発性膨潤剤は混合
物形態で共に使用できるし使用量はコーティング固形分
を基準として50〜200重量%で使用するのが好まし
い。その例としては、多孔性支持体構成物質がポリスル
ホンである場合にはベンゼン、トルエン、キシレン等の
芳香族炭化水素が適当であり、酢酸セルロースの場合に
は2−メトキシエタノール、塩化メチレンとメタノール
の混合物、クロロホルムとメタノールの混合物、フェノ
ール等が使用できる。
The volatile solvent and the volatile swelling agent used for forming the dense layer should have a dissolving power for the constituent material of the porous support and vary depending on the kind of the constituent material of the porous support. Sometimes. DMF as volatile solvent
(N, N-dimethylformamide), THF (tetra arsenate
Mud furan), DMA (dimethylacetamide), to chloroform and mixtures thereof are preferred aromatic having ordinary 6-15 carbon atoms as a volatile swelling agent hydrocarbons, alcohols, methylene chloride, and these Mixtures are preferred. The volatile solvent and the volatile swelling agent can be used together in the form of a mixture, and the amount used is preferably 50 to 200% by weight based on the coating solid content. As an example, the porous support constituent material is polysulfate.
If it is Hong benzene, a toluene, xylene and like aromatic hydrocarbons suitable in the case of cellulose acetate 2-methoxyethanol, a mixture of methylene chloride and methanol, a mixture of chloroform and methanol, phenol
Lumpur or the like can be used.

【0017】コーティング層構成物質の選択は複合膜が
望む分離係数を有するように多孔性支持体構成物質の固
有分離係数に対するコーティング層構成物質の固有分離
係数によって相対的に左右される。本発明の長所を最大
にいかすためには多孔性支持体構成物質の固有分離係数
がコーティング層構成物質の固有分離係数より少なくと
も5%以上、好ましくは最小限30%以上大きいのがよ
い。複合膜の気体分離係数は前記コーティング層構成物
質の固有分離係数より25%以上大きいことが好まし
い。本発明による気体分離用複合膜において気体の選択
的分離は主に多孔性支持体とコーティング層との間に形
成された緻密層によってなされるようになる。コーティ
ング層は緻密層形成時緻密層に生じることもありうる欠
陥を補完させる機能が主なので機能するかぎり高い、最
小限多孔性支持体構成物質の透過常数より高い気体透過
常数を有することが好ましい。
The choice of coating layer constituents is relatively dependent on the inherent separation coefficient of the coating layer constituents relative to that of the porous support constituent so that the composite membrane has the desired separation coefficient. In order to maximize the advantages of the present invention, it is preferable that the intrinsic separation coefficient of the porous support constituent material is at least 5% or more, preferably at least 30% or greater than the intrinsic separation coefficient of the coating layer constituent material. The gas separation coefficient of the composite membrane is preferably 25% or more larger than the intrinsic separation coefficient of the coating layer constituent material. In the composite membrane for gas separation according to the present invention, the selective separation of gas is mainly performed by the dense layer formed between the porous support and the coating layer. Since the coating layer mainly has a function of complementing defects that may occur in the dense layer when forming the dense layer, it is preferable that the coating layer has a high gas permeation constant higher than the permeation constant of the minimum porous support constituent substance as long as it functions.

【0018】本発明による気体分離用複合膜は気体分離
工程に広範囲に適用されることができる。本発明で使用
できる気体混合物は普通は液体や固体状であるが分離が
なされる温度においては蒸気状の物質でなされるものが
好ましい。特に好ましい気体混合物は水素、ヘリウム、
アンモニア、二酸化炭素、一酸化炭素、窒素、アルゴ
ン、硫化弗素、メタン、エタンおよび酸素中2種以上を
含むものである。
The composite membrane for gas separation according to the present invention can be widely applied to the gas separation process. The gas mixture which can be used in the present invention is usually liquid or solid, but it is preferable that it is made of a vaporous substance at the temperature at which the separation is performed. Particularly preferred gas mixtures are hydrogen, helium,
It contains two or more of ammonia, carbon dioxide, carbon monoxide, nitrogen, argon, fluorine sulfide, methane, ethane and oxygen.

【0019】[0019]

【実施例】以下、実施例によって本発明による複合膜の
製造方法を具体的に説明するが、これらは本発明の範囲
を限定するものではない。実施例1〜5および比較例1〜3 ポリスルホンウデルP−3500(米国アモコ社製)を
N−メチルピロリドンに20重量%溶液を製造した。前
記ポリスルホン溶液を長さと幅がそれぞれ30cmおよ
び20cmであるガラス板にキャスティングして純水に
24時間浸した後25℃で乾燥して平膜形ポリスルホン
多孔性支持体を製造した。製造された多孔性支持体の厚
さは20〜100μmであった。下記表1のように米国
ダウコーニング社製品であるダウコーニング1−257
7シリコン樹脂、ダウコーニングシルガード184シリ
コンゴム、ダウコーニングシルガード185シリコンゴ
ム、ダウコーニング3140シリコンゴム各々18〜2
0重量%と、揮発性膨潤剤m−キシレンまたはトルエン
15〜20重量%を混ぜて揮発性希釈溶液n−ヘキサン
60〜67重量%に希釈してコーティング溶液を製造し
た後、前記多孔性支持体上に塗布し常温で硬化させ気体
分離用複合膜を製造した。収得された複合膜に対して酸
素および窒素に対する透過試験を行った。前記透過試験
に使用された透過装置はミリポア社製品である′316
ステインレスフィルターホルダ90′であった。この時
膜の有効面積は約45.5cmあった。透過特性測
定結果を表1に示す。
EXAMPLES Hereinafter, the method for producing the composite membrane according to the present invention will be specifically described by way of examples, but these do not limit the scope of the present invention. Examples 1 to 5 and Comparative Examples 1 to 3 Polysulfone Udel P-3500 (manufactured by Amoco, USA) was prepared as a 20 wt% solution in N-methylpyrrolidone. The polysulfone solution was cast on a glass plate having a length of 30 cm and a glass plate having a width of 20 cm, immersed in pure water for 24 hours, and dried at 25 ° C. to prepare a flat membrane type polysulfone porous support. The thickness of the manufactured porous support was 20 to 100 μm. As shown in Table 1 below, Dow Corning 1-257 manufactured by Dow Corning of the United States
7 Silicone resin, Dow Corning Silguard 184 silicone rubber, Dow Corning Silgard 185 silicone rubber, Dow Corning 3140 Silicone rubber 18 to 2 respectively
0% by weight and a volatile swelling agent m-xylene or 15-20% by weight of toluene are mixed to dilute the volatile diluting solution n-hexane 60-67% by weight to prepare a coating solution, and then the porous support is prepared. A composite membrane for gas separation was manufactured by coating the composition on the above and curing at room temperature. Oxygen and nitrogen permeation tests were performed on the obtained composite membrane. The permeation device used in the permeation test is a product of Millipore Corporation '316.
It was a stainless filter holder 90 '. The effective area of this time the film was about 45.5cm 2. Table 1 shows the measurement results of the transmission characteristics.

【0020】[0020]

【表1】 [Table 1]

【0021】また、比較用として前記コーティング用シ
リコンゴムまたは樹脂を揮発性膨潤剤と混ぜないでn−
ヘキサン80〜82重量%に希釈し製造したコーティン
グ溶液を同じく前記多孔性支持体上にコーティングして
硬化させて気体分離用複合膜を製造した後、前記方法と
同一な方法で酸素および窒素の透過特性を測定し、該結
果を表2に示す。
Also, for comparison, the silicone rubber or resin for coating is not mixed with a volatile swelling agent.
A coating solution prepared by diluting 80 to 82% by weight of hexane was coated on the porous support and cured to prepare a composite membrane for gas separation, and then permeation of oxygen and nitrogen was performed by the same method as described above. The properties were measured and the results are shown in Table 2.

【0022】[0022]

【表2】 [Table 2]

【0023】前記表2に示したように、揮発性膨潤剤を
含有しないコーティング溶液でコーティングした複合膜
の酸素/窒素分離係数(O/N)はシリコンゴム固
有の分離係数である2.20〜2.25を示す。しかし
ながら、表1においてのように、揮発性膨潤剤m−キシ
レンまたはトルエン15〜20重量%を添加したコーテ
ィング溶液でコーティングした複合膜の酸素/窒素分離
係数(O/N)は4.07〜4.79で非常に高く
示した。これは多孔性支持体構成物質に対する揮発性膨
潤剤によって形成された緻密層が複合膜の分離係数を高
めてコーティング層構成物質の固有分離係数より多孔性
支持体構成物質の固有分離係数に著しく近接した値を示
すのを分かる。また多孔性支持体製造溶液のポリスルホ
ン含有量が18〜20%重量程度に低く多孔性支持体表
面の緻密性が高くなく更に言えば表面の気孔面積に対
する全体膜面積の比が低いにも関わらず緻密膜の形成が
容易であるので酸素/窒素分離係数(O/N)が高
いながらも透過速度も大きい膜が製造されるのを分か
る。
As shown in Table 2, the oxygen / nitrogen separation coefficient (O 2 / N 2 ) of the composite membrane coated with the coating solution containing no volatile swelling agent is a separation coefficient specific to silicone rubber.2. 20 to 2.25 is shown. However, as in Table 1, the oxygen / nitrogen separation coefficient (O 2 / N 2 ) of the composite membrane coated with the coating solution added with the volatile swelling agent m-xylene or 15-20 wt% toluene was 4.07. It was very high at ˜4.79. This is because the dense layer formed by the volatile swelling agent with respect to the constituent material of the porous support enhances the separation coefficient of the composite membrane, and is significantly closer to the intrinsic separation coefficient of the constituent material of the porous support than the intrinsic separation coefficient of the constituent material of the coating layer. You can see it shows the value In addition, the polysulfone content of the solution for producing the porous support is as low as about 18 to 20% by weight, the denseness of the surface of the porous support is not high, and further, the ratio of the total membrane area to the pore cross-sectional area of the surface is low. It can be seen that since a dense film is easily formed, a film having a high oxygen / nitrogen separation coefficient (O 2 / N 2 ) and a high permeation rate is produced.

【0024】実施例6〜11および比較例4〜9 ポリスルホン をN−メチルピロリドンに溶解して20重
量%のポリスルホン溶液を製造しこれを二重ノズルを通
して紡糸し中空糸形多孔性支持体を製造した。二重ノズ
の外側ノズル内径は1.4mmであったし、内側ノズ
の内径と外径はそれぞれ0.2mmおよび0.6mm
であった。中空糸の形成のために使用される内部凝固剤
としては2−メトキシエタノールの70重量%水溶液を
使用し、外部凝固剤としては水を使用した。エアギャプ
は1cmにし、巻取速度は15m/分であった。紡糸
れた中空糸膜は48時間水に浸して残留溶媒を除去し2
5℃の無塵室で乾燥させた。乾燥された中空糸膜の大き
さは内径0.7mmおよび外径1.1mmであった。
Examples 6 to 11 and Comparative Examples 4 to 9 Polysulfone was dissolved in N-methylpyrrolidone to prepare a 20 wt% polysulfone solution, which was spun through a double nozzle to form a hollow fiber. A shaped porous support was prepared. Double noz
The inner nozzle diameter of the nozzle was 1.4 mm and the inner nozzle
Each Le is the inner and outer diameters 0.2mm and 0.6mm
Met. A 70 wt% aqueous solution of 2-methoxyethanol was used as the internal coagulant used for forming the hollow fiber, and water was used as the external coagulant. The air gap was 1 cm, and the winding speed was 15 m / min. The spun hollow fiber membrane was immersed in water for 48 hours to remove residual solvent.
It was dried in a dust-free room at 5 ° C. The dried hollow fiber membrane had an inner diameter of 0.7 mm and an outer diameter of 1.1 mm.

【0025】一方、コーティング溶液は下記表3のよう
に4種のコーティング物質それぞれ15〜25重量%
(コーティング溶液の総重量を基準として)と揮発性膨
潤剤であるm−キシレンまたはトルエン15〜30重量
%を混ぜて揮発性希釈溶媒であるヘプタン45〜70重
量%に希釈して製造した。このように製造されたコーテ
ィング溶液を前記中空糸形多孔性支持体にコーティング
し常温で硬化された。中空糸を使用して有効膜面積が8
0〜100cm2 である試験用膜モズルを製造した。収
得された複合膜に対して酸素および窒素透過特性を測定
したが該結果を下記表3に示す。
On the other hand, as shown in Table 3 below, the coating solution is composed of 15 to 25% by weight of each of the four coating materials.
It was prepared by mixing (based on the total weight of the coating solution) with 15 to 30% by weight of a volatile swelling agent, m-xylene or toluene, and diluting it with 45 to 70% by weight of a volatile diluent solvent, heptane. The coating solution prepared above was coated on the hollow fiber type porous support and cured at room temperature. Effective membrane area is 8 using hollow fiber
A test membrane module with a size of 0 to 100 cm 2 was produced. The oxygen and nitrogen permeation characteristics of the obtained composite membrane were measured, and the results are shown in Table 3 below.

【0026】[0026]

【表3】 [Table 3]

【0027】なお、比較用として前記コーティング物質
各々20〜25重量%を揮発性膨潤剤と混ぜなくて揮発
性希釈溶媒であるヘプタン75〜80重量%に希釈して
製造したコーティング溶液を前記多孔性支持体上にコー
ティングして硬化させ複合膜を作った後、前記方法と同
一な方法で気体透過性能を測定した。該結果を表4に示
す。
For comparison, a coating solution prepared by diluting 20 to 25% by weight of each of the coating materials with 75 to 80% by weight of heptane as a volatile diluent solvent without mixing with a volatile swelling agent is used. After coating on a support and curing to form a composite membrane, the gas permeation performance was measured by the same method as described above. The results are shown in Table 4.

【0028】[0028]

【表4】 [Table 4]

【0029】前記表3に示したように中空糸形多孔性支
持体の場合も前記表1の平膜形多孔性支持体の場合のよ
うに多孔性支持体に対する揮発性膨潤剤によって形成さ
れた緻密層が複合膜の分離係数を高めるが、膨潤剤を添
加しない表4には緻密層が形成されないので複合膜の分
離係数がシリコンゴムの固有分離係数を越えなかったこ
とが分かる。また、表1のフィルム形多孔性支持体の場
合と同じくポリスルホン含量が低い場合にも緻密層が容
易に形成されて分離係数と透過速度が高い膜が製造され
ることを分かる。
As shown in Table 3, in the case of the hollow fiber type porous support, as in the case of the flat membrane type porous support of Table 1, the volatile swelling agent for the porous support was used. Although the dense layer enhances the separation coefficient of the composite membrane, it can be seen that the separation coefficient of the composite membrane did not exceed the intrinsic separation coefficient of the silicone rubber because the dense layer was not formed in Table 4 in which the swelling agent was not added. Also, as in the case of the film-type porous support in Table 1, it can be seen that a dense layer is easily formed even when the polysulfone content is low, and a membrane having a high separation coefficient and a high permeation rate is manufactured.

【0030】実施例12〜16および比較例10〜13 N−メチルピロリドンに溶解されたポリスルホン25〜
30重量%を含有する多孔性支持体製造溶液を作って、
前記実施例6〜11と同一な方法で二重ノズルを用いて
紡糸させて中空糸形多孔性支持体を作り、コーティング
溶液では前記4種のコーティング物質15〜20重量%
をそれぞれ揮発性膨潤剤であるm−キシレンまたはトル
エン15〜50重量%と混ぜて揮発性希釈溶媒へプタン
で希釈して製造した。前記実施例6〜11においてと同
一な方法でコーティング溶液を多孔性支持体上に塗布し
て複合膜を製造した後、気体の透過特性を測定し該結果
は下記表5に示す。
Examples 12-16 and Comparative Examples 10-13 Polysulfone 25-dissolved in N-methylpyrrolidone
Making a porous support manufacturing solution containing 30% by weight,
Using a double nozzle in the same manner as in Examples 6 to 11 above.
The hollow fiber-shaped porous support is spun to form 15 to 20% by weight of the above four coating materials in the coating solution.
Was mixed with 15 to 50% by weight of volatile swelling agent, m-xylene or toluene, and diluted with heptane into a volatile diluent solvent. The coating solution was applied onto the porous support in the same manner as in Examples 6 to 11 to prepare a composite membrane, and the gas permeation characteristics were measured. The results are shown in Table 5 below.

【0031】[0031]

【表5】 [Table 5]

【0032】前記実施例12〜16では多孔性支持体製
造溶液のポリスルホン含量を25〜30重量%にして多
孔度が低い多孔性支持体を製造した。この場合にも前記
表1および表3にてのように多孔性支持体とコーティン
グ層の間に緻密層が形成され酸素/窒素分離係数が3.
98〜4.89程度に高い。この中で実施例15と16
はコーティング溶液に揮発性膨潤剤が相対的に多く添加
されたが実施例13のように揮発性膨潤剤が相対的に少
なく含有する場合と比較して分離係数が相対的に高い。
これで多孔性支持体の構造や特性によって揮発性膨潤剤
の含量が緻密層の形成程度に比例的に影響を与えること
が分かる。
In Examples 12 to 16, the polysulfone content of the solution for producing a porous support was adjusted to 25 to 30% by weight to produce a porous support having a low porosity. Also in this case, as shown in Tables 1 and 3 above, a dense layer was formed between the porous support and the coating layer, and the oxygen / nitrogen separation coefficient was 3.
It is as high as 98-4.89. In this, Examples 15 and 16
In the coating solution, a relatively large amount of the volatile swelling agent was added, but the separation coefficient was relatively high as compared with the case of containing a relatively small amount of the volatile swelling agent as in Example 13.
It can be seen that the content of the volatile swelling agent proportionally affects the degree of formation of the dense layer depending on the structure and characteristics of the porous support.

【0033】[0033]

【発明の効果】本発明の複合膜は膜製造方法が簡単なが
らも気体透過速度が高く維持されると同時に気体分離効
率性が優れている。
EFFECTS OF THE INVENTION The composite membrane of the present invention is simple in the method for producing a membrane, but maintains a high gas permeation rate and, at the same time, is excellent in gas separation efficiency.

フロントページの続き (56)参考文献 特開 昭63−264123(JP,A) 特開 平2−131128(JP,A) 特開 昭59−62305(JP,A)Continuation of the front page (56) Reference JP-A 63-264123 (JP, A) JP-A 2-131128 (JP, A) JP-A 59-62305 (JP, A)

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 大きい気孔かさを有し、気体混合物中最
小限一つの選択的透過度が該気体混合物中残余気体の選
択的透過より大きい多孔性支持体構成物質の溶液をキャ
スティングするか紡糸して多孔性支持体を製造し、前記
多孔性支持体構成物質に対する揮発性溶媒、揮発性膨潤
剤またはこれらの混合物およびコーティング層構成物質
を含むコーティング溶液を前記多孔性支持体の最小限一
つの表面に塗布し、前記多孔性支持体とコーティング層
の間に緻密層を製造した後硬化することを含む、気体混
合物の選択的分離用複合膜の製造方法。
1. A has a larger pore bulk, and either spun gas mixture minimal one selective permeability casting a solution of a large porous support structure material from selective permeation of the gas mixture remaining gaseous A porous support, and a coating solution containing a volatile solvent, a volatile swelling agent or a mixture thereof and a coating layer constituent for the constituent material of the porous support, and at least one surface of the porous support. The method for producing a composite membrane for the selective separation of a gas mixture, the method comprising: applying the composition to a substrate, producing a dense layer between the porous support and a coating layer, and then curing.
【請求項2】 前記複合膜がフィルム形かまたは中空糸
形である請求項記載の製造方法。
Wherein said method for producing a composite membrane according to claim 1, which is a film-shaped or hollow fiber form.
【請求項3】 前記複合膜の分離係数が前記コーティン
グ層構成物質の固有分離係数より25%以上大きく、前
記多孔性支持体構成物質の固有分離係数が前記コーティ
ング層構成物質の固有分離係数より5%以上大きい請求
記載の製造方法。
3. The separation coefficient of the composite membrane is 25% or more greater than the intrinsic separation coefficient of the coating layer constituent material, and the intrinsic separation coefficient of the porous support constituent material is 5 greater than the intrinsic separation coefficient of the coating layer constituent material. The manufacturing method according to claim 1 , wherein the manufacturing method is larger by at least%.
【請求項4】 前記多孔性支持体で気孔のかさが多孔性
支持体のかさに対して約10〜90%である請求項
載の製造方法。
Wherein said porous The process of claim 1 wherein from about 10% to 90% bulk porosity in the support with respect to the bulk of the porous support.
【請求項5】 前記多孔性支持体がポリスルホン、酢酸
セルロース、ポリエーテルスルホン、ニトロセルロー
ス、ポリカーボネート、ポリアミド、ポリイミド、スチ
レンとアクリロニトリルの共重合体、酸化ポリアリレ
ン、ポリアクリロニトリル、ポリスチレンとその共重合
体およびポリエステル、およびこれらの置換体、グラフ
ト重合体およびブレンド中で選択された請求項記載の
製造方法。
5. The porous support comprises polysulfone, cellulose acetate, polyether sulfone, nitrocellulose, polycarbonate, polyamide, polyimide, a copolymer of styrene and acrylonitrile, polyarylene oxide, polyacrylonitrile, polystyrene and a copolymer thereof, and polyester, and substituted versions thereof, graft polymer and manufacturing method of the selected claim 1 wherein in the blend.
【請求項6】 前記コーティング層が合成ゴム、天然ゴ
ム、ポリシロキサンとその共重合体、ポリウレタン、ポ
リエステル、ポリアルキレングリコール、ポリスチレン
とその共重合体、ポリ−α−メチルスチレン、酸化ポリ
アリレン、酢酸セルロース、ニトロセルロース、ポリス
ルホンとその置換体、ポリエーテルスルホン、ポリビニ
ル系高分子およびこれらの混合物中で選択された請求項
記載の製造方法。
6. The coating layer is synthetic rubber, natural rubber, polysiloxane and its copolymer, polyurethane, polyester, polyalkylene glycol, polystyrene and its copolymer, poly-α-methylstyrene, polyarylene oxide, cellulose acetate. , Nitrocellulose, polysulfones and their substitutes, polyether sulfones , polyvinyl polymers and mixtures thereof.
2. The production method according to 1 .
【請求項7】 前記コーテイング層がポリシロキサンで
ある請求項記載の製造方法。
7. A process according to claim 1, wherein said coating layer is a polysiloxane.
【請求項8】 前記揮発性膨潤剤が6−15個の炭素原
子を含む芳香族炭化水素、アルコール類、塩化メチレ
ン、またはこれらの混合物中で選択された請求項1記載
の製造方法。
8. The process according to claim 1, wherein the volatile swelling agent is selected from aromatic hydrocarbons containing 6-15 carbon atoms, alcohols, methylene chloride, or mixtures thereof.
【請求項9】 前記揮発性溶媒がDMF(N,N−ジメ
チルホルムアミド)、THF(テトラヒドロフラン)、
クロロホルムおよびこれらの混合物から選択された請求
記載の製造方法
9. The volatile solvent is DMF (N, N-dimethylformamide), THF (tetrahydrofuran),
The method according to claim 1 , wherein the method is selected from chloroform and a mixture thereof.
JP6166276A 1993-06-24 1994-06-24 Method for producing composite membrane for gas separation Expired - Fee Related JP2688882B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1993P11600 1993-06-24
KR1019930011600A KR0149879B1 (en) 1993-06-24 1993-06-24 Composite film for gas stripping and its manufacture

Publications (2)

Publication Number Publication Date
JPH0747221A JPH0747221A (en) 1995-02-21
JP2688882B2 true JP2688882B2 (en) 1997-12-10

Family

ID=19357951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6166276A Expired - Fee Related JP2688882B2 (en) 1993-06-24 1994-06-24 Method for producing composite membrane for gas separation

Country Status (2)

Country Link
JP (1) JP2688882B2 (en)
KR (1) KR0149879B1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000008961A (en) * 1998-07-20 2000-02-15 이구택 High molecular impregnate complex separating film and manufacturing method thereof
KR20010113365A (en) * 2000-06-19 2001-12-28 박만호 the composite solution for swelling of polymer shrink
KR20020011593A (en) * 2000-08-03 2002-02-09 이재근 Method for forming gas separation membraines
JP5557328B2 (en) * 2010-10-07 2014-07-23 Nok株式会社 Method for producing hollow fiber carbon membrane
CN106102884B (en) * 2014-03-12 2020-11-17 汉阳大学校产学协力团 Composite membrane comprising graphene oxide coating layer, porous polymer support comprising the same, and preparation method thereof
KR20160026070A (en) 2014-08-29 2016-03-09 주식회사 앱스필 Manufacturing method of gas separator membrane
KR101711431B1 (en) * 2015-07-22 2017-03-02 연세대학교 산학협력단 Copolymer for solubilizing polar solvents and gas separation membrane comprising the same, and preparation method thereof
CN114259883B (en) * 2021-12-23 2023-08-25 安徽微明环境科技有限公司 Volatile organic compound separation composite membrane and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63264123A (en) * 1986-02-05 1988-11-01 ロ−ヌ−プ−ラン・ルシエルシユ Composite hollow fiber for removing steam from air or carbon dioxide

Also Published As

Publication number Publication date
KR950000202A (en) 1995-01-03
JPH0747221A (en) 1995-02-21
KR0149879B1 (en) 1999-04-15

Similar Documents

Publication Publication Date Title
KR900008712B1 (en) Asymmetric gas seperation membranes having graded density skins
US4230463A (en) Multicomponent membranes for gas separations
CA1107203A (en) Multicomponent membranes for gas separation
US5181940A (en) Hollow fiber membranes
US5795920A (en) Polymeric dope solution for use in the preparation of an integrally skinned asymmetric membrane
US5635067A (en) Fluid separation membranes prepared from blends of polyimide polymers
JPH08141350A (en) Method of augmenting selectivity for separation of mixed gas
US5049276A (en) Hollow fiber membrane
JPH07251046A (en) Aftertreatment of gas separation membrane with fluoropolymer
Shieh et al. Gas separation performance of poly (4-vinylpyridine)/polyetherimide composite hollow fibers
EP0257011B1 (en) Permeation modified asymmetric gas separation membranes having graded density skins
JPH0647058B2 (en) Gas selective permeable membrane
US5443728A (en) Method of preparing membranes from blends of polyetherimide and polyimide polymers
JPH0558770B2 (en)
JPS63116723A (en) Method of forming hollow fiber irregular gas separating film
US5910274A (en) Method of preparing membranes from blends of polymers
JP2688882B2 (en) Method for producing composite membrane for gas separation
Liu et al. Effects of spinning temperature on the morphology and performance of poly (ether sulfone) gas separation hollow fiber membranes
JPH0478729B2 (en)
JP2002126479A (en) Porous membrane, gas separating membrane and method of manufacturing for the same
JPS59228016A (en) Hollow yarn membrane of aromatic polysulfone
EP0264229A2 (en) Process for preparing a polyimide membrane
KR20020011593A (en) Method for forming gas separation membraines
KR0183458B1 (en) Asymmetric hollow fiber and its manufacturing method
JPH0378129B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090829

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100829

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100829

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 16

LAPS Cancellation because of no payment of annual fees