JP2687796B2 - Primary radiator for conical scan - Google Patents

Primary radiator for conical scan

Info

Publication number
JP2687796B2
JP2687796B2 JP31953191A JP31953191A JP2687796B2 JP 2687796 B2 JP2687796 B2 JP 2687796B2 JP 31953191 A JP31953191 A JP 31953191A JP 31953191 A JP31953191 A JP 31953191A JP 2687796 B2 JP2687796 B2 JP 2687796B2
Authority
JP
Japan
Prior art keywords
coupling
radiator
sub
radiators
main radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31953191A
Other languages
Japanese (ja)
Other versions
JPH05218735A (en
Inventor
晉 玉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP31953191A priority Critical patent/JP2687796B2/en
Publication of JPH05218735A publication Critical patent/JPH05218735A/en
Application granted granted Critical
Publication of JP2687796B2 publication Critical patent/JP2687796B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はパラボラ反射鏡に設けら
れて放射ビームを円錐状に回転させるコニカルスキャン
用一次放射器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conical-scan primary radiator provided on a parabolic reflector for rotating a radiation beam in a conical shape.

【0002】[0002]

【従来の技術】一般に、アンテナを電波到来方向に常に
正しく向けるように制御する場合、放射ビームを円錐状
に回転させて受信し、受信信号の振幅と位相からアンテ
ナの方向誤差を検出してアンテナの方向を制御すること
が行われている。
2. Description of the Related Art Generally, when controlling an antenna so that it is always correctly oriented in the direction of arrival of a radio wave, a radiation beam is rotated in a conical shape to be received, and the direction error of the antenna is detected from the amplitude and phase of the received signal to detect the direction error of the antenna. Controlling the direction of is done.

【0003】従来、放射ビームを放射軸の回りに円錐状
に回転させる方式としては、一次放射器をパラボラ反射
鏡の軸に対して傾けて配置したり、又は、軸から所定距
離だけ平行移動して配置して、数10Hzの速度で機械
的に回転させる方式がある。
Conventionally, as a method of rotating the radiation beam in a conical shape around the radiation axis, the primary radiator is arranged at an angle with respect to the axis of the parabolic reflector, or is translated by a predetermined distance from the axis. There is a method of mechanically rotating at a speed of several tens Hz.

【0004】また、電気的に回転させる方式として、例
えば図3に示すように、パラボラ反射鏡の軸から平行移
動して4個の放射素子を配置し、放射素子を順次切替え
て受信信号を検出する方式が考えられる。この場合、ビ
ームの傾き角θは、パラボラ反射鏡の軸から平行移動し
た距離をd、パラボラ反射鏡の焦点距離をf、アンテナ
開口角に依存する係数をKとすると、θ=K・tan-1
(d/f) …(1) となる。
Further, as an electrically rotating method, for example, as shown in FIG. 3, four radiating elements are arranged by moving in parallel from the axis of the parabolic reflecting mirror, and the radiating elements are sequentially switched to detect a received signal. A method of doing is possible. In this case, the tilt angle θ of the beam is θ = K · tan , where d is the distance translated from the axis of the parabolic reflector, f is the focal length of the parabolic reflector, and K is a coefficient depending on the antenna aperture angle. 1
(D / f) (1)

【0005】[0005]

【発明が解決しようとする課題】しかし、上述した機械
的に回転させる方式では、質量的にアンバランス状態に
なると回転によって振動が生じたり、回転部分が磨耗し
て円滑に回転できなくなって信頼度が低下し、また、一
次放射器を回転するためのモータやモータの制御器等が
必要となってコスト高になるという問題点がある。
However, in the mechanical rotation method described above, when the mass is unbalanced, vibration occurs due to the rotation, or the rotating portion is worn so that it cannot rotate smoothly, resulting in a high reliability. And a motor for rotating the primary radiator, a controller for the motor and the like are required, resulting in high cost.

【0006】また、上述した電気的に回転させる方式で
は、ビームの傾き角θは式(1)に示したように、主に
パラボラ反射鏡の軸から平行移動した距離dに依存する
が、一次放射器の寸法は使用周波数で決定するため、一
次放射器の寸法に応じた距離dを採用すると、ビームの
傾き角θは大きくなりすぎ、特にアンテナ利得が大きい
ほどビームの傾き角θは大きくなるので、実用できない
という問題点を有している。
In the above-described electrically rotating method, the beam tilt angle θ mainly depends on the distance d translated from the axis of the parabolic reflector, as shown in the equation (1). Since the size of the radiator is determined by the frequency used, if the distance d corresponding to the size of the primary radiator is adopted, the beam tilt angle θ becomes too large, and the beam tilt angle θ becomes larger as the antenna gain increases. Therefore, it has a problem that it cannot be practically used.

【0007】本発明の目的は、放射ビームの傾き角を大
きくすることなく電気的に放射ビームを回転できるコニ
カルスキャン用一次放射器を提供することにある。
An object of the present invention is to provide a primary radiator for a conical scan which can electrically rotate the radiation beam without increasing the tilt angle of the radiation beam.

【0008】[0008]

【課題を解決するための手段】本発明のコニカルスキャ
ン用一次放射器は、管状の主放射器の開口面部分の外周
に対称に設けられる管状の4N個(Nは正の整数)の副
放射器と、前記主放射器と前記4N個の副放射器とをそ
れぞれ結合するために管壁面に設けられる複数の結合孔
と、この複数の結合孔にそれぞれ設けられて結合度を電
気的に制御する結合度制御手段とを備えて構成される。
また、前記結合度制御手段は、前記結合孔を跨いで配設
され制御電流を印加されてオンオフ動作して結合度を制
御する半導体スイッチ素子を具備し、前記4N個の副放
射器の内1つと前記主放射器とを順次結合させるように
構成してもよい。
SUMMARY OF THE INVENTION The primary radiator for conical scanning according to the present invention comprises 4N (N is a positive integer) tubular secondary radiators symmetrically provided on the outer periphery of the opening surface portion of the tubular main radiator. And a plurality of coupling holes provided on the wall surface of the tube for coupling the main radiator and the 4N sub-radiators, respectively, and electrically controlling the degree of coupling provided in each of the coupling holes. And a coupling degree control means for controlling the coupling degree.
Further, the coupling degree control means includes a semiconductor switch element that is disposed across the coupling hole and is controlled by a control current to be turned on and off to control the coupling degree. One of the 4N sub-radiators is provided. And the main radiator may be sequentially coupled.

【0009】[0009]

【実施例】次に本発明について図面を参照して説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings.

【0010】図1は本発明の一実施例を示す図であり、
(a)は横断面図、(b)は正面図、(c)は結合孔部
分を示す図である。
FIG. 1 is a diagram showing an embodiment of the present invention.
(A) is a cross-sectional view, (b) is a front view, and (c) is a view showing a coupling hole portion.

【0011】管状の主放射器11の開口面部分の外周に
は、管状の副放射器21,22,23,24が対称に設
けられており、また、主放射器11と副放射器21,2
2,23,24とは、管壁面に設けられる結合孔31に
よってそれぞれ結合する。
Tubular auxiliary radiators 21, 22, 23, 24 are symmetrically provided on the outer periphery of the opening surface of the tubular main radiator 11, and the main radiator 11 and the auxiliary radiator 21, Two
2, 23, and 24 are coupled to each other by coupling holes 31 provided on the wall surface of the pipe.

【0012】また、各結合孔31には、図1(c)に示
すように、結合孔を跨いでピンダイオード41がそれぞ
れ接続されている。各ピンダイオードはプリント板51
に取付けられており、リード線を介してバイアス電流を
供給できるように直流的に絶縁されている。ここでバイ
アス電流を供給してピンダイオード41をオン状態とす
ることにより、結合度を小さくできる。すなわち、ピン
ダイオードをオンオフさせることにより、主放射器と副
放射器との結合を制御できる。なお、各結合孔に接続す
るピンダイオードの数は多いほど良い特性が得られる。
Further, as shown in FIG. 1C, the pin diodes 41 are connected to the coupling holes 31 so as to straddle the coupling holes. Each pin diode is printed board 51
And is galvanically isolated so that a bias current can be supplied via the lead wire. Here, the coupling degree can be reduced by supplying the bias current to turn on the pin diode 41. That is, by turning the pin diode on and off, the coupling between the main radiator and the sub radiator can be controlled. The better the number of pin diodes connected to each coupling hole, the better the characteristics.

【0013】次に動作を説明する。Next, the operation will be described.

【0014】いま、主放射器11と副放射器21との結
合孔に接続されているピンダイオードのみオフ状態とし
て、主放射器11と副放射器21とを結合し、他の結合
孔のピンダイオードはオン状態として結合を極度に小さ
くした場合、主放射器11と副放射器21との合成指向
特性E(θ)は、
Now, only the pin diode connected to the coupling hole of the main radiator 11 and the sub radiator 21 is turned off, the main radiator 11 and the sub radiator 21 are coupled to each other, and the pins of the other coupling holes are coupled. When the diode is turned on and the coupling is made extremely small, the combined directional characteristic E (θ) of the main radiator 11 and the sub radiator 21 is

【0015】 [0015]

【0016】となる。## EQU1 ##

【0017】ここで、f(θ)は主放射器11の指向特
性、g(θ)は副放射器21の指向特性、Cは結合度、
dは主放射器と副放射器との中心点間距離、φは主放射
器と副放射器との放射振幅の位相差、θは放射中心から
の角度、kはk=2π/λ(λは波長)である。
Here, f (θ) is the directivity characteristic of the main radiator 11, g (θ) is the directivity characteristic of the sub radiator 21, C is the degree of coupling,
d is the distance between the center points of the main radiator and the sub radiator, φ is the phase difference in the radiation amplitude between the main radiator and the sub radiator, θ is the angle from the radiation center, and k is k = 2π / λ (λ Is the wavelength).

【0018】さて、式(2)を簡単にするために、f
(θ)=g(θ),φ=0とすると、
Now, in order to simplify equation (2), f
If (θ) = g (θ) and φ = 0,

【0019】 [0019]

【0020】となる。ここで、## EQU1 ## here,

【0021】 [0021]

【0022】 [0022]

【0023】である。## EQU1 ##

【0024】更に、通常のパラボラ反射鏡の開口角度約
70度の場合は、d/λ=約0.5となり、位相および
振幅特性は、結合度に応じて図2に示すように変化す
る。
Further, when the aperture angle of the ordinary parabolic reflector is about 70 degrees, d / λ = about 0.5, and the phase and amplitude characteristics change as shown in FIG. 2 depending on the coupling degree.

【0025】このように、位相特性はθに対して非対称
となるので、放射ビームもθ方向に傾くことになる。傾
く量は、結合係数Cが大きいほど大きくなる。
As described above, since the phase characteristic is asymmetric with respect to θ, the radiation beam also tilts in the θ direction. The amount of tilt increases as the coupling coefficient C increases.

【0026】従って、各結合孔にそれぞれ接続されてい
るピンダイオードの内1つを一定の順序で順次オフ状態
としていくことにより、主放射器と結合する副放射器が
順次切替るので、放射ビームを90°毎に回転させるこ
とができる。
Therefore, by sequentially turning off one of the pin diodes connected to each coupling hole in a fixed order, the sub-radiators coupled to the main radiator are sequentially switched. Can be rotated every 90 °.

【0027】なお、電波が直線偏波の場合は、図1
(b)の矢印Pで示したように、どの副放射器とも均一
に結合させるために偏波方向を約45°になるようにす
る。また、円偏波の場合は、円偏波発生器を接続して直
線偏波に変換しておく。
When the radio waves are linearly polarized waves, as shown in FIG.
As shown by the arrow P in (b), the polarization direction is set to about 45 ° in order to uniformly couple with any of the sub radiators. In the case of circular polarization, a circular polarization generator is connected and converted into linear polarization.

【0028】また、本実施例では、副放射器を4個使用
しているが、4個の整数倍であってもよい。また本実施
例の結合孔の配置は、一種類の磁界に対してのみ有効で
あるが、傾斜した十字状の結合孔を設け、更に副放射器
として直交偏波共用の伝送路を使用しも、同様な効果が
得られることは容易に類推できる。
In addition, although four sub radiators are used in this embodiment, they may be an integral multiple of four. Further, although the arrangement of the coupling holes of this embodiment is effective only for one kind of magnetic field, an inclined cross-shaped coupling hole may be provided, and a transmission line for both orthogonal polarizations may be used as a sub radiator. It can be easily inferred that the same effect can be obtained.

【0029】[0029]

【発明の効果】以上説明したように本発明によれば、管
状の主放射器の開口面部分の外周に対称に4N個(Nは
正の整数)の管状の副放射器を設け、また、主放射器と
副放射器とをそれぞれ結合するための結合孔を管壁面に
設け、更に、各結合孔を跨いでピンダイオードをそれぞ
れ接続し、オンオフさせて結合度を制御することによ
り、4N個の副放射器の内1つと主放射器とを順次結合
させて放射指向特性の位相分布を電気的に非対称に順次
変化させることできるので、ビームの傾き角を大きくす
ることなく放射ビームを電気的に回転できる。
As described above, according to the present invention, 4N (N is a positive integer) tubular auxiliary radiators are symmetrically provided on the outer periphery of the opening surface of the tubular primary radiator, and A coupling hole for coupling the main radiator and the secondary radiator is provided on the wall surface of the tube, and pin diodes are connected across the coupling holes to control the degree of coupling by turning them on and off. Since one of the secondary radiators and the main radiator can be sequentially coupled to sequentially change the phase distribution of the radiation directivity characteristic electrically asymmetrically, the radiation beam can be electrically changed without increasing the tilt angle of the beam. Can be rotated to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す図であり、(a)は横
断面図、(b)は正面図、(c)は結合孔部分を示す図
である。
1A and 1B are views showing an embodiment of the present invention, in which FIG. 1A is a cross-sectional view, FIG. 1B is a front view, and FIG. 1C is a view showing a coupling hole portion.

【図2】本実施例の放射指向特性の一例を示す図であ
り、(a)は位相特性、(b)は振幅特性をそれぞれ示
している。
FIG. 2 is a diagram showing an example of radiation directivity characteristics of the present embodiment, where (a) shows phase characteristics and (b) shows amplitude characteristics.

【図3】従来のコニカルスキャン用一次放射器の一例を
示す側面図である。
FIG. 3 is a side view showing an example of a conventional primary radiator for conical scanning.

【符号の説明】[Explanation of symbols]

11 主放射器 21〜24 副放射器 31 結合孔 41 ピンダイオード 11 Main radiator 21-24 Sub radiator 31 Coupling hole 41 Pin diode

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 管状の主放射器の開口面部分の外周に対
称に設けられる管状の4N個(Nは正の整数)の副放射
器と、前記主放射器と前記4N個の副放射器とをそれぞ
れ結合するために管壁面に設けられる複数の結合孔と、
この複数の結合孔にそれぞれ設けられて結合度を電気的
に制御する結合度制御手段とを備えることを特徴とする
コニカルスキャン用一次放射器。
1. A tubular 4N (N is a positive integer) sub-radiators symmetrically provided on the outer periphery of an opening surface portion of the tubular main radiator, the main radiator and the 4N sub-radiators. A plurality of coupling holes provided on the wall surface of the pipe for coupling and
A primary radiator for conical scanning, comprising: coupling degree control means provided in each of the plurality of coupling holes to electrically control the coupling degree.
【請求項2】 前記結合度制御手段は、前記結合孔を跨
いで配設され制御電流を印加されてオンオフ動作して結
合度を制御する半導体スイッチ素子を具備し、前記4N
個の副放射器の内1つと前記主放射器とを順次結合させ
ることを特徴とする請求項1記載のコニカルスキャン用
一次放射器。
2. The coupling degree control means comprises a semiconductor switch element which is disposed across the coupling hole and which is controlled by a control current to be turned on and off to control the coupling degree.
The primary radiator for conical scanning according to claim 1, wherein one of the sub radiators and the main radiator are sequentially coupled.
JP31953191A 1991-12-04 1991-12-04 Primary radiator for conical scan Expired - Fee Related JP2687796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31953191A JP2687796B2 (en) 1991-12-04 1991-12-04 Primary radiator for conical scan

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31953191A JP2687796B2 (en) 1991-12-04 1991-12-04 Primary radiator for conical scan

Publications (2)

Publication Number Publication Date
JPH05218735A JPH05218735A (en) 1993-08-27
JP2687796B2 true JP2687796B2 (en) 1997-12-08

Family

ID=18111284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31953191A Expired - Fee Related JP2687796B2 (en) 1991-12-04 1991-12-04 Primary radiator for conical scan

Country Status (1)

Country Link
JP (1) JP2687796B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009267619A (en) 2008-04-23 2009-11-12 Sharp Corp Multi-feed horn, low noise block downconverter provided with the same, and antenna apparatus
JP6327962B2 (en) * 2014-06-06 2018-05-23 三菱電機株式会社 Reflector antenna device

Also Published As

Publication number Publication date
JPH05218735A (en) 1993-08-27

Similar Documents

Publication Publication Date Title
US6081234A (en) Beam scanning reflectarray antenna with circular polarization
US3925784A (en) Antenna arrays of internally phased elements
US5926137A (en) Foursquare antenna radiating element
JP4119888B2 (en) Antenna element switched asymmetric reflection array antenna
US4862185A (en) Variable wide angle conical scanning antenna
JP2584518B2 (en) Scanning antenna system
US5828344A (en) Radiation sensor
JP2005526437A (en) Scanning directional antenna with lens and reflector assembly
JPH088641A (en) Scanning cup dipole antenna with fixed dipole and rotary cup
WO2005114785A1 (en) Antenna device and rader device using the same
JPH08511924A (en) Radiation sensor
JP2009005086A (en) Tapered slot antenna and antenna unit
EP1050925B1 (en) Multi-primary radiator, down converter and multibeam antenna
JP2687796B2 (en) Primary radiator for conical scan
US2759183A (en) Antenna arrays
US3277490A (en) Broadband conical scan feed for parabolic antennas
JPH0964637A (en) Waveguide slop antenna
JP3695973B2 (en) Antenna device
JPH0233202A (en) Mechanical beam scanning antenna system
US3852748A (en) High-resolution hemispherical reflector antenna
JP3941349B2 (en) Beam scanning antenna
JPH11234038A (en) Polarized-wave adaptive phase array antenna
JPS5915521B2 (en) circularly polarized array antenna
JP2513406B2 (en) Antenna device
JP2581290B2 (en) Reflector antenna device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970722

LAPS Cancellation because of no payment of annual fees